Anomalous CuCrP2S6/WSe2 interface enabled two-dimensional programmable homojunction for self-powered photodetection and complex optoelectronic logics

Tengyu Jin , Xiangyu Hou , Shu Shi , Jingyu Mao , Yichen Cai , Yizhuo Luo , Wei Zhang , Jinlong Zhu , Junhao Lin , Jingsheng Chen , Wei Chen

InfoMat ›› 2025, Vol. 7 ›› Issue (9) : e70022

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (9) : e70022 DOI: 10.1002/inf2.70022
RESEARCH ARTICLE

Anomalous CuCrP2S6/WSe2 interface enabled two-dimensional programmable homojunction for self-powered photodetection and complex optoelectronic logics

Author information +
History +
PDF

Abstract

Ferroelectric materials hold great potential for modulating two-dimensional (2D) materials to achieve electrically tunable homojunction (ETH). However, ETH based on conventional ferroelectrics encounters significant challenges attributed to the surface with dangling bonds and the associated depolarization field. Here, we introduce a novel 2D ETH device based on the anomalous interfacial effect between 2D layered ferroelectric CuCrP2S6 and ambipolar WSe2, creating a versatile platform for nonvolatile memory and high-performance optoelectronic applications. The device capitalizes on the realization of ETH through a localized doping strategy facilitated by ferroelectric polarization-assisted charge trapping. When modulated to a p–n junction diode, the device showcases superior rectifying characteristics and high-performance self-powered photodetection, with a highest responsivity over 0.14 A·W–1. Moreover, the nonvolatile ETH device enables a single device to implement complex optoelectronic logics of exclusive OR (XOR), OR, and not implication (NIMP) that can be reconfigured by light illumination. Compared to the traditional CMOS-based logics, the ETH device significantly reduces the transistor number by 87.5%, 83.3%, and 87.5% for XOR, OR, and NIMP, respectively. The successful demonstration of the ETH device based on 2D ferroelectric materials paves the way for the development of advanced and simplified photo-electric interconnected circuits.

Keywords

2D ferroelectrics / 2D materials / CuCrP2S6 / homojunction / optoelectronic logics / photodiode

Cite this article

Download citation ▾
Tengyu Jin, Xiangyu Hou, Shu Shi, Jingyu Mao, Yichen Cai, Yizhuo Luo, Wei Zhang, Jinlong Zhu, Junhao Lin, Jingsheng Chen, Wei Chen. Anomalous CuCrP2S6/WSe2 interface enabled two-dimensional programmable homojunction for self-powered photodetection and complex optoelectronic logics. InfoMat, 2025, 7(9): e70022 DOI:10.1002/inf2.70022

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu X, Hersam MC. Interface characterization and control of 2D materials and heterostructures. Adv Mater. 2018; 30(39): 1801586.

[2]

Schmidt H, Giustiniano F, Eda G. Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chem Soc Rev. 2015; 44(21): 7715-7736.

[3]

Lemme MC, Akinwande D, Huyghebaert C, Stampfer C. 2D materials for future heterogeneous electronics. Nat Commun. 2022; 13(1): 1392.

[4]

Liu Y, Weiss NO, Duan X, Cheng H-C, Huang Y, Duan X. Van der Waals heterostructures and devices. Nat Rev Mater. 2016; 1(9): 16042.

[5]

Jiang H, Zheng L, Liu Z, Wang X. Two-dimensional materials: from mechanical properties to flexible mechanical sensors. InfoMat. 2019; 2(6): 1077-1094.

[6]

Zeng S, Tang Z, Liu C, Zhou P. Electronics based on two-dimensional materials: status and outlook. Nano Res. 2020; 14(6): 1752-1767.

[7]

Wang S, Liu X, Zhou P. The road for 2D semiconductors in the silicon age. Adv Mater. 2022; 34: 2106886.

[8]

Wang S, Liu X, Xu M, Liu L, Yang D, Zhou P. Two-dimensional devices and integration towards the silicon lines. Nat Mater. 2022; 21(11): 1225-1239.

[9]

Li HM, Lee D, Qu D, et al. Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide. Nat Commun. 2015; 6(1): 6564.

[10]

Lee CH, Lee GH, van der Zande AM, et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat Nanotechnol. 2014; 9(9): 676-681.

[11]

Rong P, Gao S, Li L, et al. Surface engineering of highly ordered Bi2S3 film with open channels toward high-performance broadband photodetection. InfoMat. 2024; 6(11): e12567.

[12]

Pospischil A, Furchi MM, Mueller T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat Nanotechnol. 2014; 9(4): 257-261.

[13]

Gu J, Chakraborty B, Khatoniar M, Menon VM. A room-temperature polariton light-emitting diode based on monolayer WS2. Nat Nanotechnol. 2019; 14(11): 1024-1028.

[14]

Ahmed T, Tahir M, Low MX, et al. Fully light-controlled memory and neuromorphic computation in layered black phosphorus. Adv Mater. 2021; 33: 2004207.

