Interface and surface engineering of MXenes and COFs for energy storage and conversion

Iftikhar Hussain , Murugavel Kathiresan , Karanpal Singh , B. Kalidasan , Avinash C. Mendhe , Mohammad Nahidul Islam , Kejuan Meng , Muhammad Kashif Aslam , Muhammad Bilal Hanif , Wail Al Zoubi , Kaili Zhang

InfoMat ›› 2025, Vol. 7 ›› Issue (6) : e70011

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (6) : e70011 DOI: 10.1002/inf2.70011
REVIEW ARTICLE

Interface and surface engineering of MXenes and COFs for energy storage and conversion

Author information +
History +
PDF

Abstract

MXenes, a class of two-dimensional (2D) transition metal carbides, and covalent organic frameworks (COFs) deliver unique structural and electrochemical properties, making them promising candidates for energy storage and conversion applications. MXenes exhibit excellent conductivity and tunable surface chemistries, whereas the COFs provide high porosity and structural versatility. Recent advances in integrating MXene-COF composites have revealed their potential to enhance charge transfer and energy storage/conversion properties. The work highlights key developments in MXene-COF integration, offering insights into their applications in batteries (Li-ion, K-ion, Na-ion, and Li-S), supercapacitors, and electrocatalysis (HER, OER, RR, NRR, and ORRCO2), while also addressing current challenges and future directions for not only energy conversion but also other electronic devices.

Keywords

COFs / energy conversion / energy storage / MXeneCOF/MXene mechanism

Cite this article

Download citation ▾
Iftikhar Hussain, Murugavel Kathiresan, Karanpal Singh, B. Kalidasan, Avinash C. Mendhe, Mohammad Nahidul Islam, Kejuan Meng, Muhammad Kashif Aslam, Muhammad Bilal Hanif, Wail Al Zoubi, Kaili Zhang. Interface and surface engineering of MXenes and COFs for energy storage and conversion. InfoMat, 2025, 7(6): e70011 DOI:10.1002/inf2.70011

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu Z, Mapstone G, Coady Z, et al. Enhancing electrochemical carbon dioxide capture with supercapacitors. Nat Commun. 2024; 15(1): 7851.

[2]

Breunig HM, Rosner F, Lim T-H, Peng P. Emerging concepts in intermediate carbon dioxide emplacement to support carbon dioxide removal. Energy Environ Sci. 2023; 16(5): 1821-1837.

[3]

Zhu K, Sun Z, Li Z, Liu P, Li H, Jiao L. Design strategies and recent advancements for low-temperature aqueous rechargeable energy storage. Adv Energy Mater. 2023; 13(8): 2203708.

[4]

Li MM, Weller JM, Reed DM, Sprenkle VL, Li G. Thermally activated batteries and their prospects for grid-scale energy storage. Joule. 2023; 7(4): 619-623.

[5]

Gao Z, Zhou Y, Zhang J, et al. Advanced energy harvesters and energy storage for powering wearable and implantable medical devices. Adv Mater. 2024; 36: 2404492.

[6]

Zhou Y, Duan R. Leak-proof reversible thermochromic microcapsule phase change materials with high latent thermal storage for thermal management. ACS Appl Energy Mater. 2024; 7(14): 5944-5956.

[7]

Fan K, Guan L, Gu Y, Liu S, Wang C. Conjugated coordination polymers as multifunctional platform for electrochemical energy storage. Coord Chem Rev. 2024; 519: 216098.

[8]

Mendhe AC, Kore A, Dhas SD, et al. High-performance supercapacitor electrodes: hierarchical integration of bimetallic structures incorporating silver and copper phosphates with a 3D fernlike stellar dendritic architecture. Chem Eng J. 2024; 489: 151168.

[9]

Hren R, Vujanović A, Van Fan Y, Klemeš JJ, Krajnc D, Čuček L. Hydrogen production, storage and transport for renewable energy and chemicals: an environmental footprint assessment. Renew Sustain Energy Rev. 2023; 173: 113113.

[10]

Lopez G, Keiner D, Fasihi M, Koiranen T, Breyer C. From fossil to green chemicals: sustainable pathways and new carbon feedstocks for the global chemical industry. Energ Environ Sci. 2023; 16(7): 2879-2909.

[11]

Liu X, Li Y, Zeng L, et al. A review on mechanochemistry: approaching advanced energy materials with greener force. Adv Mater. 2022; 34(46): 2108327.

[12]

Chen H, Zheng Y, Li J, Li L, Wang X. AI for nanomaterials development in clean energy and carbon capture, utilization and storage (CCUS). ACS Nano. 2023; 17(11): 9763-9792.

[13]

Mendhe AC, Babar P, Sankapal BR. Sequential growth-controlled silver selenide nanoparticles embedded 1D-CdS nanowires: Heterostructure design to enhance power conversion efficiency. J Phys Chem Solid. 2022; 163: 110576.

