Recent advances in additive manufacturing for solar cell based on organic/inorganic hybrid materials

Ziyue Ju , Ruichan Lv , Anees A. Ansari , Jun Lin

InfoMat ›› 2025, Vol. 7 ›› Issue (7) : e70017

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (7) : e70017 DOI: 10.1002/inf2.70017
REVIEW ARTICLE

Recent advances in additive manufacturing for solar cell based on organic/inorganic hybrid materials

Author information +
History +
PDF

Abstract

The performance of optoelectronic materials has been booming developed. Yet, the traditional solar cell manufacturing techniques, such as spin coating and screen printing, have significant limitations that seem to hinder the further development of solar cell technology. Compared with traditional manufacturing processes, additive manufacturing (AM) boasts advantages such as flexibility in the printing process, precise control over material deposition, and simpler procedures. These features provide a foundation for further enhancing solar cell performance and expanding their applications. This review outlines the superiority of AM compared with traditional solar cell manufacturing methods and highlights how AM has addressed specific challenges currently faced by solar cells. The most widely researched solar cell structures in recent years were briefly reviewed with summarizing their advantages and disadvantages. Then, a comprehensive overview of different manufacturing processes, including traditional printing methods and AM, is presented. Especially, their workflows, characteristics, and impressive innovative applications in solar cell manufacturing were discussed in detail. Finally, based on the current state of research, the review reflects on the future prospects of applying AM technology in space solar energy production, such as integrated printing with protective outer layers together with the solar cells, customized functional structure printing, flexible large-scale printing, and printing of high-performance novel materials with nanoscale and microscale structures.

Keywords

additive manufacturing / solar cell manufacturing / space solar energy production

Cite this article

Download citation ▾
Ziyue Ju, Ruichan Lv, Anees A. Ansari, Jun Lin. Recent advances in additive manufacturing for solar cell based on organic/inorganic hybrid materials. InfoMat, 2025, 7(7): e70017 DOI:10.1002/inf2.70017

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hayat MB, Ali D, Monyake KC, Alagha L, Ahmed N. Solar energy-a look into power generation, challenges, and a solar-powered future. Int J Energy Res. 2019; 43(3): 1049-1067.

[2]

Du J, Du ZL, Hu JS, et al. Zn-cu-in-se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J Am Chem Soc. 2016; 138(12): 4201-4209.

[3]

Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012; 488(7411): 294-303.

[4]

Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009; 131(17): 6050-6051.

[5]

Kabir E, Kumar P, Kumar S, Adelodun AA, Kim KH. Solar energy: potential and future prospects. Renew Sustain Energy Rev. 2018; 82(1): 894-900.

[6]

Chapin DM, Fuller CS, Pearson GL. A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys. 1954; 25(5): 676-677.

[7]

Lee TD, Ebong AU. A review of thin film solar cell technologies and challenges. Renew Sustain Energy Rev. 2017; 70(1): 1286-1297.

[8]

Zhou J, Tan L, Liu Y, et al. Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material. Joule. 2024; 8(6): 1691-1706.

[9]

Li Z, Klein TR, Kim DH, et al. Scalable fabrication of perovskite solar cells. Nat Rev Mater. 2018; 3(4): 18017.

[10]

Yang D, Yang RX, Priya S, Liu SZ. Recent advances in flexible perovskite solar cells: fabrication and applications. Angew Chem Int Ed. 2019; 58(14): 4466-4483.

[11]

Eslamian M. Spray-on thin film pv solar cells: advances, potentials and challenges. Coatings. 2014; 4(1): 60-84.

[12]

Ganesan S, Mehta S, Gupta D. Fully printed organic solar cells - a review of techniques, challenges and their solutions. Optoelectron Rev. 2019; 27(3): 298-320.

[13]

Chen CS, Ran CX, Yao Q, et al. Screen-printing technology for scale manufacturing of perovskite solar cells. Adv Sci. 2023; 10(28): 2303992.

[14]

Karunakaran SK, Arumugam GM, Yang WT, et al. Recent progress in inkjet-printed solar cells. J Mater Chem A. 2019; 7(23): 13873-13902.

[15]

Xiao YF, Zuo CT, Zhong JX, Wu WQ, Shen L, Ding LM. Large-area blade-coated solar cells: advances and perspectives. Adv Energy Mater. 2021; 11(21): 2100378.

[16]

DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components - process, structure and properties. Prog Mater Sci. 2018; 92(1): 112-224.

[17]

Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014; 32(8): 773-785.

[18]

Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng. 2018; 143(1): 172-196.

[19]

Zhakeyev A, Wang PF, Zhang L, Shu WM, Wang HZ, Xuan J. Additive manufacturing: unlocking the evolution of energy materials. Adv Sci. 2017; 4(10): 1700187

[20]

Pang YK, Cao YT, Chu YH, et al. Additive manufacturing of batteries. Adv Funct Mater.2020; 30(1): 201906244.

[21]

Sahu A, Garg A, Dixit A. A review on quantum dot sensitized solar cells: past, present and future towards carrier multiplication with a possibility for higher efficiency. Sol Energy. 2020; 203(1): 210-239.

[22]

Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H. Photovoltaic technology: the case for thin-film solar cells. Science. 1999; 285(5428): 692-698.

[23]

Green MA. Silicon photovoltaic modules: a brief history of the first 50 years. Prog Photovolt. 2005; 13(5): 447-455.

[24]

Sun ZQ, Chen XQ, He YC, et al. Toward efficiency limits of crystalline silicon solar cells: recent progress in high-efficiency silicon heterojunction solar cells. Adv Energy Mater. 2022; 12(23): 12.

[25]

Battaglia C, Cuevas A, De Wolf S. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci. 2016; 9(5): 1552-1576.

[26]

Kaminski A, Vandelle B, Fave A, et al. Aluminium BSF in silicon solar cells. Sol Energy Mater Sol Cells. 2002; 72(1-4): 373-379.

[27]

Chiu JS, Zhao YM, Zhang S, Wuu DS. The role of laser ablated backside contact pattern in efficiency improvement of mono crystalline silicon PERC solar cells. Sol Energy. 2020; 196(1): 462-467.

[28]

Chen YF, Chen DM, Liu CF, et al. Mass production of industrial tunnel oxide passivated contacts (i-TOPCon) silicon solar cells with average efficiency over 23% and modules over 345 w. Prog Photovolt. 2019; 27(10): 827-834.

[29]

Yoshikawa K, Kawasaki H, Yoshida W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy. 2017; 2(5): 17032.

[30]

Korte L, Conrad E, Angermann H, Stangl R, Schmidt M. Advances in a-Si: H/c-Si heterojunction solar cell fabrication and characterization. Sol Energy Mater Sol Cells. 2009; 93(6-7): 905-910.

[31]

Nishiwaki H, Uchihashi K, Takaoka K, et al. Development of an ultralight, flexible a-Si solar cell submodule. Sol Energy Mater Sol Cells. 1995; 37(3-4): 295-306.

[32]

Staebler DL, Wronski C. Reversible conductivity changes in discharge-produced amorphous Si. Appl Phys Lett. 1977; 31(4): 292-294.

[33]

Fritzsche H. Development in understanding and controlling the staebler-wronski effect in a-Si: H. Annu Rev Mat Res. 2001; 31(1): 47-79.

[34]

Ramanujam J, Bishop DM, Todorov TK, et al. Flexible cigs, CdTe and a-si: H based thin film solar cells: a review. Prog Mater Sci. 2020; 110(1): 100619.

[35]

Xiao H, Wang J, Huang H, et al. Performance optimization of flexible a-Si: H solar cells with nanotextured plasmonic substrate by tuning the thickness of oxide spacer layer. Nano Energy. 2015; 11(1): 78-87.

[36]

Sheng X, Shen L, Kim T, et al. Doubling the power output of bifacial thin-film gaas solar cells by embedding them in luminescent waveguides. Adv Energy Mater. 2013; 3(8): 991-996.

[37]

Oh G, Kim Y, Lee SJ, Kim EK. Broadband antireflective coatings for high efficiency InGaP/GaAs/InGaAsP/InGaAs multi junction solar cells. Sol Energy Mater Sol Cells. 2020; 207(1): 110359.

[38]

Varadhan P, Fu H-C, Kao Y-C, Horng R-H, He J-H. An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction. Nat Commun. 2019; 10(1): 5282.

