Artificial synapse-based intelligent light-controlled liquid crystal network actuators

Yuhang Song , Junyao Zhang , Zejun Sun , Haixia Liang , Tongrui Sun , Zhimin Lu , Shucong Li , Yuxing Yao , Xiaoguang Wang , Yang Xu , Jia Huang

InfoMat ›› 2025, Vol. 7 ›› Issue (6) : e70008

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (6) : e70008 DOI: 10.1002/inf2.70008
RESEARCH ARTICLE

Artificial synapse-based intelligent light-controlled liquid crystal network actuators

Author information +
History +
PDF

Abstract

Various forms of intelligent light-controlled soft actuators and robots rely on advanced material architectures and bionic systems to enable programmable remote actuation and multifunctionality. Despite advancements, significant challenges remain in developing actuators and robots that can effectively mimic the low-intensity, wide-wavelength light signal sensing and processing functions observed in living organisms. Herein, we report a design strategy that integrates light-responsive artificial synapses (AS) with liquid crystal networks (LCNs) to create bionic light-controlled LCN soft actuators (AS-LCNs). Remarkably, AS-LCNs can be controlled with light intensities as low as 0.68 mW cm–2, a value comparable to the light intensity perceivable by the human eye. These AS-LCNs can perform programmable intelligent sensing, learning, and memory within a wide wavelength range from 365 nm to 808 nm. Additionally, our system demonstrates time-related proofs of concept for a tachycardia alarm and a porcupine defense behavior simulation. Overall, this work addresses the limitations of traditional light-controlled soft actuators and robots in signal reception and processing, paving the way for the development of intelligent soft actuators and robots that emulate the cognitive abilities of living organisms.

Keywords

actuators / artificial intelligence / artificial synapses / liquid crystal networks / robots

Cite this article

Download citation ▾
Yuhang Song, Junyao Zhang, Zejun Sun, Haixia Liang, Tongrui Sun, Zhimin Lu, Shucong Li, Yuxing Yao, Xiaoguang Wang, Yang Xu, Jia Huang. Artificial synapse-based intelligent light-controlled liquid crystal network actuators. InfoMat, 2025, 7(6): e70008 DOI:10.1002/inf2.70008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ullman S. Using neuroscience to develop artificial intelligence. Science. 2019; 363(6428): 692-693.

[2]

Bag A, Ghosh G, Sultan MJ, et al. Bio-inspired sensory receptors for artificial-intelligence perception. Adv Mater. 2024;2403150.

[3]

Niu H, Li H, Gao S, et al. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv Mater. 2022; 34(31): 2202622.

[4]

Nassi JJ, Callaway EM. Parallel processing strategies of the primate visual system. Nat Rev Neurosci. 2009; 10(5): 360-372.

[5]

Li S, Xiao P, Wang Q, et al. Jellyfish-inspired visual and sensory bubbling robots with automatic 3D morphable films for underwater environmental interactions. ACS Nano. 2024; 18(31): 20694-20705.

[6]

Liang Y, Xiao P, Ni F, et al. Biomimetic underwater self-perceptive actuating soft system based on highly compliant, morphable and conductive sandwiched thin films. Nano Energy. 2021; 81: 105617.

[7]

Kang Z, Yu L, Nie Y, Skowyra M, Zhang S, Skov AL. Fiber-format dielectric elastomer actuators by the meter. Adv Funct Mater. 2024; 34(26): 2314056.

[8]

Yan Q, Ding R, Zheng H, et al. Bio-inspired stimuli-responsive Ti3C2Tx/pnipam anisotropic hydrogels for high-performance actuators. Adv Funct Mater. 2023; 33(34): 2301982.

[9]

Yuk H, Lin S, Ma C, Takaffoli M, Fang NX, Zhao X. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat Commun. 2017; 8(1): 14230.