[14]

Mendhe AC, Deshmukh TB, Soni V, Sankapal BR, Jang S-H. Facile three-step strategy to design CdS@ Bi2Se3 core-shell nanostructure: An efficient electrode for supercapacitor application. Ceram Int. 2023; 49(13): 21978-21987.

[15]

Mao Q, Feng M, Jiang XZ, Ren Y, Luo KH, van Duin AC. Classical and reactive molecular dynamics: principles and applications in combustion and energy systems. Prog Energy Combust Sci. 2023; 97: 101084.

[16]

Wang S, Zheng S, Shi X, et al. Monolithically integrated micro-supercapacitors with high areal number density produced by surface adhesive-directed electrolyte assembly. Nat Commun. 2024; 15(1): 2850.

[17]

Khodayar N, Noori A, Rahmanifar MS, et al. An ultra-high mass-loading transition metal phosphide electrocatalyst for efficient water splitting and ultra-durable zinc-air batteries. Energy Environ Sci. 2024; 17(14): 5200-5215.

[18]

Cui F, Li J, Lai C, et al. Superlattice cathodes endow cation and anion co-intercalation for high-energy-density aluminium batteries. Nat Commun. 2024; 15(1): 8108.

[19]

Mendhe AC, Dhas S, Kim Y, Kim D. Hierarchically structured Cu2P2O7 nanoflakes as a binder-free electrodes for high-performance supercapacitors. Chem Eng J. 2024; 496: 153857.

[20]

Zhao M, Wang J, Wang C, et al. Enriched edge sites of ultrathin Ni3S2/NiO nanomeshes promote surface reconstruction for robust electrochemical water splitting. Nano Energy. 2024; 129: 110020.

[21]

Nairan A, Feng Z, Zheng R, Khan U, Gao J. Engineering metallic alloy electrode for robust and active water electrocatalysis with large current density exceeding 2000 mA/cm2. Adv Mater. 2024; 36(29): 2401448.

[22]

Liu M, Zou W, Qiu S, Su N, Cong J, Hou L. Active site tailoring of Ni-based coordination polymers for high-efficiency dual-functional HER and UOR catalysis. Adv Funct Mater. 2024; 34(3): 2310155.

[23]

Wang Q, Qu Y, Bai J, et al. High-yield ramie derived carbon toward high-performance supercapacitors. Nano Energy. 2024; 120: 109147.

[24]

Su L, Wu H, Zhang S, Cui C, Zhou S, Pang H. Insight into intermediate behaviors and design strategies of platinum group metal-based alkaline hydrogen oxidation catalysts. Adv Mater. 2024; 37(4): 2414628.

[25]

Yao Y, Wei X, Zhou H, et al. Regulating the d-band center of metal-organic frameworks for efficient nitrate reduction reaction and zinc-nitrate battery. ACS Catal. 2024; 14(21): 16205-16213.

[26]

Yuan G, Su Y, Zhang X, et al. Charged organic ligands inserting/supporting the nanolayer spacing of vanadium oxides for high-stability/efficiency zinc-ion batteries. Nat Sci Rev. 2024; 11(10): nwae336.

[27]

Turcheniuk K, Bondarev D, Amatucci GG, Yushin G. Battery materials for low-cost electric transportation. Mater Today. 2021; 42: 57-72.

[28]

Poizot P, Gaubicher J, Renault S, Dubois L, Liang Y, Yao Y. Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem Rev. 2020; 120(14): 6490-6557.

[29]

Li L, Liu W, Dong H, et al. Surface and interface engineering of nanoarrays toward advanced electrodes and electrochemical energy storage devices. Adv Mater. 2021; 33(13): 2004959.

[30]

Li J, Fleetwood J, Hawley WB, Kays W. From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem Rev. 2021; 122(1): 903-956.

[31]

Egorov V, Gulzar U, Zhang Y, Breen S, O'Dwyer C. Evolution of 3D printing methods and materials for electrochemical energy storage. Adv Mater. 2020; 32(29): 2000556.

[32]

Kumar SS, Lim H. An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 2022; 8: 13793-13813.

[33]

Park S, Shao Y, Liu J, Wang Y. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: status and perspective. Energy Environ Sci. 2012; 5(11): 9331-9344.

[34]

Mendhe AC, Babar P, Koinkar P, Sankapal BR. Process optimization for decoration of Bi2Se3 nanoparticles on CdS nanowires: twofold power conversion solar cell efficiency. J Taiwan Inst Chem Eng. 2022; 133: 104251.

[35]

Huang B, Zhao Y. Iridium-based electrocatalysts toward sustainable energy conversion. EcoMat. 2022; 4(2): e12176.

[36]

Pham HQ, Pham HT, Huynh Q, Huynh TT. Single-atom iridium-based catalysts: synthesis strategies and electro (photo)-catalytic applications for renewable energy conversion and storage. Coord Chem Rev. 2023; 486: 215143.

[37]

Carvela M, Santos GOS, Gonzaga I, et al. Platinum: A key element in electrode composition for reversible chloralkaline electrochemical cells. Int J Hydrogen Energy. 2021; 46(64): 32602-32611.

