Low electric field-driven and fast-moving relaxor ferroelectric soft robots

Longchao Huang , Weili Deng , Guo Tian , Yue Sun , Tao Yang , Boling Lan , Xuelan Li , Yang Liu , Tianpei Xu , Shenglong Wang , Yong Ao , Jieling Zhang , Long Jin , Weiqing Yang

InfoMat ›› 2025, Vol. 7 ›› Issue (6) : e70015

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (6) : e70015 DOI: 10.1002/inf2.70015
RESEARCH ARTICLE

Low electric field-driven and fast-moving relaxor ferroelectric soft robots

Author information +
History +
PDF

Abstract

Bioinspired soft robots hold great potential to perform tasks in unstructured terrains. Ferroelectric polymers are highly valued in soft robots for their flexibility, lightweight, and electrically controllable deformation. However, achieving large strains in ferroelectric polymers typically requires high driving voltages, posing a significant challenge for practical applications. In this study, we investigate the role of crystalline domain size in enhancing the electrostrain performance of the relaxor ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene-fluorinated alkynes) (P(VDF-TrFE-CFE-FA)). Leveraging its remarkable inverse piezoelectric coefficient (|d33*| = 701 pm V–1), we demonstrate that the planar films exhibit a five times larger bending angle than that of commercial PVDF films at low electric fields. Based on this material, we design a petal-structured soft robot that achieves a curvature of up to 4.5 cm–1 at a DC electric field of 30 V μm–1. When integrated into a bipedal soft robot, it manifests outstanding electrostrain performance, achieving rapid locomotion of ~19 body lengths per second (BL s–1) at 10 V μm–1 (560 Hz). Moreover, the developed robot demonstrates remarkable abilities in climbing slopes and carrying heavy loads. These findings open new avenues for developing low-voltage-driven soft robots with significant promise for practical applications.

Keywords

domain design / electrostrain / relaxor ferroelectric polymer / soft robot

Cite this article

Download citation ▾
Longchao Huang, Weili Deng, Guo Tian, Yue Sun, Tao Yang, Boling Lan, Xuelan Li, Yang Liu, Tianpei Xu, Shenglong Wang, Yong Ao, Jieling Zhang, Long Jin, Weiqing Yang. Low electric field-driven and fast-moving relaxor ferroelectric soft robots. InfoMat, 2025, 7(6): e70015 DOI:10.1002/inf2.70015

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen R, Yuan Z, Guo JL, et al. Legless soft robots capable of rapid, continuous, and steered jumping. Nat Commun. 2021; 12(1): 7028.

[2]

Chen ED, Yang YD, Li MJ, et al. Bio-mimic, fast-moving, and flippable soft piezoelectric robots. Adv Sci. 2023; 10(20): e2300673.

[3]

Xu L, Chen HQ, Zou J, et al. Bio-inspired annelid robot: a dielectric elastomer actuated soft robot. Bioinspir Biomim. 2017; 12(2): 025003.

[4]

Yin JY, Wang SL, Tat T, Chen J. Motion artefact management for soft bioelectronics. Nat Rev Bioeng. 2024; 2(7): 541-558.

[5]

Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature. 2015; 521(7553): 467-475.

[6]

Calisti M, Picardi G, Laschi C. Fundamentals of soft robot locomotion. J R Soc Interface. 2017; 14(130): 20170101.

[7]

Goldberg B, Zufferey R, Doshi N, et al. Power and control autonomy for high-speed locomotion with an insect-scale legged robot. IEEE Robot Autom Lett. 2018; 3(2): 987-993.

[8]

Xiao PS, Yi NB, Zhang TF, et al. Construction of a fish-like robot based on high performance graphene/PVDF bimorph actuation materials. Adv Sci. 2016; 3(6): 1500438.

[9]

Wang SL, Yao YL, Deng WL, et al. Mass-produced skin-inspired piezoresistive sensing array with interlocking interface for oject recognition. ACS Nano. 2024; 18(17): 11183-11192.

[10]

Hu WQ, Lum GZ, Mastrangeli M, Sitti M. Small-scale soft-bodied robot with multimodal locomotion. Nature. 2018; 554(7690): 81-85.

[11]

Pang WB, Xu SW, Wu J, et al. A soft microrobot with highly deformable 3D actuators for climbing and transitioning complex surfaces. Proc Natl Acad Sci U S A. 2022; 119(49): e2215028119.

