Advancing perovskite photovoltaic technology through machine learning-driven automation

Jiyun Zhang , Jianchang Wu , Vincent M. Le Corre , Jens A. Hauch , Yicheng Zhao , Christoph J. Brabec

InfoMat ›› 2025, Vol. 7 ›› Issue (5) : e70005

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (5) : e70005 DOI: 10.1002/inf2.70005
REVIEW ARTICLE

Advancing perovskite photovoltaic technology through machine learning-driven automation

Author information +
History +
PDF

Abstract

Since its emergence in 2009, perovskite photovoltaic technology has achieved remarkable progress, with efficiencies soaring from 3.8% to over 26%. Despite these advancements, challenges such as long-term material and device stability remain. Addressing these challenges requires reproducible, user-independent laboratory processes and intelligent experimental preselection. Traditional trial-and-error methods and manual analysis are inefficient and urgently need advanced strategies. Automated acceleration platforms have transformed this field by improving efficiency, minimizing errors, and ensuring consistency. This review summarizes recent developments in machine learning-driven automation for perovskite photovoltaics, with a focus on its application in new transport material discovery, composition screening, and device preparation optimization. Furthermore, the review introduces the concept of the self-driven Autonomous Material and Device Acceleration Platforms (AMADAP) laboratory and discusses potential challenges it may face. This approach streamlines the entire process, from material discovery to device performance improvement, ultimately accelerating the development of emerging photovoltaic technologies.

Keywords

automation / device acceleration platforms / machine learning / materials acceleration platforms / perovskite solar cells / self-driving laboratory

Cite this article

Download citation ▾
Jiyun Zhang, Jianchang Wu, Vincent M. Le Corre, Jens A. Hauch, Yicheng Zhao, Christoph J. Brabec. Advancing perovskite photovoltaic technology through machine learning-driven automation. InfoMat, 2025, 7(5): e70005 DOI:10.1002/inf2.70005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009; 131(17): 6050-6051.

[2]

Chen H, Liu C, Xu J, et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science. 2024; 384(6692): 189-193.

[3]

Zhou J, Tan L, Liu Y, et al. Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material. Joule. 2024; 8(6): 1691-1706.

[4]

Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater. 2014; 13(9): 897.

[5]

Jeon NJ, Noh JH, Yang WS, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature. 2015; 517(7535): 476-480.

[6]

Tang S, Deng Y, Zheng X, et al. Composition engineering in doctor-blading of perovskite solar cells. Adv Energy Mater. 2017; 7(18): 1700302.

[7]

Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photon. 2014; 8(7): 506-514.

[8]

Nie W, Tsai H, Asadpour R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science. 2015; 347(6221): 522-525.

[9]

Du T, Rehm V, Qiu S, et al. Precursor-engineered volatile inks enable reliable blade-coating of cesium-formamidinium perovskites toward fully printed solar modules. Adv Sci. 2024; 11(28): 2401783.

[10]

Polman A, Knight M, Garnett EC, Ehrler B, Sinke WC. Photovoltaic materials: present efficiencies and future challenges. Science. 2016; 352(6283): aad4424.

[11]

Rong Y, Hu Y, Mei A, et al. Challenges for commercializing perovskite solar cells. Science. 2018; 361(6408): eaat8235.

[12]

Leijtens T, Bush KA, Prasanna R, McGehee MD. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy. 2018; 3(10): 828-838.

[13]

Fang Z, Yan N, Liu S. Modulating preferred crystal orientation for efficient and stable perovskite solar cells—from progress to perspectives. Inf Dent. 2022; 4(10): e12369.

[14]

Luo J, Liu B, Yin H, et al. Polymer-acid-metal quasi-ohmic contact for stable perovskite solar cells beyond a 20,000-hour extrapolated lifetime. Nat Commun. 2024; 15(1): 2002.

[15]

Qin J, Che Z, Kang Y, et al. Towards operation-stabilizing perovskite solar cells: fundamental materials, device designs, and commercial applications. InfoMat. 2024; 6(4): e12522.

