Semiconductor-to-metal transition in platinum dichalcogenides induced by niobium dichalcogenides

Lei Zhang , Xin Zhou , Tong Yang , Yuan Chen , Fangjie Wang , Haoge Cheng , Dechun Zhou , Goki Eda , Zheng Liu , Andrew T. S. Wee

InfoMat ›› 2025, Vol. 7 ›› Issue (6) : e70010

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (6) : e70010 DOI: 10.1002/inf2.70010
RESEARCH ARTICLE

Semiconductor-to-metal transition in platinum dichalcogenides induced by niobium dichalcogenides

Author information +
History +
PDF

Abstract

Metallizing 2D semiconductors is a crucial research area with significant applications, such as reducing the contact resistance at metal/2D semiconductor interfaces. This is a key challenge in the realization of next-generation low-power and high-performance devices. While various methods exist for metallizing Mo- and W-based 2D semiconductors like MoS2 and WSe2, effective approaches for Pt-based ones have been lacking. This study demonstrates that platinum dichalcogenides (PtX2, X = Se or Te) undergo a semiconductor-to-metal transition when grown on niobium dichalcogenides (NbX2, X = Se or Te). PtX2/NbX2 heterostructures were fabricated using molecular beam epitaxy (MBE) and characterized by Raman spectra, scanning transmission electron microscopy (STEM) and scanning tunneling microscopy/spectroscopy (STM/STS). Raman spectra and STEM confirm the growth of 1T-phase PtX2 and 1H-phase NbX2. Both 2D STS mapping and layer-dependent STS show that regardless of their layer numbers, both pristine semiconducting PtSe2 and PtTe2 are converted to metallic forms when interfacing with NbSe2 or NbTe2. Density functional theory (DFT) calculations suggest that the metallization of PtSe2 on NbX2 and PtTe2 on NbTe2 results from interfacial orbital hybridization, while for PtTe2 on NbSe2, it is due to the strong p-doping effect caused by interfacial charge transfer. Our work provides an effective method for metallizing PtX2 semiconductors, which may lead to significant applications such as reducing the contact resistance at metal electrode/2D semiconductor interfaces and developing devices like rectifiers, rectenna, and photodetectors based on 2D Schottky diodes.

Keywords

density functional theory calculations / niobium dichalcogenides / platinum dichalcogenides / scanning tunneling microscopy/spectroscopy / semiconductor-to-metal transition / two-dimensional materials

Cite this article

Download citation ▾
Lei Zhang, Xin Zhou, Tong Yang, Yuan Chen, Fangjie Wang, Haoge Cheng, Dechun Zhou, Goki Eda, Zheng Liu, Andrew T. S. Wee. Semiconductor-to-metal transition in platinum dichalcogenides induced by niobium dichalcogenides. InfoMat, 2025, 7(6): e70010 DOI:10.1002/inf2.70010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Y, Sarkar S, Yan H, Chhowalla M. Critical challenges in the development of electronics based on two-dimensional transition metal dichalcogenides. Nat Electron. 2024; 7(8): 638-645.

[2]

Zhang X, Liu B, Gao L, et al. Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions. Nat Commun. 2021; 12(1): 1522.

[3]

Liu Q, Li JJ, Wu D, et al. Gate-controlled reversible rectifying behavior investigated in a two-dimensional MoS2 diode. Phys Rev B. 2021; 104(4): 045412.

[4]

Zhang X, Grajal J, Vazquez-Roy JL, et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature. 2019; 566(7744): 368-372.

[5]

Gao Z, Zhou Z, Tománek D. Degenerately doped transition metal dichalcogenides as ohmic homojunction contacts to transition metal dichalcogenide semiconductors. ACS Nano. 2019; 13(5): 5103-5111.

[6]

Hemanjaneyulu K, Kumar J, Shrivastava M. MoS2 doping using potassium iodide for reliable contacts and efficient FET operation. IEEE Trans Electron Devices. 2019; 66(7): 3224-3228.

[7]

Fang H, Tosun M, Seol G, et al. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013; 13(5): 1991-1995.

[8]

Jiang J, Xu L, Du L, et al. Yttrium-doping-induced metallization of molybdenum disulfide for ohmic contacts in two-dimensional transistors. Nat Electron. 2024; 7(7): 545-556.

[9]

Kappera R, Voiry D, Yalcin SE, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater. 2014; 13(12): 1128-1134.

[10]

Zhu J, Wang Z, Yu H, et al. Argon plasma induced phase transition in monolayer MoS2. J Am Chem Soc. 2017; 139(30): 10216-10219.

[11]

Gan X, Lee LYS, Wong KY, et al. 2H/1T phase transition of multilayer MoS2 by electrochemical incorporation of S vacancies. ACS Appl Energy Mater. 2018; 1(9): 4754-4765.

[12]

Kappera R, Voiry D, Yalcin SE, et al. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. APL Mater. 2014; 2(9): 092516.