[10]

Wei J, Li R, Li L, Wang W, Chen T. Touch-responsive hydrogel for biomimetic flytrap-like soft actuator. Nano Micro Lett. 2022; 14(1): 182.

[11]

Ni C, Chen D, Yin Y, et al. Shape memory polymer with programmable recovery onset. Nature. 2023; 622(7984): 748-753.

[12]

Nie Z-Z, Wang M, Huang S, Liu Z-Y, Yang H. Multimodal self-sustainable autonomous locomotions of light-driven seifert ribbon actuators based on liquid crystal elastomers. Angew Chem Int Ed. 2023; 62(25): e202304081.

[13]

Hebner TS, Korner K, Bowman CN, Bhattacharya K, White TJ. Leaping liquid crystal elastomers. Sci Adv. 2023; 9(3): eade1320.

[14]

Lyu P, Broer DJ, Liu D. Advancing interactive systems with liquid crystal network-based adaptive electronics. Nat Commun. 2024; 15(1): 4191.

[15]

Kim YB, Yang S, Kim DS. Sidewinder-inspired self-adjusting, lateral-rolling soft robots for autonomous terrain exploration. Adv Sci. 2024; 11(14): 2308350.

[16]

Wang Y, He Q, Wang Z, et al. Liquid crystal elastomer based dexterous artificial motor unit. Adv Mater. 2023; 35(17): 2211283.

[17]

Leanza S, Lu-Yang J, Kaczmarski B, Wu S, Kuhl E, Zhao RR. Elephant trunk inspired multimodal deformations and movements of soft robotic arms. Adv Funct Mater. 2024; 34(29): 2400396.

[18]

Kotikian A, Morales JM, Lu A, et al. Innervated, self-sensing liquid crystal elastomer actuators with closed loop control. Adv Mater. 2021; 33(27): 2101814.

[19]

Qing H, Chi Y, Hong Y, et al. Fully 3D-printed miniature soft hydraulic actuators with shape memory effect for morphing and manipulation. Adv Mater. 2024; 36(36): 2402517.

[20]

Yang Q, Peng C, Ren J, et al. A near-infrared photoactuator based on shape memory semicrystalline polymers toward light-fueled crane, grasper, and walker. Adv Opt Mater. 2019; 7(21): 1900784.

[21]

Xia Y, He Y, Zhang F, Liu Y, Leng J. A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv Mater. 2021; 33(6): 2000713.

[22]

Xu Z, Ding C, Wei D-W, et al. Electro and light-active actuators based on reversible shape-memory polymer composites with segregated conductive networks. ACS Appl Mater Interfaces. 2019; 11(33): 30332-30340.

[23]

Ilami M, Bagheri H, Ahmed R, Skowronek EO, Marvi H. Materials, actuators, and sensors for soft bioinspired robots. Adv Mater. 2021; 33(19): 2003139.

[24]

Yu Z, Li L, Mou F, et al. Swarming magnetic photonic-crystal microrobots with on-the-fly visual pH detection and self-regulated drug delivery. InfoMat. 2023; 5(10): e12464.

[25]

Lee YJ, Abdelrahman MK, Kalairaj MS, Ware TH. Self-assembled microactuators using chiral liquid crystal elastomers. Small. 2023; 19(41): 2302774.

[26]

Duan S, Wei X, Weng M, et al. Venus flytrap-inspired data-center-free fast-responsive soft robots enabled by 2D Ni3(HITP)2 MOF and graphite. Adv Mater. 2024; 36(28): 2313089.

[27]

Wani OM, Zeng H, Priimagi A. A light-driven artificial flytrap. Nat Commun. 2017; 8(1): 15546.

[28]

Chen J, Jiang J, Weber J, Gimenez-Pinto V, Peng C. Shape morphing by topological patterns and profiles in laser-cut liquid crystal elastomer kirigami. ACS Appl Mater Interfaces. 2023; 15(3): 4538-4548.