[16]

Meng W, Xu J, Dong L, et al. An innovative anode Interface combination for perovskite solar cells with improved efficiency, stability, and reproducibility. Solar RRL. 2022; 6(8): 2200378.

[17]

Tabor DP, Roch LM, Saikin SK, et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat Rev Mater. 2018; 3(5): 5-20.

[18]

Liu Z, Rolston N, Flick AC, et al. Machine learning with knowledge constraints for process optimization of open-air perovskite solar cell manufacturing. Joule. 2022; 6(4): 834-849.

[19]

Correa-Baena J-P, Hippalgaonkar K, van Duren J, et al. Accelerating materials development via automation, machine learning, and high-performance computing. Joule. 2018; 2(8): 1410-1420.

[20]

Stein HS, Gregoire JM. Progress and prospects for accelerating materials science with automated and autonomous workflows. Chem Sci. 2019; 10(42): 9640-9649.

[21]

MacLeod BP, Parlane FGL, Brown AK, Hein JE, Berlinguette CP. Flexible automation accelerates materials discovery. Nat Mater. 2022; 21(7): 722-726.

[22]

Leong CJ, Low KYA, Recatala-Gomez J, et al. An object-oriented framework to enable workflow evolution across materials acceleration platforms. Matter. 2022; 5(10): 3124-3134.

[23]

Flores-Leonar MM, Mejía-Mendoza LM, Aguilar-Granda A, et al. Materials acceleration platforms: on the way to autonomous experimentation. Curr Opin Green Sustain Chem. 2020; 25: 100370.

[24]

Epps RW, Volk AA, Ibrahim MY, Abolhasani M. Universal self-driving laboratory for accelerated discovery of materials and molecules. Chem. 2021; 7(10): 2541-2545.

[25]

Attia PM, Grover A, Jin N, et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature. 2020; 578(7795): 397-402.

[26]

Bédard A-C, Adamo A, Aroh KC, et al. Reconfigurable system for automated optimization of diverse chemical reactions. Science. 2018; 361(6408): 1220-1225.

[27]

Schneider G. Automating drug discovery. Nat Rev Drug Discov. 2018; 17(2): 97-113.

[28]

Terayama K, Sumita M, Tamura R, Tsuda K. Black-box optimization for automated discovery. Acc Chem Res. 2021; 54(6): 1334-1346.

[29]

Xu Z, Chin S-H, Park B-I, et al. Advancing perovskite solar cell commercialization: bridging materials, vacuum deposition, and AI-assisted automation. Next Mater. 2024; 3: 100103.

[30]

Chen S, Hou Y, Chen H, et al. Exploring the stability of novel wide bandgap perovskites by a robot based high throughput approach. Adv Energy Mater. 2018; 8(6): 1701543.

[31]

Zhang J, Hauch JA, Brabec CJ. Toward self-driven autonomous material and device acceleration platforms (AMADAP) for emerging photovoltaics technologies. Acc Chem Res. 2024; 57(9): 1434-1445.

[32]

Shang Y, Xiong Z, An K, Hauch JA, Brabec CJ, Li N. Materials genome engineering accelerates the research and development of organic and perovskite photovoltaics. MGE Adv. 2024; 2(1): e28.

[33]

George J, Hautier G. Chemist versus machine: traditional knowledge versus machine learning techniques. Trends Chem. 2021; 3(2): 86-95.

[34]

Wang H, Fu T, Du Y, et al. Scientific discovery in the age of artificial intelligence. Nature. 2023; 620(7972): 47-60.

[35]

Baumann DO, Laufer F, Roger J, Singh R, Gholipoor M, Paetzold UW. Repeatable perovskite solar cells through fully automated spin-coating and quenching. ACS Appl Mater Interfaces. 2024; 16(40): 54007-54016.

[36]

Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C. Machine learning in materials informatics: recent applications and prospects. npj Comput Mater. 2017; 3(1): 54.