[38]

Zhang X, Jiang C, Liang J, Wu W. Electrode materials and device architecture strategies for flexible supercapacitors in wearable energy storage. J Mater Chem A. 2021; 9(13): 8099-8128.

[39]

Chen H, Ling M, Hencz L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem Rev. 2018; 118(18): 8936-8982.

[40]

Baig N. Two-dimensional nanomaterials: A critical review of recent progress, properties, applications, and future directions. Compos A: Appl Sci Manuf. 2023; 165: 107362.

[41]

Khan K, Tareen AK, Aslam M, et al. Recent developments in emerging two-dimensional materials and their applications. J Mater Chem C. 2020; 8(2): 387-440.

[42]

Liu F, Fan Z. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem Soc Rev. 2023; 52(5): 1723-1772.

[43]

Tao H, Fan Q, Ma T, et al. Two-dimensional materials for energy conversion and storage. Prog Mater Sci. 2020; 111: 100637.

[44]

Philip A, Kumar AR. Recent advancements and developments employing 2D-materials in enhancing the performance of electrochemical supercapacitors: a review. Renew Sustain Energy Rev. 2023; 182: 113423.

[45]

Saeed G, Kang T, Byun JS, et al. Two-dimensional (2D) materials for 3D printed micro-supercapacitors and micro-batteries. Energy Mater. 2024; 4(3): 400023.

[46]

Qi J, Bao K, Wang W, et al. Emerging two-dimensional materials for proton-based energy storage. ACS Nano. 2024; 18(38): 25910-25929.

[47]

Hayat A, Sohail M, El Jery A, et al. Recent advances, properties, fabrication and opportunities in two-dimensional materials for their potential sustainable applications. Energy Storage Mater. 2023; 59: 102780.

[48]

Cao J, You P, Tang G, Yan F. Two-dimensional materials for boosting the performance of perovskite solar cells: fundamentals, materials and devices. Mater Sci Eng R: Rep. 2023; 153: 100727.

[49]

Shaikh SA, Mendhe AC, Nadimetla DN, et al. Benzothiazole functionalized diketopyrrolopyrrole photosensitizer for CdS nanowire based DSSC applications. J Photochem Photobiol A Chem. 2024; 447: 115220.

[50]

Bayannavar PK, Mendhe AC, Sannaikar MS, et al. Pyridine enhances the efficiency of 1D-CdS nanowire solar cells fabricated using novel organic dyes. Colloids Surf A Physicochem Eng Asp. 2022; 640: 128500.

[51]

Shen X, Lin X, Peng Y, et al. Two-dimensional materials for highly efficient and stable perovskite solar cells. Nano-Micro Lett. 2024; 16(1): 201.

[52]

Bongu CS, Tasleem S, Krishnan MR, Alsharaeh EH. Graphene-based 2D materials for rechargeable batteries, hydrogen production and storage: a critical review. Sustain Energy Fuels. 2024; 8: 4039-4070.

[53]

Sardar T, Roy K, Narayanaswamy MP, Shetty M, Shivaramu PD, Rangappa D. Two-dimensional nanostructured materials for electrochemical and photoelectrochemical green hydrogen generation application. In: Abd Elsalam KA, Shankar MV, eds. Nanotechnology for Hydrogen Production and Storage. Elsevier; 2024: 257-281.

[54]

Zhu H, Liu Y, Wu Y, He Y, Cao Y, Hu S. Electrocatalytic stability of two-dimensional materials. J Energy Chem. 2024; 97: 302-320.

[55]

Dong Y, Ma Z, Lopez I, Hu TS, Dong Q, Liu S. Multi-dimensional engineering of transition metal dichalcogenides for enhanced performance in fuel cell technologies. Mater Today Energy. 2024; 41: 101528.

[56]

Naguib M, Kurtoglu M, Presser V, et al. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. MXenes. Jenny Stanford Publishing; 2023: 15-29.

[57]

Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. In: Gogotsi Y, ed. MXenes. Jenny Stanford Publishing; 2023: 677-722.

[58]

Li K, Liang M, Wang H, et al. 3D MXene architectures for efficient energy storage and conversion. Adv Funct Mater. 2020; 30(47): 2000842.

[59]

Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. In: Gogotsi Y, ed. MXenes. Jenny Stanford Publishing; 2023: 379-399.

[60]

VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science. 2021; 372(6547): eabf1581.

[61]

Li X, Huang Z, Shuck CE, Liang G, Gogotsi Y, Zhi C. MXene chemistry, electrochemistry and energy storage applications. Nat Rev Chem. 2022; 6(6): 389-404.

[62]

Kamysbayev V, Filatov AS, Hu H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science. 2020; 369(6506): 979-983.

[63]

Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater. 2014; 26(7): 992-1005.

[64]

Rafieerad A, Yan W, Sequiera GL, et al. Application of Ti3C2 MXene quantum dots for immunomodulation and regenerative medicine. Adv Healthc Mater. 2019; 8(16): 1900569.