[29]

Babakhanova G, Turiv T, Guo Y, et al. Liquid crystal elastomer coatings with programmed response of surface profile. Nat Commun. 2018; 9(1): 456.

[30]

Zhang H, Zeng H, Priimagi A, Ikkala O. Viewpoint: Pavlovian materials—functional biomimetics inspired by classical conditioning. Adv Mater. 2020; 32(20): 1906619.

[31]

Zhang H, Zeng H, Priimagi A, Ikkala O. Programmable responsive hydrogels inspired by classical conditioning algorithm. Nat Commun. 2019; 10(1): 3267.

[32]

Yu JJ, Liang LY, Hu LX, et al. Optoelectronic neuromorphic thin-film transistors capable of selective attention and with ultra-low power dissipation. Nano Energy. 2019; 62: 772-780.

[33]

Park H-L, Kim H, Lim D, et al. Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv Mater. 2020; 32(11): 1906899.

[34]

Wang Y, Yin L, Huang W, et al. Optoelectronic synaptic devices for neuromorphic computing. Adv Intell Syst. 2021; 3(1): 2000099.

[35]

Wang G, Wang R, Kong W, Zhang J. Simulation of retinal ganglion cell response using fast independent component analysis. Cogn Neurodyn. 2018; 12(6): 615-624.

[36]

Wang S, Chen H, Liu T, et al. Retina-inspired organic photonic synapses for selective detection of swir light. Angew Chem Int Ed. 2023; 62(6): e202213733.

[37]

Zhang C, Xu F, Zhao X, et al. Natural polyelectrolyte-based ultraflexible photoelectric synaptic transistors for hemispherical high-sensitive neuromorphic imaging system. Nano Energy. 2022; 95: 107001.

[38]

Zhang Y, Huang Z, Jiang J. Emerging photoelectric devices for neuromorphic vision applications: principles, developments, and outlooks. Sci Technol Adv Mater. 2023; 24(1): 2186689.

[39]

Janipour Shahroudkolaei M, Mredha MTI, Chuang KC, Jeon I. Hofmeister-effect-driven hybrid glycerogels for perfect wide-temperature shape fixity and shape recovery in soft robotics applications. Small. 2024; 20(38): e2400567.

[40]

Li ZW, Ye ZY, Han LL, et al. Polarization-modulated multidirectional photothermal actuators. Adv Mater. 2021; 33(3): 2006367.

[41]

Skillin NP, Bauman GE, Kirkpatrick BE, et al. Photothermal actuation of thick 3D-printed liquid crystalline elastomer nanocomposites. Adv Mater. 2024; 36(34): 2313745.

[42]

Zhu QL, Liu W, Khoruzhenko O, et al. Closed twisted hydrogel ribbons with self-sustained motions under static light irradiation. Adv Mater. 2024; 36(28): 2314152.

[43]

Zhang Z, Zhang F, Jian W, Chen Y, Feng X. Photothermal-responsive lightweight hydrogel actuator loaded with polydopamine-modified hollow glass microspheres. ACS Appl Mater Interfaces. 2024; 16(18): 23914-23923.

[44]

Li X, Ding X, Du Y, et al. Rapidly responsive liquid metal/polyimide photothermal actuators designed based on the bilayer structure difference in coefficient of thermal expansion. J Mater Chem C. 2022; 10(38): 14255-14264.

[45]

Zhou X, Ikura R, Jin C, Yamaoka K, Park J, Takashima Y. Supramolecular photoresponsive polyurethane with movable crosslinks based on photoisomerization of azobenzene. Aggregate. 2024; 5(2): e457.

[46]

Li S, Lerch MM, Waters JT, et al. Self-regulated non-reciprocal motions in single-material microstructures. Nature. 2022; 605(7908): 76-83.

[47]

Lv J-a, Liu Y, Wei J, Chen E, Qin L, Yu Y. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature. 2016; 537(7619): 179-184.