[39]

Yoon J, Jo S, Chun IS, et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature. 2010; 465(7296): 329-333.

[40]

Kalyuzhnyy N, Malevskaya A, Mintairov S, et al. Photovoltaic AlGaAs/GaAs devices for conversion of high-power density laser (800-860 nm) radiation. Sol Energy Mater Sol Cells. 2023; 262(1): 112551.

[41]

Kim TS, Kim HJ, Geum D-M, et al. Ultra-lightweight, flexible InGaP/GaAs tandem solar cells with a dual-function encapsulation layer. ACS Appl Mater Interfaces. 2021; 13(11): 13248-13253.

[42]

Radziemska E. Thermal performance of Si and GaAs based solar cells and modules: a review. Prog Energy Combust Sci. 2003; 29(5): 407-424.

[43]

Romeo A, Artegiani E, Menossi D. Low substrate temperature CdTe solar cells: a review. Sol Energy. 2018; 175(1): 9-15.

[44]

Khrypunov G, Romeo A, Kurdesau F, Bätzner D, Zogg H, Tiwari AN. Recent developments in evaporated CdTe solar cells. Sol Energy Mater Sol Cells. 2006; 90(6): 664-677.

[45]

Romeo N, Bosio A, Canevari V, Podesta A. Recent progress on CdTe/CDS thin film solar cells. Sol Energy. 2004; 77(6): 795-801.

[46]

Liu W, Li H, Qiao B, Zhao S, Xu Z, Song D. Highly efficient CIGS solar cells based on a new CIGS bandgap gradient design characterized by numerical simulation. Sol Energy. 2022; 233(1): 337-344.

[47]

Wada T, Hashimoto Y, Nishiwaki S, et al. High-efficiency CIGS solar cells with modified CIGS surface. Sol Energy Mater Sol Cells. 2001; 67(1-4): 305-310.

[48]

Kessler F, Rudmann D. Technological aspects of flexible CIGS solar cells and modules. Sol Energy. 2004; 77(6): 685-695.

[49]

Shao X, Shi S, Liang B, et al. Alkali metal pretreatment for precise Na doping and Voc improvement in CIGS thin-film solar cells. ACS Appl Mater Interfaces. 2024; 16(23): 30147-30156.

[50]

Ishizuka S, Fons PJ. Lithium-doping effects in InCu(In, Ga)Se2 thin-film and photovoltaic properties. ACS Appl Mater Interfaces. 2020; 12(22): 25058-25065.

[51]

Mufti N, Amrillah T, Taufiq A, Diantoro M, Nur H. Review of CIGS-based solar cells manufacturing by structural engineering. Sol Energy. 2020; 207(1): 1146-1157.

[52]

Helbig C, Bradshaw AM, Kolotzek C, Thorenz A, Tuma A. Supply risks associated with CdTe and CIGS thin-film photovoltaics. Appl Energy. 2016; 178(1): 422-433.

[53]

Sekar S, Thamotharan K, Manickam S, Murugesan B, Kakimoto K, Perumalsamy R. A critical review of the process and challenges of silicon crystal growth for photovoltaic applications. Cryst Res Technol. 2024; 59(1): 2300131.

[54]

Richards BS. Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Sol Energy Mater Sol Cells. 2006; 90(15): 2329-2337.

[55]

Liang D, Kang Y, Huo Y, Chen Y, Cui Y, Harris JS. High-efficiency nanostructured window GaAs solar cells. Nano Lett. 2013; 13(10): 4850-4856.

[56]

Kuddus A, Ismail ABM, Hossain J. Design of a highly efficient CdTe-based dual-heterojunction solar cell with 44% predicted efficiency. Sol Energy. 2021; 221(1): 488-501.

[57]

Liu F, Zeng Q, Li J, et al. Emerging inorganic compound thin film photovoltaic materials: progress, challenges and strategies. Mater Today. 2020; 41(1): 120-142.

[58]

Zhang J, Ricote S, Hendriksen PV, Chen Y. Advanced materials for thin-film solid oxide fuel cells: recent progress and challenges in boosting the device performance at low temperatures. Adv Funct Mater. 2022; 32(22): 2111205.

[59]

Meillaud F, Boccard M, Bugnon G, et al. Recent advances and remaining challenges in thin-film silicon photovoltaic technology. Mater Today. 2015; 18(7): 378-384.

[60]

Ansari AA, Parchur AK, Li Y, et al. Cytotoxicity and genotoxicity evaluation of chemically synthesized and functionalized upconversion nanoparticles. Coord Chem Rev. 2024; 504(1): 215672.

[61]

Mavlonov A, Razykov T, Raziq F, et al. A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Sol Energy. 2020; 201(1): 227-246.

[62]

Ablekim T, Duenow JN, Zheng X, et al. Thin-film solar cells with 19% efficiency by thermal evaporation of CdSe and CdTe. ACS Energy Lett. 2020; 5(3): 892-896.

[63]

Rong Y, Hu Y, Mei A, et al. Challenges for commercializing perovskite solar cells. Science. 2018; 361(6408): eaat8235.

[64]

Xue R, Zhang J, Li Y, Li Y. Organic solar cell materials toward commercialization. Small. 2018; 14(41): 1801793.

[65]

Richhariya G, Kumar A, Tekasakul P, Gupta B. Natural dyes for dye sensitized solar cell: a review. Renew Sustain Energy Rev. 2017; 69(1): 705-718.

[66]

Kramer IJ, Sargent EH. The architecture of colloidal quantum dot solar cells: materials to devices. Chem Rev. 2014; 114(1): 863-882.

[67]

Zheng Z, Wang J, Bi P, et al. Tandem organic solar cell with 20.2% efficiency. Joule. 2022; 6(1): 171-184.

[68]

Heremans P, Cheyns D, Rand BP. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Acc Chem Res. 2009; 42(11): 1740-1747.

[69]

Yao H, Hou J. Recent advances in single-junction organic solar cells. Angew Chem Int Ed. 2022; 61(37): e202209021.

[70]

Kang H, Kim G, Kim J, Kwon S, Kim H, Lee K. Bulk-heterojunction organic solar cells: five core technologies for their commercialization. Adv Mater. 2016; 28(36): 7821-7861.

[71]

Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L. Recent advances in bulk heterojunction polymer solar cells. Chem Rev. 2015; 115(23): 12666-12731.

[72]

Chen J, Chen Y, Feng L-W, et al. Hole (donor) and electron (acceptor) transporting organic semiconductors for bulk-heterojunction solar cells. Energy Chem. 2020; 2(5): 100042.

[73]

Yuan J, Zhang H, Zhang R, et al. Reducing voltage losses in the a-da' da acceptor-based organic solar cells. Chem. 2020; 6(9): 2147-2161.

[74]

Wei Q, Liu W, Leclerc M, Yuan J, Chen H, Zou Y. A-DA'D-A non-fullerene acceptors for high-performance organic solar cells. Sci China Chem. 2020; 63(1): 1352-1366.

[75]

Wang J, Jiang X, Wu H, et al. Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells. Nat Commun. 2021; 12(1): 6679.

[76]

Wang Z, Wang X, Tu L, et al. Dithienoquinoxalineimide-based polymer donor enables all-polymer solar cells over 19% efficiency. Angew Chem Int Ed. 2024; 63(21): e202319755.

[77]

Dai T, Meng Y, Wang Z, et al. Modulation of molecular quadrupole moments by phenyl side-chain fluorination for high-voltage and high-performance organic solar cells. J Am Chem Soc. 2025; 147(5): 4631-4642.

[78]

Li X, Tang A, Wang H, et al. Benzotriazole-based 3D four-arm small molecules enable 19.1% efficiency for PM6 : Y6-based ternary organic solar cells. Angew Chem Int Ed. 2023; 62(39): e202306847.

[79]

Yeh N, Yeh P. Organic solar cells: their developments and potentials. Renew Sustain Energy Rev. 2013; 21(1): 421-431.

[80]

Savagatrup S, Chan E, Renteria-Garcia SM, et al. Plasticization of PEDOT: PSS by common additives for mechanically robust organic solar cells and wearable sensors. Adv Funct Mater. 2015; 25(3): 427-436.

[81]

Kang Q, Liao Q, Yang C, Yang Y, Xu B, Hou J. A new PEDOT derivative for efficient organic solar cell with a fill factor of 0.80. Adv Energy Mater. 2022; 12(15): 2103892.