[65]

Yang F, Ge Y, Yin T, et al. Ti3C2Tx MXene quantum dots with enhanced stability for ultrafast photonics. ACS Appl Nano Mater. 2020; 3(12): 11850-11860.

[66]

Lee C, Park SM, Kim S, et al. Field-induced orientational switching produces vertically aligned Ti3C2Tx MXene nanosheets. Nat Commun. 2022; 13(1): 5615.

[67]

Fard AK, Mckay G, Chamoun R, Rhadfi T, Preud'Homme H, Atieh MA. Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent. Chem Eng J. 2017; 317: 331-342.

[68]

Chertopalov S, Mochalin VN. Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films. ACS Nano. 2018; 12(6): 6109-6116.

[69]

Hantanasirisakul K, Zhao MQ, Urbankowski P, et al. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv Electron Mater. 2016; 2(6): 1600050.

[70]

Wang D, Zhang D, Li P, Yang Z, Mi Q, Yu L. Electrospinning of flexible poly (vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nanomicro Lett. 2021; 13: 1-13.

[71]

Khademolqorani S, Banitaba SN, Gupta A, et al. Application scopes of miniaturized MXene-functionalized electrospun nanofibers-based electrochemical energy devices. Small. 2024; 20(24): 2309572.

[72]

Shekhirev M, Shuck CE, Sarycheva A, Gogotsi Y. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog Mater Sci. 2021; 120: 100757.

[73]

Frey NC, Wang J, Vega Bellido GI, Anasori B, Gogotsi Y, Shenoy VB. Prediction of synthesis of 2D metal carbides and nitrides (MXenes) and their precursors with positive and unlabeled machine learning. ACS Nano. 2019; 13(3): 3031-3041.

[74]

Liang R-R, Jiang S-Y, A R-H, Zhao X. Two-dimensional covalent organic frameworks with hierarchical porosity. Chem Soc Rev. 2020; 49(12): 3920-3951.

[75]

Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions. Chem Rev. 2020; 120(16): 8814-8933.

[76]

Tan KT, Ghosh S, Wang Z, et al. Covalent organic frameworks. Nat Rev Methods Primers. 2023; 3(1): 1.

[77]

Huang N, Wang P, Jiang D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat Rev Mater. 2016; 1(10): 1-19.

[78]

Wang H, Yang Y, Yuan X, et al. Structure-performance correlation guided applications of covalent organic frameworks. Mater Today. 2022; 53: 106-133.

[79]

Shahbaz A, Ahmad K, Qureshi K, et al. Porous materials: covalent organic frameworks (COFs) as game-changers in practical applications, a review. Rev Inorg Chem. 2024; 44(1): 117-133.

[80]

Gong Y-N, Guan X, Jiang H-L. Covalent organic frameworks for photocatalysis: synthesis, structural features, fundamentals and performance. Coord Chem Rev. 2023; 475: 214889.

[81]

Martín-Illán , Rodríguez-San-Miguel D, Zamora F. Evolution of covalent organic frameworks: from design to real-world applications. Coord Chem Rev. 2023; 495: 215342.

[82]

Guo M, Jin Z, Pan J, et al. Construction of COFs@ MoS2-Pd hierarchical tubular Heterostructures for enhanced catalytic performance. Inorg Chem. 2024; 63(39): 18263-18275.

[83]

Gu Y, Duan Y, Shen Y, Martin R. Stereoselective base-catalyzed 1,1-silaboration of terminal alkynes. Angew Chem. 2020; 132(5): 2077-2081.

[84]

Cote AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science. 2005; 310(5751): 1166-1170.

[85]

Whittingham MS. Lithium batteries and cathode materials. Chem Rev. 2004; 104(10): 4271-4302.

[86]

Hwang J-Y, Myung S-T, Sun Y-K. Sodium-ion batteries: present and future. Chem Soc Rev. 2017; 46(12): 3529-3614.

[87]

Ramachandran R, Rajavel K, Xuan W, Lin D, Wang F. Influence of Ti3C2Tx (MXene) intercalation pseudocapacitance on electrochemical performance of Co-MOF binder-free electrode. Ceram Int. 2018; 44(12): 14425-14431.

[88]

Guo D, Ming F, Shinde DB, et al. Covalent assembly of two-dimensional COF-on-MXene heterostructures enables fast charging lithium hosts. Adv Funct Mater. 2021; 31(25): 2101194.

[89]

An N, Guo Z, Guo C, et al. A novel COF/MXene film electrode with fast redox kinetics for high-performance flexible supercapacitor. Chem Eng J. 2023; 458: 141434.

[90]

Meng R, Deng Q, Peng C, et al. Two-dimensional organic-inorganic heterostructures of in situ-grown layered COF on Ti3C2 MXene nanosheets for lithium-sulfur batteries. Nano Today. 2020; 35: 100991.

[91]

Geng Q, Wang H, Wu Y, et al. Covalent-induced heterostructure of covalent-organic frameworks and MXene as advanced electrodes with motivated pseudocapacitance performance. ChemElectroChem. 2022; 9(16): e202200340.