[48]

Yu Y, Nakano M, Ikeda T. Directed bending of a polymer film by light. Nature. 2003; 425(6954): 145.

[49]

Waters JT, Li S, Yao Y, et al. Twist again: dynamically and reversibly controllable chirality in liquid crystalline elastomer microposts. Sci Adv. 2020; 6(13): eaay5349.

[50]

Yang J, Shankar MR, Zeng H. Photochemically responsive polymer films enable tunable gliding flights. Nat Commun. 2024; 15(1): 4684.

[51]

Zuo B, Wang M, Lin B-P, Yang H. Visible and infrared three-wavelength modulated multi-directional actuators. Nat Commun. 2019; 10(1): 4539.

[52]

Feng W, He Q, Zhang L. Embedded physical intelligence in liquid crystalline polymer actuators and robots. Adv Mater. 2025; 37(2): 2312313.

[53]

Tan Y, Hao H, Chen Y, et al. A bioinspired retinomorphic device for spontaneous chromatic adaptation. Adv Mater. 2022; 34(51): 2206816.

[54]

Kyuma K, Lange E, Ohta J, Hermanns A, Banish B, Oita M. Artificial retinas—fast, versatile image processors. Nature. 1994; 372(6502): 197-198.

[55]

McCollough C. Color adaptation of edge-detectors in the human visual system. Science. 1965; 149(3688): 1115-1116.

[56]

Seo S, Jo S-H, Kim S, et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat Commun. 2018; 9(1): 5106.

[57]

Qu S, Sun L, Zhang S, et al. An artificially-intelligent cornea with tactile sensation enables sensory expansion and interaction. Nat Commun. 2023; 14(1): 7181.

[58]

Chen X, Chen B, Jiang B, et al. Nanowires for UV-vis-IR optoelectronic synaptic devices. Adv Funct Mater. 2023; 33(1): 2208807.

[59]

Lai Q, Zhang L, Li Z, Stickle WF, Williams RS, Chen Y. Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions. Adv Mater. 2010; 22(22): 2448-2453.

[60]

Zhang J, Guo P, Guo Z, et al. Retina-inspired artificial synapses with ultraviolet to near-infrared broadband responses for energy-efficient neuromorphic visual systems. Adv Funct Mater. 2023; 33(32): 2302885.

[61]

Zhang S, Chen R, Kong D, et al. Photovoltaic nanocells for high-performance large-scale-integrated organic phototransistors. Nat Nanotechnol. 2024; 19(9): 1323-1332.

[62]

Wang S, Chen C, Yu Z, et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv Mater. 2019; 31(3): 1806227.

[63]

Wang C, Bian Y, Liu K, et al. Strain-insensitive viscoelastic perovskite film for intrinsically stretchable neuromorphic vision-adaptive transistors. Nat Commun. 2024; 15(1): 3123.

[64]

Xie D, Li Y, He J, Jiang J. 0D-carbon-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor for emulating pulsatile photoelectric therapy of visual amnesic behaviors. Sci China Mater. 2023; 66(12): 4814-4824.

[65]

Zhang Y, Pei J, Huang Z, Jiang L, Yin K, Jiang J. Maskless femtosecond-laser-processed ionotronic double-gate transistor array for pattern adaptation emulation. Adv Funct Mater. 2024; 34(34): 2400822.

[66]

Huang Z, Tong C, Zhao Y, et al. An Au25 nanocluster/MoS2 vdwaals heterojunction phototransistor for chromamorphic visual-afterimage emulation. Nanoscale. 2024; 16(36): 17064-17078.

[67]

Huang Z, Li Y, Zhang Y, Chen J, He J, Jiang J. 2D multifunctional devices: from material preparation to device fabrication and neuromorphic applications. Int J Extrem Manuf. 2024; 6(3): 032003.

[68]

Ilyas N, Wang J, Li C, et al. Nanostructured materials and architectures for advanced optoelectronic synaptic devices. Adv Funct Mater. 2022; 32(15): 2110976.