[82]

Fan X, Xu B, Liu S, Cui C, Wang J, Yan F. Transfer-printed PEDOT: PSS electrodes using mild acids for high conductivity and improved stability with application to flexible organic solar cells. ACS Appl Mater Interfaces. 2016; 8(22): 14029-14036.

[83]

Yang Y, Xiao Y, Xu B, Hou J. Cross-linkable cathode interlayer for inverted organic solar cells with enhanced efficiency and stability. Adv Energy Mater. 2023; 13(30): 2301098.

[84]

Ansari AA, Lv R, Gai S, et al. ZnO nanostructures - future frontiers in photocatalysis, solar cells, sensing, supercapacitor, fingerprint technologies, toxicity, and clinical diagnostics. Coord Chem Rev. 2024; 515(1): 215942.

[85]

Wang Y, Zheng Z, Wang J, et al. New method for preparing ZnO layer for efficient and stable organic solar cells. Adv Mater. 2023; 35(5): 2208305.

[86]

Trost S, Zilberberg K, Behrendt A, et al. Overcoming the “light-soaking” issue in inverted organic solar cells by the use of Al:Zn electron extraction layers. Adv Energy Mater. 2013; 3(11): 1437-1444.

[87]

Cheng P, Zhan X. Stability of organic solar cells: challenges and strategies. Chem Soc Rev. 2016; 45(9): 2544-2582.

[88]

Benduhn J, Tvingstedt K, Piersimoni F, et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat Energy. 2017; 2(6): 1-6.

[89]

Firdaus Y, Le Corre VM, Khan JI, et al. Key parameters requirements for non-fullerene-based organic solar cells with power conversion efficiency >20%. Adv Sci. 2019; 6(9): 1802028.

[90]

Arka GN, Prasad SB, Singh S. Comprehensive study on dye sensitized solar cell in subsystem level to excel performance potential: a review. Sol Energy. 2021; 226(1): 192-213.

[91]

Diantoro M, Suprayogi T, Taufiq A, Fuad A, Mufti N. The effect of pani fraction on photo anode based on TiO2-PANI/ITO DSSC with β-carotene as dye sensitizer on its structure, absorbance, and efficiency. Mater Today Proc. 2019; 17(4): 1197-1209.

[92]

Yi Z, Zeng Y, Wu H, et al. Synthesis, surface properties, crystal structure and dye-sensitized solar cell performance of TiO2 nanotube arrays anodized under different parameters. Results Phys. 2019; 15(1): 102609.

[93]

Roslan N, Ya'acob M, Radzi M, Hashimoto Y, Jamaludin D, Chen G. Dye sensitized solar cell (DSSC) greenhouse shading: new insights for solar radiation manipulation. Renew Sustain Energy Rev. 2018; 92(1): 171-186.

[94]

Pramananda V, Fityay TAH, Misran E. Anthocyanin as natural dye in DSSC fabrication: a review. IOP Conf Ser: Mater Sci Eng. 2021; 112(1): 012104.

[95]

Devadiga D, Selvakumar M, Shetty P, Santosh M. Recent progress in dye sensitized solar cell materials and photo-supercapacitors: a review. J Power Sources. 2021; 493(1): 229698.

[96]

Liu G, Wang M, Wang H, et al. Hierarchically structured photoanode with enhanced charge collection and light harvesting abilities for fiber-shaped dye-sensitized solar cells. Nano Energy. 2018; 49(1): 95-102.

[97]

Kokkonen M, Talebi P, Zhou J, et al. Advanced research trends in dye-sensitized solar cells. J Mater Chem A. 2021; 9(17): 10527-10545.

[98]

Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996; 271(5251): 933-937.

[99]

Semonin OE, Luther JM, Choi S, et al. Peak external photocurrent quantum efficiency exceeding 100% via meg in a quantum dot solar cell. Science. 2011; 334(6062): 1530-1533.

[100]

Shockley W, Queisser H. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys. 1961; 32(3): 510-519.

[101]

Shaikh JS, Shaikh NS, Mali SS, et al. Quantum dot based solar cells: role of nanoarchitectures, perovskite quantum dots, and charge-transporting layers. ChemSusChem. 2019; 12(21): 4724-4753.

[102]

Zhou R, Xu J, Luo P, et al. Near-infrared photoactive semiconductor quantum dots for solar cells. Adv Energy Mater. 2021; 11(40): 2101923.

[103]

Du Z, Artemyev M, Wang J, Tang J. Performance improvement strategies for quantum dot-sensitized solar cells: a review. J Mater Chem A. 2019; 7(6): 2464-2489.

[104]

Wei Y, Nakamura M, Ding C, et al. Unraveling the organic and inorganic passivation mechanism of zno nanowires for construction of efficient bulk heterojunction quantum dot solar cells. ACS Appl Mater Interfaces. 2022; 14(31): 36268-36276.

[105]

Yang Y, Rao Z, Xu Q, Liang Y, Yang L. Improving the photovoltaic performance for PbS QD thin film solar cells through interface engineering. J Colloid Interface Sci. 2022; 627(1): 562-568.

[106]

Wang Y, Lu K, Han L, et al. In situ passivation for efficient pbs quantum dot solar cells by precursor engineering. Adv Mater. 2018; 30(16): 1704871.

[107]

Chuang C-HM, Brown PR, Bulović V, Bawendi MG. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater. 2014; 13(8): 796-801.

[108]

García de Arquer FP, Talapin DV, Klimov VI, Arakawa Y, Bayer M, Sargent EH. Semiconductor quantum dots: technological progress and future challenges. Science. 2021; 373(6555): eaaz8541.

[109]

Pal BN, Robel I, Mohite A, Laocharoensuk R, Werder DJ, Klimov VI. High-sensitivity p-n junction photodiodes based on PbS nanocrystal quantum dots. Adv Funct Mater. 2012; 22(8): 1741-1748.

[110]

Kim JY, Lee J-W, Jung HS, Shin H, Park N-G. High-efficiency perovskite solar cells. Chem Rev. 2020; 120(15): 7867-7918.

[111]

Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science. 2012; 338(6107): 643-647.

[112]

Ying ZQ, Yang X, Wang XZ, Ye JC. Towards the 10-year milestone of monolithic perovskite/silicon tandem solar cells. Adv Mater. 2024; 36(37): 202311501.

[113]

Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photon. 2014; 8(7): 506-514.

[114]

Park N-G. Perovskite solar cells: an emerging photovoltaic technology. Mater Today. 2015; 18(2): 65-72.

[115]

Zuo C, Bolink HJ, Han H, Huang J, Cahen D, Ding L. Advances in perovskite solar cells. Adv Sci. 2016; 3(7): 1500324.

[116]

Li D, Zhang D, Lim KS, et al. A review on scaling up perovskite solar cells. Adv Funct Mater. 2021; 31(12): 2008621.

[117]

Assadi MK, Bakhoda S, Saidur R, Hanaei H. Recent progress in perovskite solar cells. Renew Sustain Energy Rev. 2018; 81(2): 2812-2822.

[118]

Guo Z, Jena AK, Kim GM, Miyasaka T. The high open-circuit voltage of perovskite solar cells: a review. Energy Environ Sci. 2022; 15(8): 3171-3222.

[119]

Mesquita I, Andrade L, Mendes A. Perovskite solar cells: materials, configurations and stability. Renew Sustain Energy Rev. 2018; 82(3): 2471-2489.

[120]

Song T-B, Chen Q, Zhou H, et al. Perovskite solar cells: film formation and properties. J Mater Chem A. 2015; 3(17): 9032-9050.

[121]

Liu J, Chen X, Chen K, et al. Electron injection and defect passivation for high-efficiency mesoporous perovskite solar cells. Science. 2024; 383(6688): 1198-1204.

[122]

Di Giacomo F, Zardetto V, Lucarelli G, et al. Mesoporous perovskite solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illumination. Nano Energy. 2016; 30(1): 460-469.

[123]

Xu D, Wang D, Liu J, et al. Dual defect passivation at the buried interface for printable mesoscopic perovskite solar cells with reduced open-circuit voltage loss. Small. 2024; 20(31): 2311755.

[124]

Wang K, Liu C, Meng T, Yi C, Gong X. Inverted organic photovoltaic cells. Chem Soc Rev. 2016; 45(10): 2937-2975.