[92]

Zhang Y, Wu Y, Liu Y, Feng J. Flexible and freestanding heterostructures based on COF-derived N-doped porous carbon and two-dimensional MXene for all-solid-state lithium-sulfur batteries. Chem Eng J. 2022; 428: 131040.

[93]

Xu M, Lai C, Liu X, et al. COF-confined catalysts: from nanoparticles and nanoclusters to single atoms. J Mater Chem A. 2021; 9(43): 24148-24174.

[94]

Liu M, Chen YJ, Huang X, et al. Porphyrin-based COF 2D materials: variable modification of sensing performances by post-metallization. Angew Chem Int Ed. 2022; 61(12): e202115308.

[95]

Guo L, Yang L, Li M, Kuang L, Song Y, Wang L. Covalent organic frameworks for fluorescent sensing: recent developments and future challenges. Coord Chem Rev. 2021; 440: 213957.

[96]

Wu S, Li X, Zhang Y, et al. Interface engineering of MXene-based heterostructures for lithium-sulfur batteries. Nano Res. 2023; 16(7): 9158-9178.

[97]

Anasori B, Lukatskaya M, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017; 2(2): 16098.

[98]

Liu C, Feng Z, Yin T, et al. Multi-interface engineering of MXenes for self-powered wearable devices. Adv Mater. 2024; 36: 2403791.

[99]

Zhou J, Zhang Y, Zhang M, et al. High-performance MXene hydrogel for self-propelled Marangoni swimmers and water-enabled electricity generator. Adv Sci. 2024; 12(2): 2408161.

[100]

Barsoum M. Fundamentals of Ceramics. CRC Press; 2019.

[101]

Xu D, Li Z, Li L, Wang J. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv Funct Mater. 2020; 30(47): 2000712.

[102]

Berdiyorov G. Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: first-principles calculations. AIP Adv. 2016; 6(5): 055105.

[103]

Liu X, Zheng B, Hua Y, et al. Ultralight MXene/rGO aerogel frames with component and structure controlled electromagnetic wave absorption by direct ink writing. Carbon. 2024; 230: 119650.

[104]

Hu B, Xu J, Fan Z, et al. Covalent organic framework based lithium-sulfur batteries: materials, interfaces, and solid-state electrolytes. Adv Energy Mater. 2023; 13(10): 2203540.

[105]

Lei Z, Yang Q, Xu Y, et al. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat Commun. 2018; 9(1): 1-13.

[106]

Li Z, He T, Gong Y, Jiang D. Covalent organic frameworks: pore design and interface engineering. Acc Chem Res. 2020; 53(8): 1672-1685.

[107]

Sun T, Xie J, Guo W, Li DS, Zhang Q. Covalent-organic frameworks: advanced organic electrode materials for rechargeable batteries. Adv Energy Mater. 2020; 10(19): 1904199.

[108]

Kong X, Zhou S, Strømme M, Xu C. Redox active covalent organic framework-based conductive nanofibers for flexible energy storage device. Carbon. 2021; 171: 248-256.

[109]

Nguyen HL. Reticular design and crystal structure determination of covalent organic frameworks. Chem Sci. 2021; 12(25): 8632-8647.

[110]

Chen M, Yin F, Du Z, et al. MOF-derived CuxS double-faced-decorated carbon nanosheets as high-performance and stable counter electrodes for quantum dots solar cells. J Colloid Interface Sci. 2022; 628: 22-30.

[111]

Yang Y, Zhang P, Hao L, Cheng P, Chen Y, Zhang Z. Grotthuss proton-conductive covalent organic frameworks for efficient proton pseudocapacitors. Angew Chem Int Ed. 2021; 60(40): 21838-21845.

[112]

Cao S, Li B, Zhu R, Pang H. Design and synthesis of covalent organic frameworks towards energy and environment fields. Chem Eng J. 2019; 355: 602-623.

[113]

Ampong DN, Effah E, Tsiwah EA, et al. Advances and challenges in covalent organic frameworks as an emerging class of materials for energy and environmental concerns. Coord Chem Rev. 2024; 519: 216121.

[114]

Wang Y, Wang X, Li X, et al. A high-performance, tailorable, wearable, and foldable solid-state supercapacitor enabled by arranging pseudocapacitive groups and MXene flakes on textile electrode surface. Adv Funct Mater. 2021; 31(7): 2008185.

[115]

Nasrin K, Sudharshan V, Subramani K, Sathish M. Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next-generation supercapacitors: a review. Adv Funct Mater. 2022; 32(18): 2110267.

[116]

Wu Z, Liu X, Shang T, et al. Reassembly of MXene hydrogels into flexible films towards compact and ultrafast supercapacitors. Adv Funct Mater. 2021; 31(41): 2102874.

[117]

Cheng W, Fu J, Hu H, Ho D. Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density. Adv Sci. 2021; 8(16): 2100775.

[118]

Yang Z, Peng C, Meng R, et al. Hybrid anatase/rutile nanodots-embedded covalent organic frameworks with complementary polysulfide adsorption for high-performance lithium-sulfur batteries. ACS Cent Sci. 2019; 5(11): 1876-1883.