[12]

Ke XX, Yong HC, Xu FK, Ding H, Wu ZG. Stenus-inspired, swift, and agile untethered insect-scale soft propulsors. Nat Commun. 2024; 15(1): 1491.

[13]

Shi Y, Askounis E, Plamthottam R, et al. A processable, high-performance dielectric elastomer and multilayering process. Science. 2022; 377(6602): 228-232.

[14]

Pu JH, Meng Y, Xie ZX, et al. A unimorph nanocomposite dielectric elastomer for large out-of-plane actuation. Sci Adv. 2022; 8(9): eabm6200.

[15]

Mu WL, Li MJ, Chen ED, et al. Spiral-shape fast-moving soft robots. Adv Funct Mater. 2023; 33(35): 2300516.

[16]

Zhang CC, Jin BJ, Cao XN, et al. Dielectric polymer with designable large motion under low electric field. Adv Mater. 2022; 34(50): e2206393.

[17]

Ze QJ, Wu S, Nishikawa J. Soft robotic origami crawler. Sci Adv. 2022; 8(13): eabm7834.

[18]

Zheng ZQ, Han J, Shi Q, Demir SO, Jiang WT, Sitti M. Single-step precision programming of decoupled multiresponsive soft millirobots. Proc Natl Acad Sci U S A. 2024; 121(13): e2320386121.

[19]

Zhou YH, Zhao X, Xu J, et al. Giant magnetoelastic effect in soft systems for bioelectronics. Nat Mater. 2021; 20(12): 1670-1676.

[20]

Zhao YS, Li QF, Liu ZX, et al. Sunlight-powered self-excited oscillators for sustainable autonomous soft robotics. Sci Robot. 2023; 8(77): eadf4753.

[21]

Zhou XR, Chen GC, Jin BJ, et al. Multimodal autonomous locomotion of liquid crystal elastomer soft robot. Adv Sci. 2024; 11(23): 2402358.

[22]

Shahsavan H, Aghakhani A, Zeng H, et al. Bioinspired underwater locomotion of light-driven liquid crystal gels. Proc Natl Acad Sci U S A. 2020; 117(10): 5125-5133.

[23]

Wang D, Chen ZM, Li MT, et al. Bioinspired rotary flight of light-driven composite films. Nat Commun. 2023; 14(1): 5070.

[24]

Tian GDeng WLYang T, et al. Hierarchical piezoelectric composites for noninvasive continuous cardiovascular monitoring. Adv Mater. 2024; 36(26): 2313612

[25]

Zhu ZW, Rui GC, Li RP, He HZ, Zhu L. Enhancing electrostrictive actuation via strong electrostatic repulsion among field-induced nanodomains in a relaxor ferroelectric poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene) random terpolymer. ACS Appl Mater Interfaces. 2021; 13(35): 42063-42073.

[26]

Qian XS, Chen X, Zhu L, Zhang QM. Fluoropolymer ferroelectrics: multifunctional platform for polar-structured energy conversion. Science. 2023; 380(6645): eadg0902.

[27]

Yang T, Deng WL, Tian G, et al. Modulating piezoelectricity and mechanical strength via three-dimensional gradient structure for piezoelectric composites. Mater Horiz. 2023; 10(11): 5045-5052.

[28]

Lan BL, Zhong C, Wang SL, et al. A highly sensitive coaxial nanofiber mask for respiratory monitoring assisted with machine learning. Adv Fiber Mater. 2024; 6(5): 1402-1412.

[29]

Yang LY, Li XY, Allahyarov E, Taylor PL, Zhang QM, Zhu L. Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect. Polymer. 2013; 54(7): 1709-1728.

[30]

Zhang LW, Li SF, Zhu ZW, et al. Recent progress on structure manipulation of poly(vinylidene fluoride)-based ferroelectric polymers for enhanced piezoelectricity and applications. Adv Funct Mater. 2023; 33(38): 2301302.

[31]

Jia NX, Li Q, Li CC, et al. A wireless ultrasound energy harvester based on flexible relaxor ferroelectric crystal composite arrays for implanted bio-electronics. Energ Environ Sci. 2024; 17(4): 1457-1467.

[32]

Davis GT, Mckinney JE, Broadhurst MG, Roth SC. Electric-field-induced phase changes in poly(vinylidene fluoride). J Appl Phys. 1978; 49(10): 4998-5002.