[125]

Rahman S, Haleem A, Siddiq M, et al. Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects. RSC Adv. 2023; 13(28): 19508-19529.

[126]

Liu J, Xian K, Ye L, Zhou Z. Open-circuit voltage loss in lead chalcogenide quantum dot solar cells. Adv Mater. 2021; 33(29): 2008115.

[127]

Zhao Z, Sun W, Li Y, et al. Simplification of device structures for low-cost, high-efficiency perovskite solar cells. J Mater Chem A. 2017; 5(10): 4756-4773.

[128]

Raza E, Ahmad Z. Review on two-terminal and four-terminal crystalline-silicon/perovskite tandem solar cells; progress, challenges, and future perspectives. Energy Rep. 2022; 8(1): 5820-5851.

[129]

VanSant KT, Tamboli AC, Warren EL. III-V-on-Si tandem solar cells. Joule. 2021; 5(3): 514-518.

[130]

Hoang MT, Yang Y, Chiu WH, et al. Unraveling the mechanism of alkali metal fluoride post-treatment of sno2 for efficient planar perovskite solar cells. Small Methods. 2024; 8(2): 2300431.

[131]

Gao C, Zhang H, Ma S, et al. Quasi-conformal monolithic nip perovskite/C-Si tandem solar cells with light management strategies exceed 28% efficiency. Nano Energy. 2024; 129(B): 110066.

[132]

Chen H, Liu C, Xu J, et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science. 2024; 384(6692): 189-193.

[133]

Enkhbayar E, Otgontamir N, Kim S, Lee J, Kim J. Understanding of defect passivation effect on wide band gap pin perovskite solar cell. ACS Appl Mater Interfaces. 2024; 16(27): 35084-35094.

[134]

Dipta SS, Rahim MA, Uddin A. Encapsulating perovskite solar cells for long-term stability and prevention of lead toxicity. Appl Phys Rev. 2024; 11(2): 021301.

[135]

Ahmed MI, Habib A, Javaid SS. Perovskite solar cells: potentials, challenges, and opportunities. Int J Photoenergy. 2015; 2015(1): 592308.

[136]

Dastgeer G, Nisar S, Zulfiqar MW, Eom J, Imran M, Akbar K. A review on recent progress and challenges in high-efficiency perovskite solar cells. Nano Energy. 2024; 132(1): 110401.

[137]

Hasnain SM. Examining the advances, obstacles, and achievements of tin-based perovskite solar cells: a review. Sol Energy. 2023; 262(1): 111825.

[138]

Zhang W, Wu X, Zhou J, et al. Pseudohalide-assisted growth of oriented large grains for high-performance and stable 2D perovskite solar cells. ACS Energy Lett. 2022; 7(5): 1842-1849.

[139]

Nam JK, Chai SU, Cha W, et al. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells. Nano Lett. 2017; 17(3): 2028-2033.

[140]

Ji X, Bi L, Fu Q, et al. Target therapy for buried interface enables stable perovskite solar cells with 25.05% efficiency. Adv Mater. 2023; 35(39): 2303665.

[141]

Zhang H, Pfeifer L, Zakeeruddin SM, Chu J, Grätzel M. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat Rev Chem. 2023; 7(9): 632-652.

[142]

bin Mohd Yusoff AR, Vasilopoulou M, Georgiadou DG, Palilis LC, Abate A, Nazeeruddin MK. Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells. Energ Environ Sci. 2021; 14(5): 2906-2953.

[143]

Chi W, Banerjee SK. Stability improvement of perovskite solar cells by compositional and interfacial engineering. Chem Mater. 2021; 33(5): 1540-1570.

[144]

Ma S, Yuan G, Zhang Y, Yang N, Li Y, Chen Q. Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energ Environ Sci. 2022; 15(1): 13-55.

[145]

Raman RK, Thangavelu SAG, Venkataraj S, Krishnamoorthy A. Materials, methods and strategies for encapsulation of perovskite solar cells: from past to present. Renew Sustain Energy Rev. 2021; 151(1): 111608.

[146]

Li J, Xia R, Qi W, et al. Encapsulation of perovskite solar cells for enhanced stability: structures, materials and characterization. J Power Sources. 2021; 485(1): 229313.

[147]

Emery Q, Remec M, Paramasivam G, et al. Encapsulation and outdoor testing of perovskite solar cells: comparing industrially relevant process with a simplified lab procedure. ACS Appl Mater Interfaces. 2022; 14(4): 5159-5167.

[148]

Lu Q, Yang Z, Meng X, et al. A review on encapsulation technology from organic light emitting diodes to organic and perovskite solar cells. Adv Funct Mater. 2021; 31(23): 2100151.

[149]

Nam YH, Han K, Chung WJ, Im WB. Double encapsulation of CsPbBr3 perovskite nanocrystals with inorganic glasses for robust color converters with wide color gamut. ACS Appl Nano Mater. 2021; 4(7): 7072-7078.

[150]

Qiu L, He S, Jiang Y, Qi Y. Metal halide perovskite solar cells by modified chemical vapor deposition. J Mater Chem A. 2021; 9(40): 22759-22780.

[151]

Fang Z, Zeng Q, Zuo C, et al. Perovskite-based tandem solar cells. Sci Bull. 2021; 66(6): 621-636.

[152]

Aydin E, Ugur E, Yildirim BK, et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature. 2023; 623(7988): 732-738.

[153]

Cheng Y, Ding L. Perovskite/si tandem solar cells: fundamentals, advances, challenges, and novel applications. SusMat. 2021; 1(3): 324-344.

[154]

Jost M, Köhnen E, Al-Ashouri A, et al. Perovskite/CIGS tandem solar cells: from certified 24.2% toward 30% and beyond. ACS Energy Lett. 2022; 7(4): 1298-1307.

[155]

Fu F, Li J, Yang TCJ, et al. Monolithic perovskite-silicon tandem solar cells: from the lab to fab? Adv Mater. 2022; 34(24): 2106540.

[156]

Shi Y, Berry JJ, Zhang F. Perovskite/silicon tandem solar cells: insights and outlooks. ACS Energy Lett. 2024; 9(3): 1305-1330.

[157]

Chen B, Ren N, Li Y, et al. Insights into the development of monolithic perovskite/silicon tandem solar cells. Adv Energy Mater. 2022; 12(4): 2003628.

[158]

Luo X, Luo H, Li H, et al. Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv Mater. 2023; 35(9): 2207883.

[159]

Yang G, Ni Z, Yu ZJ, et al. Defect engineering in wide-bandgap perovskites for efficient perovskite-silicon tandem solar cells. Nat Photon. 2022; 16(8): 588-594.

[160]

Tockhorn P, Sutter J, Cruz A, et al. Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells. Nat Nanotechnol. 2022; 17(11): 1214-1221.

[161]

Chen J, Packard CE. Controlled spalling-based mechanical substrate exfoliation for III-V solar cells: a review. Sol Energy Mater Sol Cells. 2021; 225: 111018.

[162]

Yu Z, Leilaeioun M, Holman Z. Selecting tandem partners for silicon solar cells. Nat Energy. 2016; 1(11): 16137.

[163]

Almansouri I, Ho-Baillie A, Bremner SP, Green MA. Supercharging silicon solar cell performance by means of multijunction concept. IEEE J Photovolt. 2015; 5(3): 968-976.

[164]

Dubey R, Ansari AA, Lee Y, et al. Molecular dynamics-to-machine learning for deep eutectics in energy storages. Renew Sustain Energy Rev. 2025; 212(1): 115358.

[165]

Schulte KL, Johnston SW, Braun AK, et al. GaAs solar cells grown on acoustically spalled gaas substrates with 27% efficiency. Joule. 2023; 7(7): 1529-1542.

[166]

Wang L, Song Q, Pei F, et al. Strain modulation for light-stable n-i-p perovskite/silicon tandem solar cells. Adv Mater. 2022; 34(26): 2201315.

[167]

Li X, Xu Q, Yan L, et al. Silicon heterojunction-based tandem solar cells: past, status, and future prospects. Nanophotonics. 2021; 10(8): 2001-2022.

[168]

Lepkowski DL, Grassman TJ, Boyer JT, et al. 23.4% monolithic epitaxial GaAsP/Si tandem solar cells and quantification of losses from threading dislocations. Sol Energy Mater Sol Cells. 2021; 230: 111299.