[37]

Liu Y, Zhao T, Ju W, Shi S. Materials discovery and design using machine learning. J Materiomics. 2017; 3(3): 159-177.

[38]

Granda JM, Donina L, Dragone V, Long D-L, Cronin L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature. 2018; 559(7714): 377-381.

[39]

Ahneman DT, Estrada JG, Lin S, Dreher SD, Doyle AG. Predicting reaction performance in C-N cross-coupling using machine learning. Science. 2018; 360(6385): 186-190.

[40]

Hartono NTP, Thapa J, Tiihonen A, et al. How machine learning can help select capping layers to suppress perovskite degradation. Nat Commun. 2020; 11(1): 1-9.

[41]

Wei J, Chu X, Sun X-Y, et al. Machine learning in materials science. InfoMat. 2019; 1(3): 338-358.

[42]

Yao Z, Lum Y, Johnston A, et al. Machine learning for a sustainable energy future. Nat Rev Mater. 2023; 8(3): 202-215.

[43]

Tao H, Wu T, Aldeghi M, Wu TC, Aspuru-Guzik A, Kumacheva E. Nanoparticle synthesis assisted by machine learning. Nat Rev Mater. 2021; 6(8): 701-716.

[44]

Park J, Kim YM, Hong S, Han B, Nam KT, Jung Y. Closed-loop optimization of nanoparticle synthesis enabled by robotics and machine learning. Matter. 2023; 6(3): 677-690.

[45]

Shimizu R, Kobayashi S, Watanabe Y, Ando Y, Hitosugi T. Autonomous materials synthesis by machine learning and robotics. APL Mater. 2020; 8(11): 111110.

[46]

Stergiou K, Ntakolia C, Varytis P, Koumoulos E, Karlsson P, Moustakidis S. Enhancing property prediction and process optimization in building materials through machine learning: a review. Comput Mater Sci. 2023; 220: 112031.

[47]

Zahrt AF, Henle JJ, Rose BT, Wang Y, Darrow WT, Denmark SE. Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning. Science. 2019; 363(6424): eaau5631.

[48]

Liu Z, Zhang J, Rao G, et al. Accelerating photostability evaluation of perovskite films through intelligent spectral learning-based early diagnosis. ACS Energy Lett. 2024; 9(2): 662-670.

[49]

Li C, Zheng K. Methods, progresses, and opportunities of materials informatics. Inf Dent. 2023; 5(8): e12425.

[50]

Zhang X, Wang Z, Lawan AM, et al. Data-driven structural descriptor for predicting platinum-based alloys as oxygen reduction electrocatalysts. InfoMat. 2023; 5(6): e12406.

[51]

Pollice R, dos Passos Gomes G, Aldeghi M, et al. Data-driven strategies for accelerated materials design. Acc Chem Res. 2021; 54(4): 849-860.

[52]

Yang RX, McCandler CA, Andriuc O, et al. Big data in a nano world: a review on computational, data-driven design of nanomaterials structures, properties, and synthesis. ACS Nano. 2022; 16(12): 19873-19891.

[53]

Liu C, Lüer L, Corre VML, et al. Understanding causalities in organic photovoltaics device degradation in a machine-learning-driven high-throughput platform. Adv Mater. 2023; 36(20): 2300259.

[54]

Du X, Lüer L, Heumueller T, et al. Elucidating the full potential of OPV materials utilizing a high-throughput robot-based platform and machine learning. Joule. 2021; 5(2): 495-506.

[55]

Zhao H, Chen W, Huang H, et al. A robotic platform for the synthesis of colloidal nanocrystals. Nat Synth. 2023; 2(6): 505-514.

[56]

Zhang J, Liu B, Liu Z, et al. Optimizing perovskite thin-film parameter spaces with machine learning-guided robotic platform for high-performance perovskite solar cells. Adv Energy Mater. 2023; 13(48): 2302594.

[57]

Langner S, Häse F, Perea JD, et al. Beyond ternary OPV: high-throughput experimentation and self-driving laboratories optimize multicomponent systems. Adv Mater. 2020; 32(14): 1907801.