[119]

Wang H, He B, Liu F, et al. Orientation transitions during the growth of imine covalent organic framework thin films. J Mater Chem C. 2017; 5(21): 5090-5095.

[120]

Xiong D, Li X, Bai Z, Lu S. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small. 2018; 14(17): 1703419.

[121]

Chen N, Zhou Y, Zhang S, et al. Tailoring Ti3CNTx MXene via an acid molecular scissor. Nano Energy. 2021; 85: 106007.

[122]

Zhu X, Zhang Y, Man Z, et al. Microfluidic-assembled covalent organic frameworks@ Ti3C2Tx MXene vertical fibers for high-performance electrochemical supercapacitors. Adv Mater. 2023; 35(46): 2307186.

[123]

Yao M, Guo C, Geng Q, et al. Construction of anthraquinone-containing covalent organic frameworks/graphene hybrid films for a flexible high-performance microsupercapacitor. Ind Eng Chem Res. 2022; 61(22): 7480-7488.

[124]

Li T, Yan X, Zhang W-D, et al. A 2D donor-acceptor covalent organic framework with charge transfer for supercapacitors. Chem Commun. 2020; 56(91): 14187-14190.

[125]

Li L, Lu F, Xue R, et al. Ultrastable triazine-based covalent organic framework with an interlayer hydrogen bonding for supercapacitor applications. ACS Appl Mater Interfaces. 2019; 11(29): 26355-26363.

[126]

Li T, Yan X, Liu Y, et al. A 2D covalent organic framework involving strong intramolecular hydrogen bonds for advanced supercapacitors. Polym Chem. 2020; 11(1): 47-52.

[127]

Khan Y, Kale VS, El-Demellawi JK, et al. Hybrid microsupercapacitors based on Ti3C2Tx MXene and covalent organic frameworks. Mater Today Energy. 2024; 44: 101636.

[128]

Feng M, Zhang Y, Zhu X, Chen W, Lu W, Wu G. Interface-anchored covalent organic frameworks@ amino-modified Ti3C2Tx MXene on nylon 6 film for high-performance deformable supercapacitors. Angew Chem. 2023; 135(33): e202307195.

[129]

Ramachandran T, Hamed F, Kumar YA, Raji RK, Hegazy H. Multifunctional covalent-organic frameworks (COFs)-2D MXenes composites for diverse applications. J Energy Storage. 2023; 73: 109299.

[130]

Kumar KP, Jayan KD, Wanatasanappan VV, Swapnalin J, Sharma P, Banerjee P. A state-of-the-art review on MXene-based hybrid nanomaterial for energy storage applications. J Alloys Compd. 2024; 997: 1174786.

[131]

Su Y, Hu J, Yuan G, et al. Regulating intramolecular electron transfer of nickel-based Coordinations through ligand engineering for aqueous batteries. Adv Mater. 2023; 35(48): 2307003.

[132]

Jin Y, Liu K, Lang J, et al. High-energy-density solid-electrolyte-based liquid Li-S and Li-Se batteries. Joule. 2020; 4(1): 262-274.

[133]

Jana M, Xu R, Cheng X-B, et al. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries. Energ Environ Sci. 2020; 13(4): 1049-1075.

[134]

Zhang Z, Li Z, Hao F, et al. 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium-sulfur batteries with high rate capability and cycling stability. Adv Funct Mater. 2014; 24(17): 2500-2509.

[135]

Wei C, Wang Y, Zhang Y, et al. Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Res. 2021; 14(10): 3576-3584.

[136]

Zhu Q, Xu H-F, Shen K, Zhang Y-Z, Li B, Yang S-B. Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium-sulfur batteries. Rare Metals. 2022; 41(1): 311-318.

[137]

Deng N, Liu Y, Yu W, et al. Rational design and preparation of covalent organic frameworks and their functional mechanism analysis for lithium-ion and lithium sulfur/selenium cells. Energy Storage Mater. 2022; 46: 29-67.

[138]

Wei C, Fei H, An Y, Tao Y, Feng J, Qian Y. Uniform Li deposition by regulating the initial nucleation barrier via a simple liquid-metal coating for a dendrite-free Li-metal anode. J Mater Chem A. 2019; 7(32): 18861-18870.

[139]

Sun W, Tang X, Yang Q, et al. Coordination-induced interlinked covalent-and metal-organic-framework hybrids for enhanced lithium storage. Adv Mater. 2019; 31(37): 1903176.

[140]

Ma M, Lu X, Guo Y, Wang L, Liang X. Combination of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs): recent advances in synthesis and analytical applications of MOF/COF composites. TrAC Trends Anal Chem. 2022; 157: 116741.

[141]

Jiang J. Metal-Organic Frameworks: Materials Modeling Towards Engineering Applications. CRC Press; 2015.

[142]

Zheng Y, Khan NA, Ni X, et al. Emerging covalent triazine framework-based nanomaterials for electrochemical energy storage and conversion. Chem Commun. 2023; 59(42): 6314-6334.