[169]

Caño P, Hinojosa M, García I, et al. GaAsP/SiGe tandem solar cells on porous si substrates. Sol Energy. 2021; 230(1): 925-934.

[170]

Schygulla P, Müller R, Höhn O, et al. Wafer-bonded two-terminal III-V//Si triple-junction solar cell with power conversion efficiency of 36.1% at AM1.5g. Prog Photovolt Res Appl. 2025; 33(1): 100-108.

[171]

Tanabe K. Semiconductor wafer bonding for solar cell applications: a review. Adv Energy Sustain Res. 2023; 4(11): 2300073.

[172]

Wang W, Liu R, Dong C, et al. Wet-chemical surface texturing of AZO substrate for improved perovskite solar cells. J Alloys Compd. 2023; 963(1): 171105.

[173]

Chu M, Bae J, Khokhar MQ, et al. Simple smoothing of the bottom silicon surface using wet chemical etching methods for epitaxial iii-v/silicon tandem manufacturing. Energ Technol. 2024; 13(3): 2401322.

[174]

Paul A, Singha A, Hossain K, et al. 4-t CdTe/perovskite thin film tandem solar cells with efficiency >24%. ACS Energy Lett. 2024; 9(6): 3019-3026.

[175]

Luo J, Tang L, Wang S, et al. Manipulating ga growth profile enables all-flexible high-performance single-junction CIGS and 4t perovskite/CIGS tandem solar cells. Chem Eng J. 2023; 455(2): 140960.

[176]

Akhil S, Akash S, Pasha A, et al. Review on perovskite silicon tandem solar cells: status and prospects 2t, 3t and 4t for real world conditions. Mater Des. 2021; 211(1): 110138.

[177]

Oublal E, Al-Hattab M, Abdelkadir AA, Sahal M. New numerical model for a 2t-tandem solar cell device with narrow band gap swcnts reaching efficiency around 35%. Sol Energy. 2022; 246(1): 57-65.

[178]

Wu H, Ye F, Yang M, et al. Silicon heterojunction back-contact solar cells by laser patterning. Nature. 2024; 635(8039): 604-609.

[179]

Liu J, He Y, Ding L, et al. Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature. 2024; 635(8039): 596-603.

[180]

Green MA, Dunlop ED, Yoshita M, et al. Solar cell efficiency tables (version 64). Prog Photovolt Res Appl. 2024; 32(7): 425-441.

[181]

Chan JM, Wang M. Visualizing the orientation of single polymers induced by spin-coating. Nano Lett. 2022; 22(14): 5891-5897.

[182]

Pratap S, Babbe F, Barchi NS, et al. Out-of-equilibrium processes in crystallization of organic-inorganic perovskites during spin coating. Nat Commun. 2021; 12(1): 5624.

[183]

Shi Y, Zhang L, Hu S, et al. Multifunctional conjugated polyphenol “bridge” capped the upper interface of highly efficient and stable inorganic perovskite solar cells fabricated in air. ACS Appl Mater Interfaces. 2024; 16(51): 70716-70727.

[184]

Liu X, Tan X, Liu Z, et al. Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering. Nano Energy. 2019; 56(1): 184-195.

[185]

Gao B, Meng J. High efficiently CsPbBr3 perovskite solar cells fabricated by multi-step spin coating method. Sol Energy. 2020; 211(1): 1223-1229.

[186]

Che G, Wang X, Cui C, et al. Boosting the efficiency and stability of CsPbBr3 perovskite solar cells through modified multi-step spin-coating method. J Alloys Compd. 2023; 969(1): 172423.

[187]

Cheng J, Zhang Z, Zhao M, et al. High-efficiency Sb2Se3 thin-film solar cells based on Cd(S,O) buffer layers prepared via spin-coating. Mater Chem Phys. 2023; 303(1): 127794.

[188]

Wang Z, Liu N, Xie H, et al. Effect of spin coat speed on structure, composition and properties of perovskite films. Thin Solid Films. 2024; 798(1): 140347.

[189]

Liu Z, Zhang M, Zhang L, et al. Over 19.1% efficiency for sequentially spin-coated polymer solar cells by employing ternary strategy. Chem Eng J. 2023; 471(1): 144711.

[190]

Shafi MA, Bouich A, Fradi K, Guaita JM, Khan L, Mari B. Effect of deposition cycles on the properties of ZnO thin films deposited by spin coating method for CZTS-based solar cells. Optik. 2022; 258(1): 168854.

[191]

Yan Y, Yang Y, Liang M, et al. Implementing an intermittent spin-coating strategy to enable bottom-up crystallization in layered halide perovskites. Nat Commun. 2021; 12(1): 6603.

[192]

Ji G, Zhao W, Wei J, et al. 12.88% efficiency in doctor-blade coated organic solar cells through optimizing the surface morphology of a zno cathode buffer layer. J Mater Chem A. 2019; 7(1): 212-220.

[193]

Du J, Wang W, Wan M, et al. Doctor-blade casting fabrication of ultrathin li metal electrode for high-energy-density batteries. Adv Energy Mater. 2021; 11(45): 2102259.

[194]

Wang D, Zheng J, Wang X, et al. Improvement on the performance of perovskite solar cells by doctor-blade coating under ambient condition with hole-transporting material optimization. J Energy Chem. 2019; 38(1): 207-213.

[195]

Le HV, Pham PT, Le LT, Nguyen AD, Tran NQ, Tran PD. Fabrication of tungsten oxide photoanode by doctor blade technique and investigation on its photocatalytic operation mechanism. Int J Hydrogen Energy. 2021; 46(44): 22852-22863.

[196]

Ji G, Wang Y, Luo Q, et al. Fully coated semitransparent organic solar cells with a doctor-blade-coated composite anode buffer layer of phosphomolybdic acid and PEDOT:PSS and a spray-coated silver nanowire top electrode. ACS Appl Mater Interfaces. 2018; 10(1): 943-954.

[197]

Qiu S, Majewski M, Dong L, et al. In situ probing the crystallization kinetics in GaS-quenching-assisted coating of perovskite films. Adv Energy Mater. 2024; 14(10): 2303210.

[198]

Huang K-W, Li M-H, Chen Y-T, Wen Z-X, Lin C-F, Chen P. Fast fabrication of μm-thick perovskite films by using a one-step doctor-blade coating method for direct X-ray detectors. J Mater Chem C. 2024; 12(4): 1533-1542.

[199]

Mohd Ismail ISA, Shafiee FN, Hamidon MN, Shafie S. Performance of flexible dye-sensitized solar cell (FDSSC) using flexible substrate at different angles under back-illumination configurations. J Electron Mater. 2024; 53(4): 1982-1988.

[200]

Lin S, Wang H, Zhang X, et al. Direct spray-coating of highly robust and transparent ag nanowires for energy saving windows. Nano Energy. 2019; 62(1): 111-116.

[201]

Feng K, Hung G-Y, Liu J, Li M, Zhou C, Liu M. Fabrication of high performance superhydrophobic coatings by spray-coating of polysiloxane modified halloysite nanotubes. Chem Eng J. 2018; 331(1): 744-754.

[202]

Heo JH, Zhang F, Xiao C, et al. Efficient and stable graded CsPbI3−xBrx perovskite solar cells and submodules by orthogonal processable spray coating. Joule. 2021; 5(2): 481-494.

[203]

Celik N, Torun I, Ruzi M, Esidir A, Onses MS. Fabrication of robust superhydrophobic surfaces by one-step spray coating: evaporation driven self-assembly of wax and nanoparticles into hierarchical structures. Chem Eng J. 2020; 396(1): 125230.

[204]

Aydin E, El-Demellawi JK, Yarali E, et al. Scaled deposition of Ti3C2Tx mxene on complex surfaces: application assessment as rear electrodes for silicon heterojunction solar cells. ACS Nano. 2022; 16(2): 2419-2428.

[205]

Cassella EJ, Spooner ELK, Thornber T, et al. Gas-assisted spray coating of perovskite solar cells incorporating sprayed self-assembled monolayers. Adv Sci. 2022; 9(14): 2104848.

[206]

Lee DS, Ki MJ, Lee HJ, et al. Fully scalable and stable CsPbI2Br solar cells realized by an all-spray-coating process. ACS Appl Mater Interfaces. 2022; 14(6): 7926-7935.

