PDF
Abstract
The interfacial engineering in solid-state lithium batteries (SSLBs) is attracting escalating attention due to the profoundly enhanced safety, energy density, and charging capabilities of future power storage technologies. Nonetheless, polymer/ceramic interphase compatibility, serious agglomeration of ceramic particles, and discontinuous ionic conduction at the electrode/electrolyte interface seriously limit Li+ transport in SSLBs and block the application and large-scale manufacturing. Hence, garnet Li7La3Zr2O12 (LLZO) nanoparticles are introduced into the polyacrylonitrile (PAN) nanofiber to fabricate a polymer-ceramic nanofiber-enhanced ultrathin SSE membrane (3D LLZO-PAN), harnessing nanofiber confinement to aggregate LLZO nanoparticles to build the continuous conduction pathway of Li+. In addition, a novel integrated electrospinning process is deliberately designed to construct tight physical contact between positive electrode/electrolyte interphases. Importantly, the synergistic effect of the PAN, polyethylene oxide (PEO), and lithium bis((trifluoromethyl)sulfonyl)azanide (LiTFSI) benefits a stable solid electrolyte interphase (SEI) layer, resulting in superior cycling performance, achieving a remarkable 1500 h cycling at 0.2 mA cm–2 in the Li|3D LLZO-PAN|Li battery. Consequently, the integrated polymer-ceramic nanofiber-enhanced SSEs simultaneously achieve the balance in ultrathin thickness (16 μm), fast ion transport (2.9 × 10–4 S cm–1), and superior excellent interface contact (15.6 Ω). The LiNi0.8Co0.1Mn0.1O2|3D LLZO-PAN|Li batteries (2.7–4.3 V) can work over 200 cycles at 0.5 C. The pouch cells with practical LiNi0.8Co0.1Mn0.1O2||Li configuration achieve an ultrahigh energy density of 345.8 Wh kg–1 and safety performance. This work provides new strategies for the manufacturing and utilization of high-energy-density SSLBs.
Keywords
composite electrolyte
/
high energy density
/
lithium metal batteries
/
ultra-thin solid-state electrolyte
Cite this article
Download citation ▾
Xiaoxue Zhao, Chao Wang, Xiaomeng Fan, Yang Li, Dabing Li, Yanling Zhang, Li-Zhen Fan.
Addressing the interface issues of all-solid-state lithium batteries by ultra-thin composite solid-state electrolyte combined with the integrated preparation technology.
InfoMat, 2025, 7(8): e70012 DOI:10.1002/inf2.70012
| [1] |
Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater. 2017; 2(4): 16103.
|
| [2] |
Zhao Q, Stalin S, Zhao CZ, Archer LA. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater. 2020; 5(3): 229-252.
|
| [3] |
Chen R, Li Q, Yu X, Chen L, Li H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem Rev. 2020; 120(14): 6820-6877.
|
| [4] |
Fan L-Z, He H, Nan CW. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat Rev Mater. 2021; 6(11): 1003-1019.
|
| [5] |
Chen R, Nolan AM, Lu J, et al. The thermal stability of lithium solid electrolytes with metallic lithium. Joule. 2020; 4(4): 812-821.
|
| [6] |
Wu M, Liu H, Qi X, et al. Structure designing, interface engineering, and application prospects for sodium-ion inorganic solid electrolytes. InfoMat. 2024; 6(9): e12606.
|
| [7] |
Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem. 2019; 5(9): 2326-2352.
|
| [8] |
Xi G, Xiao M, Wang S, Han D, Li Y, Meng Y. Polymer-based solid electrolytes: material selection, design, and application. Adv Funct Mater. 2021; 31(9): 2007598.
|
| [9] |
Zhao Y, Wang L, Zhou Y, et al. Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-based rechargeable batteries. Adv Sci. 2021; 8(7): 2198-3844.
|
| [10] |
Hu X, Yu J, Wang Y, et al. A lithium intrusion-blocking interfacial shield for wide-pressure-range solid-state lithium metal batteries. Adv Mater. 2024; 36(7): 2308275.
|
| [11] |
Liang Y, Liu H, Wang G, et al. Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries. Info Mat. 2022; 4(5): e12292.
|
| [12] |
Choi K, Cho S, Kim S, Kwon YH, Kim JY, Lee S. Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Adv Funct Mater. 2014; 24(1): 44-52.
|
| [13] |
Li S, Zhang SQ, Shen L, et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv Sci. 2020; 7(5): 1903088.
|
| [14] |
Zhang X, Chu Y, Cui X, Li Y, Pan Q. An ultra-thin polymer electrolyte based on single-helical-structured agarose for high performance solid-state lithium batteries. J Mater Chem A. 2021; 9(47): 26939-26948.
|
| [15] |
He F, Tang W, Zhang X, Deng L, Luo J. High energy density solid state lithium metal batteries enabled by sub-5 μm solid polymer electrolytes. Adv Mater. 2021; 33(45): 2105329.
|
| [16] |
Bao C, Zheng C, Wu M, et al. 12 μm-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries. Adv Energy Mater. 2023; 13: 2204028.
|
| [17] |
Wang Z, Xia J, Ji X, et al. Lithium anode interlayer design for all-solid-state lithium-metal batteries. Nat Energy. 2024; 9(3): 251-262.
|
| [18] |
Wan J, Xie J, Kong X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat Nanotechnol. 2019; 14(7): 705-711.
|
| [19] |
Wu J, Yuan L, Zhang W, Li Z, Xie X, Huang Y. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ Sci. 2021; 14(1): 12-36.
|
| [20] |
Albertus P, Babinec S, Litzelman S, Newman A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat Energy. 2017; 3(1): 16-21.