[58]

Coley CW, Thomas DA, Lummiss JAM, et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science. 2019; 365(6453): eaax1566.

[59]

Lu S, Zhou Q, Ouyang Y, Guo Y, Li Q, Wang J. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat Commun. 2018; 9(1): 3405.

[60]

Sirbu D, Balogun FH, Milot RL, Docampo P. Layered perovskites in solar cells: structure, optoelectronic properties, and device design. Adv Energy Mater. 2021; 11(24): 2003877.

[61]

Tavakoli MM, Saliba M, Yadav P, et al. Synergistic crystal and Interface engineering for efficient and stable perovskite photovoltaics. Adv Energy Mater. 2019; 9(1): 1802646.

[62]

Meng W, Zhang K, Osvet A, et al. Revealing the strain-associated physical mechanisms impacting the performance and stability of perovskite solar cells. Joule. 2022; 6(2): 458-475.

[63]

Li H, Chen C, Hu H, et al. Strategies for high-performance perovskite solar cells from materials, film engineering to carrier dynamics and photon management. InfoMat. 2022; 4(7): e12322.

[64]

Jiang F, Shi Y, Rana TR, et al. Improved reverse bias stability in p-i-n perovskite solar cells with optimized hole transport materials and less reactive electrodes. Nat Energy. 2024; 9(10): 1-10.

[65]

Xu W, Liu Z, Piper RT, Hsu JW. Bayesian optimization of photonic curing process for flexible perovskite photovoltaic devices. Sol Energy Mater Sol Cells. 2023; 249: 112055.

[66]

Bhat V, Callaway CP, Risko C. Computational approaches for organic semiconductors: from chemical and physical understanding to predicting new materials. Chem Rev. 2023; 123(12): 7498-7547.

[67]

Aal E Ali RS, Meng J, Khan MEI, Jiang X. Machine learning advancements in organic synthesis: a focused exploration of artificial intelligence applications in chemistry. Artif Intell Chem. 2024; 2(1): 100049.

[68]

Gao W, Raghavan P, Coley CW. Autonomous platforms for data-driven organic synthesis. Nat Commun. 2022; 13(1): 1075.

[69]

Burés J, Larrosa I. Organic reaction mechanism classification using machine learning. Nature. 2023; 613(7945): 689-695.

[70]

Ha T, Lee D, Kwon Y, et al. AI-driven robotic chemist for autonomous synthesis of organic molecules. Sci Adv. 2023; 9(44): eadj0461.

[71]

Gómez-Bombarelli R, Aguilera-Iparraguirre J, Hirzel TD, et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat Mater. 2016; 15(10): 1120-1127.

[72]

Cheng Y-J, Yang S-H, Hsu C-S. Synthesis of conjugated polymers for organic solar cell applications. Chem Rev. 2009; 109(11): 5868-5923.

[73]

Shields BJ, Stevens J, Li J, et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature. 2021; 590(7844): 89-96.

[74]

Hueffel JA, Sperger T, Funes-Ardoiz I, Ward JS, Rissanen K, Schoenebeck F. Accelerated dinuclear palladium catalyst identification through unsupervised machine learning. Science. 2021; 374(6571): 1134-1140.

[75]

Rinehart NI, Saunthwal RK, Wellauer J, et al. A machine-learning tool to predict substrate-adaptive conditions for Pd-catalyzed C-N couplings. Science. 2023; 381(6661): 965-972.

[76]

https://github.com/emdgroup/baybe; https://github.com/VlachosGroup/nextorch; https://github.com/b-shields/edbo

[77]

Burger B, Maffettone PM, Gusev VV, et al. A mobile robotic chemist. Nature. 2020; 583(7815): 237-241.

[78]

Kitson PJ, Marie G, Francoia J-P, et al. Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals. Science. 2018; 359(6373): 314-319.