[207]

He P, Cao J, Ding H, et al. Screen-printing of a highly conductive graphene ink for flexible printed electronics. ACS Appl Mater Interfaces. 2019; 11(35): 32225-32234.

[208]

Zhang Y, Zhu YY, Zheng SH, et al. Ink formulation, scalable applications and challenging perspectives of screen printing for emerging printed microelectronics. J Energy Chem. 2021; 63(1): 498-513.

[209]

Bellani S, Petroni E, Castillo AED, et al. Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors. Adv Funct Mater. 2019; 29(14): 1807695.

[210]

Chang Y-C, Zhang Y, Wang L, et al. Silver-lean metallization and hybrid contacts via plating on screen-printed metal for silicon solar cells manufacturing. Prog Photovolt. 2025; 33(1): 158-169.

[211]

Demir A, Aslan F, Esen H. TiO2/ZnO-based composite thin films coated on FTO surface by screen printing method: increasing dye-sensitized solar cell performance. J Mater Sci Mater Electron. 2024; 35(1): 1481.

[212]

Chen C, Ran C, Guo C, et al. Fully screen-printed perovskite solar cells with 17% efficiency via tailoring confined perovskite crystallization within mesoporous layer. Adv Energy Mater. 2023; 13(46): 2302654.

[213]

Ebong A, Intal D, Huneycutt S, et al. Screen printable copper pastes for silicon solar cells. Sol Energy Mater Sol Cells. 2024; 265(1): 112633.

[214]

Zub K, Hoeppener S, Schubert US. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv Mater. 2022; 34(31): e2105015.

[215]

Teo MY, Kee S, Stuart L, Stringer J, Aw KC. Printing of covalent organic frameworks using multi-material in-air coalescence inkjet printing technique. J Mater Chem C. 2021; 9(36): 12051-12056.

[216]

Pesch R, Diercks A, Petry J, et al. Hybrid two-step inkjet-printed perovskite solar cells. Sol RRL. 2024; 8(13): 2400165.

[217]

Tan L, Jiang H, Yang R, et al. Quantitative surface passivation through drop-on-demand inkjet printing enables highly efficient perovskite solar cells. Adv Energy Mater. 2024; 14(27): 2400549.

[218]

Wu Q, Guo J, Sun R, et al. Slot-die printed non-fullerene organic solar cells with the highest efficiency of 12.9% for low-cost PV-driven water splitting. Nano Energy. 2019; 61(1): 559-566.

[219]

Geistert K, Ternes S, Ritzer DB, Paetzold UW. Controlling thin film morphology formation during gas quenching of slot-die coated perovskite solar modules. ACS Appl Mater Interfaces. 2023; 15(45): 52519-52529.

[220]

Seo Y-H, Cho S-P, Lee H-J, Kang Y-J, Kwon S-N, Na S-I. Temperature-controlled slot-die coating for efficient and stable perovskite solar cells. J Power Sources. 2022; 539(1): 231621.

[221]

Shen Y-F, Zhang J, Tian C, Qiu D, Wei Z. Slot-die coated large-area flexible all-polymer solar cells by non-halogenated solvent. Nano Res. 2023; 16(12): 13008-13013.

[222]

Zhao H, Zhang L, Naveed HB, et al. Processing-friendly slot-die-cast nonfullerene organic solar cells with optimized morphology. ACS Appl Mater Interfaces. 2019; 11(45): 42392-42402.

[223]

Beeker LY, Pringle AM, Pearce JM. Open-source parametric 3D printed slot die system for thin film semiconductor processing. Addit Manuf. 2018; 20(1): 90-100.

[224]

Kang H, Park J, Shin K. Statistical analysis for the manufacturing of multi-strip patterns by roll-to-roll single slot-die systems. Rob Comput Integr Manuf. 2014; 30(4): 363-368.

[225]

Liu F, Li P, An H, Peng P, McLean B, Ding F. Achievements and challenges of graphene chemical vapor deposition growth. Adv Funct Mater. 2022; 32(42): 2203191.

[226]

Tong G, Zhang J, Bu T, et al. Holistic strategies lead to enhanced efficiency and stability of hybrid chemical vapor deposition based perovskite solar cells and modules. Adv Energy Mater. 2023; 13(21): 2300153.

[227]

Zhang Y, Zhang L, Zhou C. Review of chemical vapor deposition of graphene and related applications. Acc Chem Res. 2013; 46(10): 2329-2339.

[228]

Li X, Magnuson CW, Venugopal A, et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc. 2011; 133(9): 2816-2819.

[229]

Hu J, Zhang K, Yang X, et al. Effect of growth temperature on properties of β-Ga2O3 films grown on aln by low-pressure chemical vapor deposition. J. Lumin. 2024; 274(22): 120709.

[230]

Fırat M, Sivaramakrishnan Radhakrishnan H, Recamán Payo M, Duerinckx F, Tous L, Poortmans J. In situ phosphorus-doped polycrystalline silicon films by low pressure chemical vapor deposition for contact passivation of silicon solar cells. Sol Energy. 2022; 231(1): 78-87.

[231]

Ngqoloda S, Arendse CJ, Guha S, et al. Mixed-halide perovskites solar cells through PbICl and PbCl2 precursor films by sequential chemical vapor deposition. Sol Energy. 2021; 215(1): 179-188.

[232]

Ngqoloda S, Arendse CJ, Muller TF, et al. Air-stable hybrid perovskite solar cell by sequential vapor deposition in a single reactor. ACS Appl Energy Mater. 2020; 3(3): 2350-2359.

[233]

Rehman MA, Akhtar I, Choi W, et al. Influence of an Al2O3 interlayer in a directly grown graphene-silicon schottky junction solar cell. Carbon. 2018; 132(1): 157-164.

[234]

Hodgkinson JL, Yates HM, Walter A, Sacchetto D, Moon SJ, Nicolay S. Roll to roll atmospheric pressure plasma enhanced cvd of titania as a step towards the realisation of large area perovskite solar cell technology. J Mater Chem C. 2018; 6(8): 1988-1995.

[235]

Nandakumar N, Rodriguez J, Kluge T, et al. Approaching 23% with large-area monopoly cells using screen-printed and fired rear passivating contacts fabricated by inline PECVD. Prog Photovolt Res Appl. 2019; 27(2): 107-112.

[236]

Shakir S, Abd-ur-Rehman HM, Yunus K, Iwamoto M, Periasamy V. Fabrication of un-doped and magnesium doped TiO2 films by aerosol assisted chemical vapor deposition for dye sensitized solar cells. J Alloys Compd. 2018; 737(1): 740-747.

[237]

Mohamad Noh MF, Arzaee NA, Safaei J, et al. Eliminating oxygen vacancies in SnO2 films via aerosol-assisted chemical vapour deposition for perovskite solar cells and photoelectrochemical cells. J Alloys Compd. 2019; 773(1): 997-1008.

[238]

Du T, Ratnasingham SR, Kosasih FU, et al. Aerosol assisted solvent treatment: a universal method for performance and stability enhancements in perovskite solar cells. Adv Energy Mater. 2021; 11(33): 2101420.

[239]

Ponja SD, Williamson BAD, Sathasivam S, Scanlon DO, Parkin IP, Carmalt CJ. Enhanced electrical properties of antimony doped tin oxide thin films deposited via aerosol assisted chemical vapour deposition. J Mater Chem C. 2018; 6(27): 7257-7266.

[240]

Ke JC-R, Lewis DJ, Walton AS, et al. Ambient-air-stable inorganic Cs2SnI6 double perovskite thin films via aerosol-assisted chemical vapour deposition. J Mater Chem A. 2018; 6(24): 11205-11214.

[241]

Deng Y, Chen W, Li B, Wang C, Kuang T, Li Y. Physical vapor deposition technology for coated cutting tools: a review. Ceram Int. 2020; 46(11): 18373-18390.

[242]

Dhakal TP, Peng CY, Reid Tobias R, Dasharathy R, Westgate CR. Characterization of a CZTS thin film solar cell grown by sputtering method. Sol Energy. 2014; 100(1): 23-30.

[243]

Ma C, Lu X, Xu B, et al. Effects of sputtering parameters on photoelectric properties of azo film for CZTS solar cell. J Alloys Compd. 2019; 774(1): 201-209.