[13]

Xu X, Liu S, Han B, et al. Scaling-up atomically thin coplanar semiconductor-metal circuitry via phase engineered chemical assembly. Nano Lett. 2019; 19(10): 6845-6852.

[14]

Ma R, Zhang H, Yoo Y, et al. MoTe2 lateral homojunction field-effect transistors fabricated using flux-controlled phase engineering. ACS Nano. 2019; 13(7): 8035-8046.

[15]

Zhang X, Jin Z, Wang L, et al. Low contact barrier in 2H/1T′ MoTe2 in-plane heterostructure synthesized by chemical vapor deposition. ACS Appl Mater Interfaces. 2019; 11(13): 12777-12785.

[16]

Lee RS, Kim D, Pawar SA, Kim TW, Shin JC, Kang SW. Van der Waals epitaxy of high-mobility polymorphic structure of Mo6Te6 nanoplates/MoTe2 atomic layers with low Schottky barrier height. ACS Nano. 2019; 13(1): 642-648.

[17]

Shen PC, Su C, Lin Y, et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature. 2021; 593(7858): 211-217.

[18]

Chou AS, Wu T, Cheng CC, et al. Antimony semimetal contact with enhanced thermal stability for high performance 2D electronics. IEEE Int Electron Devices Meet. 2021; IEDM21: 150-153.

[19]

Li W, Gong X, Yu Z, et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature. 2023; 613(7943): 274-279.

[20]

Pi L, Li L, Liu K, Zhang Q, Li H, Zhai T. Recent progress on 2D noble-transition-metal dichalcogenides. Adv Funct Mater. 2019; 29(51): 1904932.

[21]

Mu H, Yuan J, Lin S. Two-dimensional group-10 noble-transition-metal dichalcogenides photodetector. Light-Emitting Diodes and Photodetectors-Advances and Future Directions. IntechOpen; 2021.

[22]

Wang Y, Zhou L, Zhong M, Liu Y, Xiao S, He J. Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: status and prospects. Nano Res. 2022; 15(4): 3675-3694.

[23]

Zhao Y, Qiao J, Yu P, et al. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv Mater. 2016; 28(12): 2399-2407.

[24]

Oyedele AD, Yang S, Liang L, et al. PdSe2: pentagonal two-dimensional layers with high air stability for electronics. J Am Chem Soc. 2017; 139(40): 14090-14097.

[25]

Zhang G, Amani M, Chaturvedi A, et al. Optical and electrical properties of two-dimensional palladium diselenide. Appl Phys Lett. 2019; 114(25): 253102.

[26]

Xie C, Jiang S, Gao Y, et al. Giant thickness-tunable bandgap and robust air stability of 2D palladium diselenide. Small. 2020; 16(19): 2000754.

[27]

Zeng LH, Wu D, Lin SH, et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv Funct Mater. 2019; 29(1): 1806878.

[28]

Zhang L, Yang T, Sahdan MF, et al. Precise layer-dependent electronic structure of MBE-grown PtSe2. Adv Electron Mater. 2021; 7(11): 2100559.

[29]

Li J, Kolekar S, Ghorbani-Asl M, et al. Layer-dependent band gaps of platinum dichalcogenides. ACS Nano. 2021; 15(8): 13249-13259.

[30]

Li J, Kolekar S, Xin Y, et al. Thermal phase control of two-dimensional Pt-chalcogenide (Se and Te) ultrathin epitaxial films and nanocrystals. Chem Mater. 2021; 33(20): 8018-8027.

[31]

Zhang L, Yang T, Arramel N, Feng YP, Wee ATS, Wang Z. MBE-grown ultrathin PtTe2 films and their layer-dependent electronic structures. Nanoscale. 2022; 14(20): 7650-7658.

[32]

Lin MK, Villaos RAB, Hlevyack JA, et al. Dimensionality-mediated semimetal-semiconductor transition in ultrathin PtTe2 films. Phys Rev Lett. 2020; 124(3): 036402.

[33]

Khan A, Din HU, Idrees M, et al. First-principles study of metal-semiconductor contact between MX2 (M = Nb, Pt; X = S, Se) monolayers. Phys Lett A. 2019; 383(30): 125867.

[34]

Ryu GH, Chen J, Wen Y, Warner JH. In-situ atomic-scale dynamics of thermally driven phase transition of 2D few-layered 1T PtSe2 into ultrathin 2D nonlayered PtSe crystals. Chem Mater. 2019; 31(23): 9895-9903.

[35]

Zhang K, Wang M, Zhou X, et al. Growth of large scale PtTe, PtTe2 and PtSe2 films on a wide range of substrates. Nano Res. 2021; 14(6): 1663-1667.

[36]

Lasek K, Li J, Ghorbani-Asl M, et al. Formation of in-plane semiconductor-metal contacts in 2D platinum telluride by converting PtTe2 to Pt2Te2. Nano Lett. 2022; 22(23): 9571-9577.