[33]

Liu Y, Zhou Y, Qin HC, et al. Electro-thermal actuation in percolative ferroelectric polymer nanocomposites. Nat Mater. 2023; 22(7): 873-879.

[34]

Huang YF, Rui GC, Li Q, et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure beta crystals. Nat Commun. 2021; 12(1): 675.

[35]

Zhu ZW, Rui GC, Li Q, et al. Electrostriction-enhanced giant piezoelectricity via relaxor-like secondary crystals in extended-chain ferroelectric polymers. Matter. 2021; 4(11): 3696-3709.

[36]

Zhang ZC, Wang X, Tan SB, Wang Q. Superior electrostrictive strain achieved under low electric fields in relaxor ferroelectric polymers. J Mater Chem A. 2019; 7(10): 5201-5208.

[37]

Chen X, Qin HC, Zhu WY, et al. Giant electrostriction enabled by defect-induced critical phenomena in relaxor ferroelectric polymers. Macromolecules. 2023; 56(2): 690-696.

[38]

Tian G, Deng WL, Xiong D, et al. Dielectric micro-capacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Rep Phys Sci. 2022; 3(4): 100814.

[39]

Zhang QM, Bharti VV, Zhao X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science. 1998; 280(5372): 2101-2104.

[40]

Liu Y, Aziguli H, Zhang B, et al. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature. 2018; 562(7725): 96-100.

[41]

Liu Y, Zhang B, Xu W, et al. Chirality-induced relaxor properties in ferroelectric polymers. Nat Mater. 2020; 19(11): 1169-1174.

[42]

Han ZB, Qin HC, Chen X, et al. Microstructures and ferroelectric properties of poly(vinylidenefluoride-ter-trifluoroethylene-ter-vinyl fluoride) terpolymers. Macromolecules. 2023; 56(11): 4065-4074.

[43]

Im S, Bu SD, Jeong CK. Perspective on ferroelectric polymers presenting negative longitudinal piezoelectric coefficient and morphotropic phase boundary. J Korean Inst Electr Electron Mater Eng. 2022; 35(6): 523-546.

[44]

Gao LHu BWang LP, et al. Intrinsically elastic polymer ferroelectric by precise slight cross-linking. Science. 2023; 381(6657): 540-544

[45]

Qian XS, Han DL, Zheng LR, et al. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature. 2021; 600(7890): 664-669.

[46]

Chen X, Qin HC, Qian XS, et al. Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field. Science. 2022; 375(6587): 1418-1422.

[47]

Zheng SY, Du FH, Zheng LR, et al. Colossal electrocaloric effect in an interface-augmented ferroelectric polymer. Science. 2023; 382(6674): 1020-1026.

[48]

Li F, Jin L, Xu Z, Zhang SJ. Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl Phys Rev. 2014; 1(1): 011103.

[49]

Wu YC, Yim JK, Liang JM, et al. Insect-scale fast moving and ultrarobust soft robot. Sci Robot. 2019; 4(32): eaax1594.

[50]

Ji X, Liu X, Cacucciolo V, et al. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci Robot. 2019; 4(37): eaaz6451.

[51]

Liu Y, Chen BD, Li W, Zu LL, Tang W, Wang ZL. Bioinspired triboelectric soft robot driven by mechanical energy. Adv Funct Mater. 2021; 31(38): 2104770.

[52]

Liang JM, Wu YC, Yim JK, et al. Electrostatic footpads enable agile insect-scale soft robots with trajectory control. Sci Robot. 2021; 6(55): eabe7906.

[53]

Feng WW, Sun L, Jin ZK, et al. A large-strain and ultrahigh energy density dielectric elastomer for fast moving soft robot. Nat Commun. 2024; 15(11): 4222.

[54]

Nguyen CT, Phung H, Nguyen TD, Jung H, Choi HR. Multiple-degrees-of-freedom dielectric elastomer actuators for soft printable hexapod robot. Sens Actuat A Phys. 2017; 267: 505-516.

[55]

Zheng MJ, Wang DK, Zhu DK, Cao SH, Wang XX, Zhang M. PiezoClimber: versatile and self-transitional climbing soft robot with bioinspired highly directional footpads. Adv Funct Mater. 2023; 34(6): 2308384.

[56]

Shintake J, Cacucciolo V, Shea H, Floreano D. Soft biomimetic fish robot made of dielectric elastomer actuators. Soft Robot. 2018; 5(4): 466-474.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

3

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/