[69]

Tee BC-K, Chortos A, Berndt A, et al. A skin-inspired organic digital mechanoreceptor. Science. 2015; 350(6258): 313-316.

[70]

Cho SW, Kwon SM, Kim Y-H, Park SK. Recent progress in transistor-based optoelectronic synapses: from neuromorphic computing to artificial sensory system. Adv Intell Syst. 2021; 3(6): 2000162.

[71]

Zhou F, Liu Y, Shen X, Wang M, Yuan F, Chai Y. Low-voltage, optoelectronic CH3NH3PbI3−xClx memory with integrated sensing and logic operations. Adv Funct Mater. 2018; 28(15): 1800080.

[72]

Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol. 2002; 64(1): 355-405.

[73]

Liu Z, Dai S, Wang Y, et al. Photoresponsive transistors based on lead-free perovskite and carbon nanotubes. Adv Funct Mater. 2020; 30(3): 1906335.

[74]

Li J, Yang Y, Yin M, Sun X, Li L, Huang R. Electrochemical and thermodynamic processes of metal nanoclusters enabled biorealistic synapses and leaky-integrate-and-fire neurons. Mater Horiz. 2020; 7(1): 71-81.

[75]

Feng W, Chu L, de Rooij MB, Liu D, Broer DJ. Photoswitching between water-tolerant adhesion and swift release by inverting liquid crystal fingerprint topography. Adv Sci. 2021; 8(8): 2004051.

[76]

Xu Y, Dupont RL, Yao Y, Zhang M, Fang J-C, Wang X. Random liquid crystalline copolymers consisting of prolate and oblate liquid crystal monomers. Macromolecules. 2021; 54(12): 5376-5387.

[77]

Pranda PA, Hedegaard A, Kim H, et al. Directional adhesion of monodomain liquid crystalline elastomers. ACS Appl Mater Interfaces. 2024; 16(5): 6394-6402.

[78]

Yao Y, Bennett RKA, Xu Y, et al. Wettability-based ultrasensitive detection of amphiphiles through directed concentration at disordered regions in self-assembled monolayers. Proc Natl Acad Sci. 2022; 119(43): e2211042119.

[79]

Yao T, Kos Ž, Zhang QX, et al. Nematic colloidal micro-robots as physically intelligent systems. Adv Funct Mater. 2022; 32(44): 2205546.

[80]

Herbert KM, Fowler HE, McCracken JM, Schlafmann KR, Koch JA, White TJ. Synthesis and alignment of liquid crystalline elastomers. Nat Rev Mater. 2022; 7(1): 23-38.

[81]

White TJ, Broer DJ. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater. 2015; 14(11): 1087-1098.

[82]

Born M, Wolf E. Foundations of geometrical optics. Principles of Optics: 60th Anniversary Edition. 7th ed. Cambridge University Press; 2019: 116-141.

[83]

Martinez AP, Ng A, Nah SH, Yang S. Active-textile yarns and embroidery enabled by wet-spun liquid crystalline elastomer filaments. Adv Funct Mater. 2024; 34(34): 2400742.

[84]

Kotikian A, Truby RL, Boley JW, White TJ, Lewis JA. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv Mater. 2018; 30(10): 1706164.

[85]

Ebbinghaus H. Memory: A Contribution to Experimental Psychology. Vol 128. Teachers College Press; 1913.

[86]

Ferrari R, Fox K. Heart rate reduction in coronary artery disease and heart failure. Nat Rev Cardiol. 2016; 13(8): 493-501.

[87]

Sydó N, Abdelmoneim SS, Allison TG. The relationship between exercise heart rate and age in men versus women. J Am Coll Cardiol. 2014; 63(12 Suppl): A1655.

[88]

Wiedenmayer CP. Plasticity of defensive behavior and fear in early development. Neurosci Biobehav Rev. 2009; 33(3): 432-441.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

3

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/