[37]

Lasek K, Ghorbani-Asl M, Pathirage V, Krasheninnikov AV, Batzill M. Controlling stoichiometry in ultrathin van der Waals films: PtTe2, Pt2Te3, Pt3Te4, and Pt2Te2. ACS Nano. 2022; 16(6): 9908-9919.

[38]

Pathirage V, Rajapakse RN, Lasek K, Píš I, Bondino F, Batzill M. Thermal- and air-stability of the compositional variants of van der Waals Pt-telluride thin films probed by high resolution photoemission spectroscopy. Appl Surf Sci. 2024; 644: 158785.

[39]

Ganguli SC, Vaňo V, Kezilebieke S, Lado JL, Liljeroth P. Confinement-engineered superconductor to correlated-insulator transition in a van der Waals monolayer. Nano Lett. 2022; 22(5): 1845-1850.

[40]

Liu M, Leveillee J, Lu S, et al. Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator. Sci Adv. 2021; 7(47): eabi6339.

[41]

Liu L, Yang H, Huang Y, et al. Direct identification of Mott Hubbard band pattern beyond charge density wave superlattice in monolayer 1T-NbSe2. Nat Commun. 2021; 12(1): 1978.

[42]

Nakata Y, Sugawara K, Shimizu R, et al. Monolayer 1T-NbSe2 as a Mott insulator. NPG Asia Mater. 2016; 8(11): e321.

[43]

Taguchi T, Sugawara K, Oka H, et al. Charge order with unusual star-of-David lattice in monolayer NbTe2. Phys Rev B. 2023; 107(4): L041105.

[44]

Bai Y, Jian T, Pan Z, et al. Realization of multiple charge-density waves in NbTe2 at the monolayer limit. Nano Lett. 2023; 23(6): 2107-2113.

[45]

Du M, Cui X, Yoon HH, et al. Switchable photoresponse mechanisms implemented in single van der Waals semiconductor/metal heterostructure. ACS Nano. 2022; 16(1): 568-576.

[46]

Jin H, Wei T, Huang B. Incognizant 1T/1H charge-density-wave phases in monolayer NbTe2. Nano Lett. 2024; 24(35): 10892-10898.

[47]

Naik S, Pradhan GK, Bhat SG, et al. The effect of Sn intercalation on the superconducting properties of 2H-NbSe2. Physica C. 2019; 561: 18-23.

[48]

Xi X, Zhao L, Wang Z, et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat Nanotechnol. 2015; 10(9): 765-769.

[49]

Chen C, Das P, Aytan E, et al. Strain-controlled superconductivity in few-layer NbSe2. ACS Appl Mater Interfaces. 2020; 12(34): 38744-38750.

[50]

Barajas-Aguilar AH, Irwin JC, Garay-Tapia AM, et al. Crystalline structure, electronic and lattice-dynamics properties of NbTe2. Sci Rep. 2018; 8(1): 16984.

[51]

Li S, Dong Q, Feng J, et al. Evolution of structural and electronic properties in NbTe2 under high pressure. Inorg Chem. 2021; 60(11): 7857-7864.

[52]

Jia L, Huo CF, Yan XQ, et al. Ultrafast carrier dynamics in 2D NbTe2 films: implications for photonic and optoelectronic devices. ACS Appl Nano Mater. 2022; 5(12): 17348-17355.

[53]

Yan M, Wang E, Zhou X, et al. High quality atomically thin PtSe2 films grown by molecular beam epitaxy. 2D Mater. 2017; 4(4): 045015.

[54]

O'Brien M, McEvoy N, Motta C, et al. Raman characterization of platinum diselenide thin films. 2D Mater. 2016; 3(2): 021004.

[55]

Ma H, Chen P, Li B, et al. Thickness-tunable synthesis of ultrathin type-II Dirac semimetal PtTe2 single crystals and their thickness-dependent electronic properties. Nano Lett. 2018; 18(6): 3523-3529.

[56]

Yang Y, Zhang K, Zhang L, et al. Controllable growth of type-II Dirac semimetal PtTe2 atomic layer on Au substrate for sensitive room temperature terahertz photodetection. Inf Dent. 2021; 3(6): 705-715.

[57]

Nakata Y, Sugawara K, Ichinokura S, et al. Anisotropic band splitting in monolayer NbSe2: implications for superconductivity and charge density wave. NPJ 2D Mater Appl. 2018; 2(1): 12.

[58]

Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993; 47(1): 558-561.

[59]

Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals. Phys Rev B. 1993; 48(17): 13115-13118.

[60]

Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994; 50(24): 17953-17979.

[61]

Klimeš J, Bowler DR, Michaelides A. Chemical accuracy for the van der Waals density functional. J Phys Condens Matter. 2010; 22(2): 022201.

[62]

Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI. Van der Waals density functional for general geometries. Phys Rev Lett. 2004; 92(24): 246401.

[63]

Román-Pérez G, Soler JM. Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys Rev Lett. 2009; 103(9): 096102.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

5

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/