[244]

Dey K, Aberle AG, van Eek S, Venkataraj S. Superior optoelectrical properties of magnetron sputter-deposited cerium-doped indium oxide thin films for solar cell applications. Ceram Int. 2021; 47(2): 1798-1806.

[245]

Härtel M, Li B, Mariotti S, et al. Reducing sputter damage-induced recombination losses during deposition of the transparent front-electrode for monolithic perovskite/silicon tandem solar cells. Sol Energy Mater Sol Cells. 2023; 252(1): 112180.

[246]

Jin Y, Feng H, Li Y, et al. Recrystallizing sputtered nio for improved hole extraction in perovskite/silicon tandem solar cells. Adv Energy Mater. 2025; 15(10): 2403911.

[247]

Eze MC, Ugwuanyi G, Li M, et al. Optimum silver contact sputtering parameters for efficient perovskite solar cell fabrication. Sol Energy Mater Sol Cells. 2021; 230(1): 111185.

[248]

Li J, Dewi HA, Wang H, et al. Co-evaporated MaPbI3 with graded fermi levels enables highly performing, scalable, and flexible p-i-n perovskite solar cells. Adv Funct Mater. 2021; 31(42): 2103252.

[249]

Zhang Z, Ji R, Jia X, et al. Semitransparent perovskite solar cells with an evaporated ultra-thin perovskite absorber. Adv Funct Mater. 2024; 34(50): 2307471.

[250]

Li H, Zhou J, Tan L, et al. Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci Adv. 2022; 8(28): eabo7422.

[251]

Liu G, Zhang X, Chen X, et al. Additive manufacturing of structural materials. Mater Sci Eng R. 2021; 145(1): 100596.

[252]

Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive manufacturing in aerospace: a review. Mater Des. 2021; 209(1): 110008.

[253]

Armstrong M, Mehrabi H, Naveed N. An overview of modern metal additive manufacturing technology. J Manuf Process. 2022; 84(1): 1001-1029.

[254]

Sun C, Wang Y, McMurtrey MD, Jerred ND, Liou F, Li J. Additive manufacturing for energy: a review. Appl Energy. 2021; 282(1): 116041.

[255]

Penumakala PK, Santo J, Thomas A. A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos Part B Eng. 2020; 201(1): 108336.

[256]

Rahim TNAT, Abdullah AM, Md Akil H. Recent developments in fused deposition modeling-based 3D printing of polymers and their composites. Polym Rev. 2019; 59(4): 589-624.

[257]

Cano-Vicent A, Tambuwala MM, Hassan SS, et al. Fused deposition modelling: current status, methodology, applications and future prospects. Addit Manuf. 2021; 47(1): 102378.

[258]

Tang Z, Tress W, Inganäs O. Light trapping in thin film organic solar cells. Mater Today. 2014; 17(8): 389-396.

[259]

Chen C-T, Yang H-H. Solar concentrators filled with liquid for enhancement of photocurrent generation and angular responses of light incidence. Sol Energy. 2024; 267(1): 112257.

[260]

van Dijk L, Marcus EAP, Oostra AJ, Schropp REI, Di Vece M. 3D-printed concentrator arrays for external light trapping on thin film solar cells. Sol Energy Mater Sol Cells. 2015; 139(1): 19-26.

[261]

Weiss L, Sonsalla T. Investigations of fused deposition modeling for perovskite active solar cells. Polymers. 2022; 14(2): 317.

[262]

James S, Contractor R. Study on nature-inspired fractal design-based flexible counter electrodes for dye-sensitized solar cells fabricated using additive manufacturing. Sci Rep. 2018; 8(1): 17032.

[263]

Zaki RM, Strutynski C, Kaser S, et al. Direct 3D-printing of phosphate glass by fused deposition modeling. Mater Des. 2020; 194: 108957.

[264]

Saadi M, Maguire A, Pottackal NT, et al. Direct ink writing: a 3D printing technology for diverse materials. Adv Mater. 2022; 34(28): 2108855.

[265]

Rocha VG, Saiz E, Tirichenko IS, García-Tuñón E. Direct ink writing advances in multi-material structures for a sustainable future. J Mater Chem A. 2020; 8(31): 15646-15657.

[266]

Jackson S, Dickens T. Rheological and structural characterization of 3D-printable polymer electrolyte inks. Polym Test. 2021; 104(1): 107377.

[267]

Yu B, Liu L, Liu B, Zhao X, Deng W. Printing of low-melting-point alloy as top electrode for organic solar cells. Adv Opt Mater. 2023; 11(2): 2201977.

[268]

Tyagi B, Lee HB, Kumar N, et al. High-performance, large-area semitransparent and tandem perovskite solar cells featuring highly scalable a-ITO/Ag mesh 3D top electrodes. Nano Energy. 2022; 95(1): 106978.

[269]

Ovhal MM, Lee HB, Boud S, et al. Flexible, stripe-patterned organic solar cells and modules based on multilayer-printed ag fibers for smart textile applications. Mater Today Energy. 2023; 34(1): 101289.

[270]

Jeon H, Wajahat M, Park S, et al. 3D printing of luminescent perovskite quantum dot-polymer architectures. Adv Funct Mater. 2024; 34(29): 2400594.

[271]

Wu W, Xie X, Shen C, Long J, Ren Q, Hu W. Enhancement of adhesion and antibending performance of ag circuit on polyimide fabricated by heat-assisted direct ink writing method. Phys Stat Solidi A. 2022; 219(19): 2200080.

[272]

Ramesh S, Mahajan C, Gerdes S, et al. Numerical and experimental investigation of aerosol jet printing. Addit Manuf. 2022; 59(A): 103090.

[273]

Hines D, Gu Y, Martin A, et al. Considerations of aerosol-jet printing for the fabrication of printed hybrid electronic circuits. Addit Manuf. 2021; 47(1): 102325.

[274]

Chen Y-D, Nagarajan V, Rosen DW, Yu W, Huang SY. Aerosol jet printing on paper substrate with conductive silver nano material. J Manuf Process. 2020; 58(1): 55-66.

[275]

Yang C, Zhou E, Miyanishi S, Hashimoto K, Tajima K. Preparation of active layers in polymer solar cells by aerosol jet printing. ACS Appl Mater Interfaces. 2011; 3(10): 4053-4058.

[276]

Bag S, Deneault JR, Durstock MF. Aerosol-jet-assisted thin-film growth of CH3NH3PbI3 perovskites—a means to achieve high quality, defect-free films for efficient solar cells. Adv Energy Mater. 2017; 7(20): 1701151.

[277]

Williams BA, Mahajan A, Smeaton MA, Holgate CS, Aydil ES, Francis LF. Formation of copper zinc tin sulfide thin films from colloidal nanocrystal dispersions via aerosol-jet printing and compaction. ACS Appl Mater Interfaces. 2015; 7(21): 11526-11535.

[278]

Kopola P, Zimmermann B, Filipovic A, et al. Aerosol jet printed grid for ITO-free inverted organic solar cells. Sol Energy Mater Sol Cells. 2012; 107(1): 252-258.

[279]

Glatthaar M, Niggemann M, Zimmermann B, et al. Organic solar cells using inverted layer sequence. Thin Solid Films. 2005; 491(1-2): 298-300.

[280]

Platt HAS, Li Y, Novak JP, van Hest MFAM. Non-contact printed aluminum for metallization of Si photovoltaics. Thin Solid Films. 2014; 556(1): 525-528.

[281]

Mkhize N, Bhaskaran H. Electrohydrodynamic jet printing: introductory concepts and considerations. Small Sci. 2022; 2(2): 2100073.

[282]

Wu Y. Electrohydrodynamic jet 3D printing in biomedical applications. Acta Biomater. 2021; 128(1): 21-41.

[283]

Meng Z, Li J, Chen Y, et al. Micro/nanoscale electrohydrodynamic printing for functional metallic structures. Mater Today Nano. 2022; 20(1): 100254.

[284]

Jang Y, Hartarto Tambunan I, Tak H, Dat Nguyen V, Kang T, Byun D. Non-contact printing of high aspect ratio ag electrodes for polycrystalline silicone solar cell with electrohydrodynamic jet printing. Appl Phys Lett. 2013; 102(12): 102.