[15]

Tran MD, Kim H, Kim JS, et al. Two-terminal multibit optical memory via van der Waals heterostructure. Adv Mater. 2019; 31(7): e1807075.

[16]

Wang Y, Zheng Y, Gao J, et al. Band-tailored van der Waals heterostructure for multilevel memory and artificial synapse. InfoMat. 2021; 3(8): 917-928.

[17]

Yu J, Fu J, Ruan H, et al. Tailoring lithium intercalation pathway in 2D van der Waals heterostructure for high-speed edge-contacted floating-gate transistor and artificial synapses. InfoMat. 2024; 6(10): e12599.

[18]

Resta GV, Balaji Y, Lin D, et al. Doping-free complementary logic gates enabled by two-dimensional polarity-controllable transistors. ACS Nano. 2018; 12(7): 7039-7047.

[19]

Yi J, Sun X, Zhu C, et al. Double-gate MoS2 field-effect transistors with full-range tunable threshold voltage for multifunctional logic circuits. Adv Mater. 2021; 33: 2101036.

[20]

Hu Z, Wu Z, Han C, He J, Ni Z, Chen W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem Soc Rev. 2018; 47(9): 3100-3128.

[21]

Kang KT, Park J, Suh D, Choi WS. Synergetic behavior in 2D layered material/complex oxide heterostructures. Adv Mater. 2019; 31(34): e1803732.

[22]

Hu Z, Niu T, Guo R, et al. Two-dimensional black phosphorus: its fabrication, functionalization and applications. Nanoscale. 2018; 10(46): 21575-21603.

[23]

Vincent T, Liang J, Singh S, et al. Opportunities in electrically tunable 2D materials beyond graphene: recent progress and future outlook. Appl Phys Rev. 2021; 8(4): 041320.

[24]

Fan S, Shen W, An C, et al. Implementing lateral MoSe2 p-n homojunction by efficient carrier-type modulation. ACS Appl Mater Interfaces. 2018; 10(31): 26533-26538.

[25]

Zhang Y, Ma K, Zhao C, et al. An ultrafast WSe2 photodiode based on a lateral p-i-n homojunction. ACS Nano. 2021; 15(3): 4405-4415.

[26]

Choi MS, Qu D, Lee D, et al. Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano. 2014; 8(9): 9332-9340.

[27]

Lee S-J, Lin Z, Huang J, et al. Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nat Electron. 2020; 3(10): 630-637.

[28]

Pan C, Wang C-Y, Liang S-J, et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat Electron. 2020; 3(7): 383-390.

[29]

Lv L, Zhuge F, Xie F, et al. Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nat Commun. 2019; 10(1): 3331.

[30]

Sutar S, Agnihotri P, Comfort E, Taniguchi T, Watanabe K, Ung LJ. Reconfigurable p-n junction diodes and the photovoltaic effect in exfoliated MoS2 films. Appl Phys Lett. 2014; 104(12): 122104.

[31]

Shim H, Ershad F, Patel S, et al. An elastic and reconfigurable synaptic transistor based on a stretchable bilayer semiconductor. Nat Electron. 2022; 5(10): 660-671.

[32]

Seo S-Y, Moon G, Okello OFN, et al. Reconfigurable photo-induced doping of two-dimensional van der Waals semiconductors using different photon energies. Nat Electron. 2020; 4(1): 38-44.

[33]

Shi W, Kahn S, Jiang L, et al. Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures. Nat Electron. 2020; 3(2): 99-105.

[34]

Wei P, Wang X, Li X, et al. Reconfigurable multifunctional ambipolar polymer-blend transistors with improved switching-off capability. Adv Funct Mater. 2021; 31(40): 2103369.

[35]

Sun X, Zhu C, Yi J, et al. Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nat Electron. 2022; 5(11): 752-760.

[36]

Jin T, Mao J, Gao J, et al. Ferroelectrics-integrated two-dimensional devices toward next-generation electronics. ACS Nano. 2022; 16(9): 13595-13611.

[37]

Sun Y, Niu G, Ren W, et al. Hybrid system combining two-dimensional materials and ferroelectrics and its application in photodetection. ACS Nano. 2021; 15(7): 10982-11013.

[38]

Luo ZD, Yang MM, Liu Y, Alexe M. Emerging opportunities for 2D semiconductor/ferroelectric transistor-structure devices. Adv Mater. 2021; 33(12): 2005620.

[39]

Martin LW, Rappe AM. Thin-film ferroelectric materials and their applications. Nat Rev Mater. 2016; 2(2): 1-14.

[40]

Wu G, Wang X, Chen Y, et al. MoTe2 p-n homojunctions defined by ferroelectric polarization. Adv Mater. 2020; 32: 1907937.

[41]

Wu G, Tian B, Liu L, et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat Electron. 2020; 3(1): 43-50.