|
| [21] |
Duan J, Zheng Y, Luo W, et al. Is graphite lithiophobic or lithiophilic? Natl Sci Rev. 2020; 7(7): 1208-1217.
|
| [22] |
Zhang Z, Huang Y, Zhang GZ, Chao L. Three-dimensional fiber network reinforced polymer electrolyte for dendrite-free all-solid-state lithium metal batteries. Energy Storage Mater. 2021; 41: 631-641.
|
| [23] |
Kim JH, Park DH, Jang JS, et al. High-performance free-standing hybrid solid electrolyte membrane combined with Li6.28Al0.24La3Zr2O12 and hexagonal-BN for all-solid-state lithium-based batteries. Chem Eng J. 2022; 446: 137035.
|
| [24] |
Wang Y, Wu L, Guo X, et al. A thin free-standing composite solid electrolyte film for solid-state lithium metal batteries. Chem Commun. 2022; 58(55): 7646-7649.
|
| [25] |
Chen X, Sun C, Wang K, et al. An ultra-thin crosslinked carbonate ester electrolyte for 24 V bipolar lithium-metal batteries. J Electrochem Soc. 2022; 169(9): 090509.
|
| [26] |
Ma Q, Fu S, Wu A, et al. Designing bidirectionally functional polymer electrolytes for stable solid lithium metal batteries. Adv Energy Mater. 2023; 13(11): 2203892.
|
| [27] |
Feng J, Wang J, Gu Q, et al. Room-temperature all-solid-state lithium metal batteries based on ultrathin polymeric electrolytes. J Mater Chem A. 2022; 10(26): 13969-13977.
|
| [28] |
Li D, Liu H, Wang C, et al. High ionic conductive, mechanical robust sulfide solid electrolyte films and interface design for all-solid-state lithium metal batteries. Adv Funct Mater. 2024; 34(27): 2315555.
|
| [29] |
Bae J, Li Y, Zhao F, Zhou X, Ding Y, Yu G. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Mater. 2018; 15: 46-52.
|
| [30] |
Ren Z, Li J, Gong Y, et al. Insight into the integration way of ceramic solid-state electrolyte fillers in the composite electrolyte for high performance solid-state lithium metal battery. Energy Storage Mater. 2022; 51: 130-138.
|
| [31] |
Guo Z, Pang Y, Xia S, et al. Uniform and anisotropic solid electrolyte membrane enables superior solid-state Li metal batteries. Adv Sci. 2021; 8(16): 2100899.
|
| [32] |
Liu H, Cheng XB, Huang JQ, et al. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett. 2020; 5(3): 833-843.
|
| [33] |
Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev. 2004; 104(10): 4303-4418.
|
| [34] |
Manuel SA. Review on gel polymer electrolytes for lithium batteries. Eur Polym J. 2006; 42(1): 21-42.
|
| [35] |
Wang C, Liu H, Liang Y, et al. Molecular-level designed polymer electrolyte for high-voltage lithium-metal solid-state batteries. Adv Funct Mater. 2023; 33(3): 2209828.
|
| [36] |
Wang S, Sun Q, Zhang Q, et al. Li-ion transfer mechanism of ambient-temperature solid polymer electrolyte toward lithium metal battery. Adv Energy Mater. 2023; 13(16): 2204036.
|
| [37] |
Wang C, Zhao X, Li D, Yan C, Zhang Q, Fan L-QZ. Anion-modulated ion conductor with chain conformational transformation for stabilizing interfacial phase of high-voltage lithium metal batteries. Angew Chem Int ed. 2024; 63: e202317856.
|
| [38] |
Xu H, Li Y, Zhou A, et al. Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40°C. Nano Lett. 2018; 18(11): 7414-7418.
|
| [39] |
Shi K, Wan Z, Yang L, et al. In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries. Angew Chem Int ed. 2020; 59(29): 11784-11788.
|
| [40] |
Ma Y, Wan J, Yang Y, et al. Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries. Adv Energy Mater. 2022; 12(15): 2103720.
|
| [41] |
Liang Y, Shen C, Liu H, et al. Tailoring conversion-reaction-induced alloy interlayer for dendrite-free sulfide-based all-solid-state lithium-metal battery. Adv Sci. 2023; 10(19): 2300985.
|
| [42] |
Fan X, Ji X, Han F, et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci Adv. 2018; 4(12): eaau9245.
|
| [43] |
Wang C, Sun X, Yang L, et al. In situ ion-conducting protective jayer strategy to stable lithium metal anode for all-solid-state sulfide-based lithium metal batteries. Adv Mater Interfaces. 2021; 8(1): 2001698.
|
| [44] |
Lin Y, Wu M, Sun J, Zhang L, Jian Q, Zhao T. A high-capacity, long-cycling all-solid-state lithium battery enabled by integrated cathode/ultrathin solid electrolyte. Adv Energy Mater. 2021; 11(35): 2101612.
|
| [45] |
Sun QF, Bi ZJ, Chen X, et al. Revealing critical roles of alkaline passivation layer on garnet surface toward poly(vinylidene fluoride)-based composite electrolytes for solid-state lithium batteries. J Colloid Interface Sci. 2025; 683(2): 678-687.
|
| [46] |
Que MM, Tong YF, Wei GC, et al. Safe and flexible ion gel based composite electrolyte for lithium batteries. J Mater Chem A. 2016; 4(37): 14132-14140.
|
| [47] |
Lee Y, Lee TK, Kim S, et al. Fluorine-incorporated interface enhances cycling stability of lithium metal batteries with Ni-rich NCM cathodes. Nano Energy. 2020; 67: 104309.
|
RIGHTS & PERMISSIONS
2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.