[79]

Götz J, Jackl MK, Jindakun C, et al. High-throughput synthesis provides data for predicting molecular properties and reaction success. Sci Adv. 2023; 9(43): eadj2314.

[80]

Chen C, Nguyen DT, Lee SJ, et al. Accelerating computational materials discovery with machine learning and cloud high-performance computing: from large-scale screening to experimental validation. J Am Chem Soc. 2024; 146(29): 20009-20018.

[81]

Tao L, Byrnes J, Varshney V, Li Y. Machine learning strategies for the structure-property relationship of copolymers. iScience. 2022; 25(7): 104585.

[82]

Le T, Epa VC, Burden FR, Winkler DA. Quantitative structure-property relationship modeling of diverse materials properties. Chem Rev. 2012; 112(5): 2889-2919.

[83]

MacLeod B, Parlane F, Morrissey T, et al. Self-driving laboratory for accelerated discovery of thin-film materials. Sci Adv. 2020; 6(20): eaaz8867.

[84]

Lee M-H. Machine learning for understanding the relationship between the charge transport mobility and electronic energy levels for n-type organic field-effect transistors. Adv Electron Mater. 2019; 5(12): 1900573.

[85]

Boobier S, Hose DRJ, Blacker AJ, Nguyen BN. Machine learning with physicochemical relationships: solubility prediction in organic solvents and water. Nat Commun. 2020; 11(1): 5753.

[86]

Meng D, Xue J, Zhao Y, Zhang E, Zheng R, Yang Y. Configurable organic charge carriers toward stable perovskite photovoltaics. Chem Rev. 2022; 122(18): 14954-14986.

[87]

Wu J, Zhang J, Hu M, et al. Integrated system built for small-molecule semiconductors via high-throughput approaches. J Am Chem Soc. 2023; 145(30): 16517-16525.

[88]

Wu J, Torresi L, Hu M, et al. Inverse design workflow discovers hole-transport materials tailored for perovskite solar cells. Science. 2024; 386(6727): 1256-1264.

[89]

Xu J, Chen H, Grater L, et al. Anion optimization for bifunctional surface passivation in perovskite solar cells. Nat Mater. 2023; 22(12): 1507-1514.

[90]

Gunasekaran RK, Jung J, Yang SW, et al. High-throughput compositional mapping of triple-cation tin-lead perovskites for high-efficiency solar cells. Inf Dent. 2023; 5(4): e12393.

[91]

Higgins K, Valleti SM, Ziatdinov M, Kalinin SV, Ahmadi M. Chemical robotics enabled exploration of stability in multicomponent lead halide perovskites via machine learning. ACS Energy Lett. 2020; 5(11): 3426-3436.

[92]

Bush KA, Frohna K, Prasanna R, et al. Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 2018; 3(2): 428-435.

[93]

Taylor AD, Sun Q, Goetz KP, et al. A general approach to high-efficiency perovskite solar cells by any antisolvent. Nat Commun. 2021; 12(1): 1878.

[94]

Higgins K, Ziatdinov M, Kalinin SV, Ahmadi M. High-throughput study of antisolvents on the stability of multicomponent metal halide perovskites through robotics-based synthesis and machine learning approaches. J Am Chem Soc. 2021; 143(47): 19945-19955.

[95]

Zhang J, Langner S, Wu J, et al. Intercalating-organic-cation-induced stability bowing in quasi-2D metal-halide perovskites. ACS Energy Lett. 2022; 7(1): 70-77.

[96]

Hu H, Shi H, Zhang J, Hauch JA, Osvet A, Brabec CJ. Automated synthesis of 1-tetradecylphosphonic acid-capped FAPbBr3 nanocrystals for light conversion in display applications. ACS Appl Nano Mater. 2024; 7(8): 8823-8829.

[97]

Zhao Y, Zhang J, Xu Z, et al. Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning. Nat Commun. 2021; 12(1): 1-9.

[98]

Xu Z, Zhao Y, Zhang J, Chen K, Brabec CJ, Feng Y. Phase diagram and stability of mixed-cation lead iodide perovskites: a theory and experiment combined study. Phys Rev Mater. 2020; 4(9): 095401.