[143]

Nabeela K, Deka R, Abbas Z, Kumar P, Saraf M, Mobin SM. Covalent organic frameworks (COFs)/MXenes heterostructures for electrochemical energy storage. Cryst Growth Des. 2023; 23(5): 3057-3078.

[144]

Yang Y, Yang H, Wang X, Bai Y, Wu C. Multivalent metal-sulfur batteries for green and cost-effective energy storage: current status and challenges. J Energy Chem. 2022; 64: 144-165.

[145]

Wang YX, Lai WH, Wang YX, et al. Sulfur-based electrodes that function via multielectron reactions for room-temperature sodium-ion storage. Angew Chem Int Ed. 2019; 58(51): 18324-18337.

[146]

Zhao J, Xiao YY, Liu Q, Wu J, Jiang ZC, Zeng H. The rise of multivalent metal-sulfur batteries: advances, challenges, and opportunities. Adv Funct Mater. 2024;2405358.

[147]

Lin L, Zhang C, Huang Y, et al. Challenge and strategies in room temperature sodium-sulfur batteries: a comparison with lithium-sulfur batteries. Small. 2022; 18(43): 2107368.

[148]

Yin C, Li Z, Zhao D, et al. Azo-branched covalent organic framework thin films as active separators for superior sodium-sulfur batteries. ACS Nano. 2022; 16(9): 14178-14187.

[149]

Cao Y, Wang M, Wang H, Han C, Pan F, Sun J. Covalent organic framework for rechargeable batteries: mechanisms and properties of ionic conduction. Adv Energy Mater. 2022; 12(20): 2200057.

[150]

Chen S, Liang L, Li Y, et al. Brain capillary-inspired self-assembled covalent organic framework membrane for sodium-sulfur battery separator. Adv Energy Mater. 2023; 13(11): 2204334.

[151]

Zhang Y, Guo C, Zhou L, et al. Application of covalent organic frameworks in sulfur-based battery separators. Small Sci. 2023; 3(10): 2300056.

[152]

Ma J, Wang M, Zhang H, et al. Toward the advanced next-generation solid-state Na-S batteries: progress and prospects. Adv Funct Mater. 2023; 33(20): 2214430.

[153]

Xiong Z, Nie X, Zhang B, Wei Z. Na2S cathodes enabling safety room temperature sodium sulfur batteries. Batteries Supercaps. 2024; 7(1): e202300503.

[154]

Eftekhari A, Kim D-W. Sodium-ion batteries: new opportunities beyond energy storage by lithium. J Power Sources. 2018; 395: 336-348.

[155]

Zhao Y, Mamrol N, Tarpeh WA, Yang X, Gao C, Van der Bruggen B. Advanced ion transfer materials in electro-driven membrane processes for sustainable ion-resource extraction and recovery. Prog Mater Sci. 2022; 128: 100958.

[156]

Patra BC, Das SK, Ghosh A, et al. Covalent organic framework based microspheres as an anode material for rechargeable sodium batteries. J Mater Chem A. 2018; 6(34): 16655-16663.

[157]

Li J, Jing X, Li Q, et al. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem Soc Rev. 2020; 49(11): 3565-3604.

[158]

Kim M-S, Lee W-J, Paek S-M, Park JK. Covalent organic nanosheets as effective sodium-ion storage materials. ACS Appl Mater Interfaces. 2018; 10(38): 32102-32111.

[159]

Zhou T, Gui C, Sun L, et al. Energy applications of ionic liquids: recent developments and future prospects. Chem Rev. 2023; 123(21): 12170-12253.

[160]

Gu S, Wu S, Cao L, et al. Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries. J Am Chem Soc. 2019; 141(24): 9623-9628.

[161]

Liu S, Kang L, Jun SC. Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries. Adv Mater. 2021; 33(47): 2004689.

[162]

Giraldo F. Unveiling Cathodic and Anodic Materials for Potassium-Based Batteries. Politecnico di Torino; 2021.

[163]

Zhao L, Zheng L, Li X, et al. Cobalt coordinated cyano covalent-organic framework for high-performance potassium-organic batteries. ACS Appl Mater Interfaces. 2021; 13(41): 48913-48922.

[164]

Su Z, Huang J, Wang R, et al. Multilayer structure covalent organic frameworks (COFs) linking by double functional groups for advanced K+ batteries. J Colloid Interface Sci. 2023; 639: 7-13.

[165]

Qi F, Shao L, Lu X, Liu G, Shi X, Sun Z. MXene-derived TiSe2/TiO2/C heterostructured hexagonal prisms as high rate anodes for Na-ion and K-ion batteries. Appl Surf Sci. 2022; 605: 154653.

[166]

Rahman M, Al Mamun MS. Future prospects of MXenes: synthesis, functionalization, properties, and application in field effect transistors. Nanoscale Adv. 2024; 6(2): 367-385.