[285]

Li X, Park H, Lee MH, Hwang B, Kim SH, Lim S. High resolution patterning of ag nanowire flexible transparent electrode via electrohydrodynamic jet printing of acrylic polymer-silicate nanoparticle composite overcoating layer. Org Electron. 2018; 62(1): 400-406.

[286]

Shin D-Y, Seo J-Y, Tak H, Byun D. Bimodally dispersed silver paste for the metallization of a crystalline silicon solar cell using electrohydrodynamic jet printing. Sol Energy Mater Sol Cells. 2015; 136(1): 148-156.

[287]

Han W, Kong L, Xu M. Advances in selective laser sintering of polymers. Int J Extrem Manuf. 2022; 4(4): 042002.

[288]

Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. 3D printing: principles and pharmaceutical applications of selective laser sintering. Int J Pharm. 2020; 586(1): 119594.

[289]

Hong S, Yeo J, Kim G, et al. Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS Nano. 2013; 7(6): 5024-5031.

[290]

Ming L, Yang H, Zhang W, et al. Selective laser sintering of TiO2 nanoparticle film on plastic conductive substrate for highly efficient flexible dye-sensitized solar cell application. J Mater Chem A. 2014; 2(13): 4566-4573.

[291]

Mincuzzi G, Vesce L, Reale A, Di Carlo A, Brown TM. Efficient sintering of nanocrystalline titanium dioxide films for dye solar cells via raster scanning laser. Appl Phys Lett. 2009; 95(10): 103312.

[292]

Musztyfaga-Staszuk M, Dobrzański L. The use of laser technology to shape properties of the contacts of silicon solar cells and their structure. Open Phys. 2014; 12(1): 836-842.

[293]

Carlotti M, Mattoli V. Functional materials for two-photon polymerization in microfabrication. Small. 2019; 15(40): 1902687.

[294]

O'Halloran S, Pandit A, Heise A, Kellett A. Two-photon polymerization: fundamentals, materials, and chemical modification strategies. Adv Sci. 2023; 10(7): 2204072.

[295]

Knott A, Makarovskiy O, O'Shea J, Wu Y, Tuck C. Scanning photocurrent microscopy of 3D printed light trapping structures in dye-sensitized solar cells. Sol Energy Mater Sol Cells. 2018; 180(1): 103-109.

[296]

Jiang Y, Chen Y, Zhang M, Qiu Y, Lin Y, Pan F. 3D-printing ag-line of front-electrodes with optimized size and interface to enhance performance of Si solar cells. RSC Adv. 2016; 6(57): 51871-51876.

[297]

Chen M, Yang J, Wang Z, et al. 3D nanoprinting of perovskites. Adv Mater. 2019; 31(44): 1904073.

[298]

Hunde BR, Woldeyohannes AD. Modification of an extrusion-based 3D printing technology for thin-film printing for electronic device applications. Int J Adv Manuf Technol. 2024; 132(11-12): 5537-5556.

[299]

Hunde BR, Woldeyohannes AD, Workneh GA. Printing pedot:Pss optimized using response surface method (RSM) and genetic algorithm (Ga) via modified 3D printer for perovskite solar cell applications. Appl Mater Today. 2024; 37(2): 102134.

[300]

MacDonald E, Wicker R. Multiprocess 3D printing for increasing component functionality. Science. 2016; 353(6307): aaf2093.

[301]

Zastrow M. The new 3D printing. Nature. 2020; 578(1): 20-23.

[302]

Hashmi G, Miettunen K, Peltola T, et al. Review of materials and manufacturing options for large area flexible dye solar cells. Renew Sustain Energy Rev. 2011; 15(8): 3717-3732.

[303]

Maalouf A, Okoroafor T, Jehl Z, Babu V, Resalati S. A comprehensive review on life cycle assessment of commercial and emerging thin-film solar cell systems. Renew Sustain Energy Rev. 2023; 186(1): 113652.

[304]

Chaturvedi N, Gasparini N, Corzo D, et al. All slot-die coated non-fullerene organic solar cells with pce 11%. Adv Funct Mater. 2021; 31(14): 2009996.

[305]

Shin Thant KK, Seriwattanachai C, Jittham T, Thamangraksat N, Sakata P, Kanjanaboos P. Comprehensive review on slot-die-based perovskite photovoltaics: mechanisms, materials, methods, and marketability. Adv Energy Mater. 2025; 15(5): 2570025.

[306]

Keshavarzi R, Hajisharifi F, Saki Z, et al. Organic and perovskite solar cells based on scalable slot-die coating technique: Progress and challenges. Nano Today. 2025; 61(1): 102600.

[307]

Tay RY, Song Y, Yao DR, Gao W. Direct-ink-writing 3D-printed bioelectronics. Mater Today. 2023; 71(1): 135-151.

[308]

Xiao Y, Kalaitzidou K, Yao D, Yeo WH, Harris TA. Challenges and advances in aerosol jet printing of regenerated silk fibroin solutions. Adv Mater Interfaces. 2020; 7(12): 1902005.

[309]

Reizabal A, Tandon B, Lanceros-Méndez S, Dalton PD. Electrohydrodynamic 3D printing of aqueous solutions. Small. 2023; 19(7): 2205255.

[310]

Li Y, Mao Q, Yin J, Wang Y, Fu J, Huang Y. Theoretical prediction and experimental validation of the digital light processing (DLP) working curve for photocurable materials. Addit Manuf. 2021; 37(1): 101716.

[311]

Ge Q, Li Z, Wang Z, et al. Projection micro stereolithography based 3D printing and its applications. Int J Extrem Manuf. 2020; 2(2): 022004.

[312]

Bao Y, Paunović N, Leroux JC. Challenges and opportunities in 3D printing of biodegradable medical devices by emerging photopolymerization techniques. Adv Funct Mater. 2022; 32(15): 2109864,.

[313]

Nadagouda MN, Ginn M, Rastogi V. A review of 3D printing techniques for environmental applications. Curr Opin Chem Eng. 2020; 28(1): 173-178.

[314]

Hunde BR, Woldeyohannes AD. 3D printing and solar cell fabrication methods: a review of challenges, opportunities, and future prospects. Results Opt. 2023; 11(1): 100385.

[315]

Glaser PE. Power from the sun: its future. Science. 1968; 162(3856): 857-861.

[316]

Li X, Duan B, Song L, Yang Y, Zhang Y, Wang D. A new concept of space solar power satellite. Acta Astronaut. 2017; 136(1): 182-189.

[317]

Verduci R, Romano V, Brunetti G, et al. Sol energy. In space applications: review and technology perspectives. Adv Energy Mater. 2022; 12: 2200125.

[318]

Li X, Luk KM, Duan B. Multiobjective optimal antenna synthesis for microwave wireless power transmission. IEEE Trans Antennas Propag. 2019; 67(4): 2739-2744.

[319]

Sun Z, Yang D, Duan B, Kong L, Zhang Y. Structural design, dynamic analysis, and verification test of a novel double-ring deployable truss for mesh antennas. Mech Mach Theory. 2021; 165(1): 104416.

[320]

Cardinaletti I, Vangerven T, Nagels S, et al. Organic and perovskite solar cells for space applications. Sol Energy Mater Sol Cells. 2018; 182(1): 121-127.

[321]

Vaillon R, Parola S, Lamnatou C, Chemisana D. Solar cells operating under thermal stress. Cell Rep Phys Sci. 2020; 1(12): 100267.

[322]

Lang F, Eperon GE, Frohna K, et al. Proton-radiation tolerant all-perovskite multijunction solar cells. Adv Energy Mater. 2021; 11(41): 2102246.

[323]

Mankins JC, Kaya N, Vasile M. SPS-ALPHA: The first practical solar power satellite via arbitrarily large phased array (a 2011-2012 NASA NIAC project). 10th International Energy Conversion Engineering Conference. 2012; AIAA 2012-3978.

[324]

Meng X, Liu C, Bai X, et al. Optical study of a cocktail structural space-based solar power station. Sol Energy. 2019; 194(1): 156-166.

[325]

Santoni F, Piergentili F, Donati S, Perelli M, Negri A, Marino M. An innovative deployable solar panel system for cubesats. Acta Astronaut. 2014; 95(1): 210-217.

[326]

Angmo D, Yan S, Liang D, et al. Toward rollable printed perovskite solar cells for deployment in low-earth orbit space applications. ACS Appl Energy Mater. 2024; 7(5): 1777-1791.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

4

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/