[99]

Tsai H, Nie W, Blancon J-C, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature. 2016; 536(7616): 312-316.

[100]

Zhang J, Wu J, Langner S, et al. Exploring the steric hindrance of alkylammonium cations in the structural reconfiguration of quasi-2D perovskite materials using a high-throughput experimental platform. Adv Funct Mater. 2022; 32(43): 2207101.

[101]

Chen Y, Sun Y, Peng J, Tang J, Zheng K, Liang Z. 2D Ruddlesden-Popper perovskites for optoelectronics. Adv Mater. 2018; 30(2): 1703487.

[102]

Zhang J, Wu J, Zhao Y, et al. Revealing the crystallization and thermal-induced phase evolution in aromatic-based quasi-2D perovskites using a robot-based platform. ACS Energy Lett. 2023; 8(8): 3595-3603.

[103]

Yang J, Lawrie BJ, Kalinin SV, Ahmadi M. High-throughput automated exploration of phase growth behaviors in quasi-2D formamidinium metal halide perovskites. Adv Energy Mater. 2023; 13(43): 2302337.

[104]

Jain A, Voznyy O, Sargent EH. High-throughput screening of lead-free perovskite-like materials for optoelectronic applications. J Phys Chem C. 2017; 121(13): 7183-7187.

[105]

Ji G, Han C, Hu S, et al. B-site columnar-ordered halide double perovskites: theoretical design and experimental verification. J Am Chem Soc. 2021; 143(27): 10275-10281.

[106]

Sun S, Hartono NT, Ren ZD, et al. Accelerated development of perovskite-inspired materials via high-throughput synthesis and machine-learning diagnosis. Joule. 2019; 3(6): 1437-1451.

[107]

Cao B, Adutwum LA, Oliynyk AO, et al. How to optimize materials and devices via design of experiments and machine learning: demonstration using organic photovoltaics. ACS Nano. 2018; 12(8): 7434-7444.

[108]

Zhang J, Wu J, Barabash A, et al. Precise control of process parameters for >23% efficiency perovskite solar cells in ambient air using an automated device acceleration platform. Energ Environ Sci. 2024; 17(15): 5490-5499.

[109]

Zhang J, Le Corre VM, Wu J, et al. Autonomous optimization of air-processed perovskite solar cell in a multidimensional parameter space. Adv Energy Mater. 2025;2404957.

[110]

Jiang Y, He X, Liu T, et al. Intralayer A-site compositional engineering of Ruddlesden-Popper perovskites for thermostable and efficient solar cells. ACS Energy Lett. 2019; 4(6): 1216-1224.

[111]

Yang J, He T, Li M, et al. π-Conjugated carbazole cations enable wet-stable quasi-2D perovskite photovoltaics. ACS Energy Lett. 2022; 7(12): 4451-4458.

[112]

Liang J, Zhang Z, Xue Q, et al. A finely regulated quantum well structure in quasi-2D Ruddlesden-Popper perovskite solar cells with efficiency exceeding 20%. Energ Environ Sci. 2022; 15(1): 296-310.

[113]

Meftahi N, Surmiak MA, Fürer SO, et al. Machine learning enhanced high-throughput fabrication and optimization of quasi-2D Ruddlesden-Popper perovskite solar cells. Adv Energy Mater. 2023; 13(38): 2203859.

[114]

Häse F, Roch LM, Aspuru-Guzik A. Next-generation experimentation with self-driving laboratories. Trends Chem. 2019; 1(3): 282-291.

[115]

Volk AA, Abolhasani M. Performance metrics to unleash the power of self-driving labs in chemistry and materials science. Nat Commun. 2024; 15(1): 1378.

[116]

Zhang J, Wu J, Stroyuk O, et al. Self-driving AMADAP laboratory: accelerating the discovery and optimization of emerging perovskite photovoltaics. MRS Bull. 2024; 49(12): 1-11.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

5

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/