[42]

Khosla R, Sharma SK. Integration of ferroelectric materials: an ultimate solution for next-generation computing and storage devices. ACS Appl Electron Mater. 2021; 3(7): 2862-2897.

[43]

Guan Z, Hu H, Shen X, et al. Recent progress in two-dimensional ferroelectric materials. Adv Electron Mater. 2019; 6: 1900818.

[44]

Zhou C, Chai Y. Ferroelectric-gated two-dimensional-material-based electron devices. Adv Electron Mater. 2017; 3: 1600400.

[45]

Khan AI, Keshavarzi A, Datta S. The future of ferroelectric field-effect transistor technology. Nat Electron. 2020; 3(10): 588-597.

[46]

Yuan ZL, Sun Y, Wang D, Chen KQ, Tang LM. A review of ultra-thin ferroelectric films. J Phys Condens Matter. 2021; 33(40): 403003.

[47]

Chu J, Wang Y, Wang X, et al. 2D polarized materials: ferromagnetic, ferrovalley, ferroelectric materials, and related heterostructures. Adv Mater. 2021; 33(5): e2004469.

[48]

Wang C, You L, Cobden D, Wang J. Towards two-dimensional van der Waals ferroelectrics. Nat Mater. 2023; 22(5): 542-552.

[49]

Cui C, Xue F, Hu W-J, Li L-J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater Appl. 2018; 2(1): 18.

[50]

Shirodkar SN, Waghmare UV. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys Rev Lett. 2014; 112(15): 157601.

[51]

Wan Y, Hu T, Mao X, et al. Room-temperature ferroelectricity in 1T′-ReS2 multilayers. Phys Rev Lett. 2022; 128: 067601.

[52]

Shen X-W, Fang Y-W, Tian B-B, Duan C-G. Two-dimensional ferroelectric tunnel junction: the case of monolayer In:SnSe/SnSe/Sb:SnSe homostructure. ACS Appl Electron Mater. 2019; 1(7): 1133-1140.

[53]

Huang W, Wang F, Yin L, et al. Gate-coupling-enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions. Adv Mater. 2020; 32(14): e1908040.

[54]

Liu F, You L, Seyler KL, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun. 2016; 7(1): 12357.

[55]

Li Y, Gong M, Zeng H. Atomically thin α-In2Se3: an emergent two-dimensional room temperature ferroelectric semiconductor. J Semicond. 2019; 40(6): 061002.

[56]

Ding W, Zhu J, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat Commun. 2017; 8(1): 14956.

[57]

Io WF, Pang SY, Wong LW, et al. Direct observation of intrinsic room-temperature ferroelectricity in 2D layered CuCrP2S6. Nat Commun. 2023; 14(1): 7304.

[58]

Ma Y, Yan Y, Luo L, et al. High-performance van der Waals antiferroelectric CuCrP2S6-based memristors. Nat Commun. 2023; 14(1): 7891.

[59]

Wang X, Shang Z, Zhang C, et al. Electrical and magnetic anisotropies in van der Waals multiferroic CuCrP2S6. Nat Commun. 2023; 14(1): 840.

[60]

Lai Y, Song Z, Wan Y, et al. Two-dimensional ferromagnetism and driven ferroelectricity in van der Waals CuCrP2S6. Nanoscale. 2019; 11(12): 5163-5170.

[61]

Wang X, Zhu C, Deng Y, et al. Van der Waals engineering of ferroelectric heterostructures for long-retention memory. Nat Commun. 2021; 12(1): 1109.

[62]

Si M, Liao PY, Qiu G, Duan Y, Ye PD. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano. 2018; 12(7): 6700-6705.

[63]

Jin T, Gao J, Wang Y, et al. Two-dimensional reconfigurable electronics enabled by asymmetric floating gate. Nano Res. 2022; 15(5): 4439-4447.

[64]

Groenendijk DJ, Buscema M, Steele GA, et al. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett. 2014; 14(10): 5846-5852.

[65]

Tang Y, Wang Z, Wang P, et al. WSe2 photovoltaic device based on intramolecular p-n junction. Small. 2019; 15(12): e1805545.

[66]

Zhu C, Sun X, Liu H, et al. Nonvolatile MoTe2 p-n diodes for optoelectronic logics. ACS Nano. 2019; 13(6): 7216-7222.

[67]

Yu X, Zhang S, Zeng H, Wang QJ. Lateral black phosphorene p-n junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy. 2016; 25: 34-41.

[68]

Wu E, Xie Y, Zhang J, et al. Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation. Sci Adv. 2019; 5(5): eaav3430.

[69]

Wang H, Wu K, Guo H, et al. Ultrafast-programmable two-dimensional p-n homojunction for high-performance photovoltaics and optoelectronics. 2D Mater. 2023; 10(3): 035019.

[70]

Jian L, Zhang S, Gao W, et al. WS2 lateral p-n homojunction toward a sensitive self-driven photodetector by water treatment. Appl Phys Lett. 2024; 124(9): 093506.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

5

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/