[167]

Wang W, Liu C, Zhang M, et al. In situ synthesis of 2D/2D MXene-COF heterostructure anchored with Ag nanoparticles for enhancing Schottky photocatalytic antibacterial efficiency under visible light. J Colloid Interface Sci. 2022; 608: 735-748.

[168]

Sai Bhargava Reddy M, Aich S. Recent progress in surface and heterointerface engineering of 2D MXenes for gas sensing applications. Coord Chem Rev. 2024; 500: 215542.

[169]

Ramezanzadeh M, Ramezanzadeh B. Covalent organic framework (COF)-decorated NH2-functionalized MXene sheets for thermomechanical and UV-shielding performance of epoxy nanocomposite coatings. Colloids Surf A. 2024; 683: 133010.

[170]

Zhao Y, Hu K, Yang C, et al. Covalent organic framework@Ti3C2Tx composite as solid phase microextraction coating for the determination of polycyclic aromatic hydrocarbons in honey samples. Anal Chim Acta. 2023; 1237: 340581.

[171]

Jiang L, Zhang Y, Huang S, et al. Covalent organic framework modified magnetic MXene for high enrichment and sensitive detection of polycyclic and sulfur-containing heterocyclic aromatic hydrocarbons in Chinese tea samples. J Clean Prod. 2024; 439: 140910.

[172]

Wang J, Xu X, Zhou Y, Ma W, Wang F, Men X. A robust COF@MXene membrane for ultra-high flux of water-in-oil emulsion separation. Chem Commun (Camb). 2023; 59(57): 8858-8861.

[173]

Qu Y, Liu Y, Du X, et al. Photocatalytic and fouling resistant MXene/3D-S-COF for efficient oil-water emulsion separation. Sep Purif Technol. 2025; 352: 128242.

[174]

Zheng Y, Zhang H, Yu S, Zhou H, Chen W, Yang J. Covalently bridged MXene/COF hybrid membrane toward efficient dye separation. Sep Purif Technol. 2024; 349: 127908.

[175]

Gong X, Zhang G, Dong H, Wang H, Nie J, Ma G. Self-assembled hierarchical heterogeneous MXene/COF membranes for efficient dye separations. J Membr Sci. 2022; 657: 120667.

[176]

Tunesi MM, Soomro RA, Han X, Zhu Q, Wei Y, Xu B. Application of MXenes in environmental remediation technologies. Nano Converg. 2021; 8(1): 5.

[177]

Wu X, Wang Y, Wu Z-S. Recent advancement and key opportunities of MXenes for electrocatalysis. iScience. 2024; 27(2): 108906.

[178]

Wang J, Yang G, Jiao Y, Yan H, Fu H. Subtle 2D/2D MXene-based heterostructures for high-performance electrocatalytic water splitting. Small Methods. 2024; 9(2): 2301602.

[179]

Xu D, Jin Y, Li C, et al. COF/MXene composite membranes compact assembled by electrostatic interactions: a strategy for H2/CO2 separation. J Membr Sci. 2024; 700: 122678.

[180]

Zhou L, Tian Q, Shang X, et al. Heterostructure construction of covalent organic frameworks/Ti3C2-MXene for high-efficiency electrocatalytic CO2 reduction. Green Chem. 2024; 26(3): 1454-1461.

[181]

He H, Wen H-M, Li H-K, et al. Hydrophobicity tailoring of ferric covalent organic framework/MXene nanosheets for high-efficiency nitrogen electroreduction to ammonia. Adv Sci. 2023; 10(15): 2206933.

[182]

Yue L, Chen L, Wang X, et al. Ni/Co-MOF@aminated MXene hierarchical electrodes for high-stability supercapacitors. Chem Eng J. 2023; 451: 138687.

[183]

Zong H, Gong S, Yu K, Zhu Z. Ni-doped Ti3CNTx-coated nanoporous covalent organic frameworks to accelerate hydrogen diffusion for enhanced hydrogen evolution. ACS Appl Nano Mater. 2022; 5(10): 15042-15052.

[184]

Ma C, He H, Qin J, et al. The marriage of hydrazone-linked covalent organic frameworks and MXene enables efficient electrocatalytic hydrogen evolution. Small Struct. 2024; 5(1): 2300279.

[185]

Wu Z, Zhao Y, Li Y, et al. Hybridization of MXene and covalent organic frameworks as electroactive materials for Li-S batteries and oxygen electrocatalysis. Mater Chem Front. 2024; 8: 2788-2801.

[186]

Zong H, Liu W, Li M, Gong S, Yu K, Zhu Z. Oxygen-terminated Nb2CO2 MXene with interfacial self-assembled COF as a bifunctional catalyst for durable zinc-air batteries. ACS Appl Mater Interfaces. 2022; 14(8): 10738-10746.

[187]

Wei P, Dong J, Gao X, et al. Efficient NADH regeneration without electron mediator toward enzymatic CO2 reduction enabled by a Lawn-like TP-COFs/Ti3C2Tx (MXene) photocatalyst. ACS Sustain Chem Eng. 2024; 12(18): 6881-6893.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

3

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/