RuO2 sub-nanocluster decorated Co3O4 as efficient and pH-universal oxygen evolution electrocatalyst

Ziye Li , Yangfan Liu , Jiandong Hu , Wenhui Luo , Yang Wang , Zhao Xin , Yanlin Jia , Yong Pang , Hong Zhang , Zhi Liang Zhao , Yejun Li , Qi Wang

InfoMat ›› 2025, Vol. 7 ›› Issue (5) : e70003

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (5) : e70003 DOI: 10.1002/inf2.70003
RESEARCH ARTICLE

RuO2 sub-nanocluster decorated Co3O4 as efficient and pH-universal oxygen evolution electrocatalyst

Author information +
History +
PDF

Abstract

Developing cost-effective and highly efficient oxygen evolution reaction (OER) electrocatalysts that operate in both acidic and alkaline media is crucial for industrial electrocatalytic water splitting. However, achieving high performance under dual pH conditions remains a significant challenge. Herein, we report the synthesis of multi-sized RuO2 sub-nanoclusters on Co3O4 nanoarrays via a facile method, which demonstrates exceptional OER activity in both acidic and alkaline environments. The optimized catalyst exhibits remarkably low overpotentials of 165 mV in 0.5 M H2SO4 and 223 mV in 1 M KOH at a current density of 10 mA cm–2, respectively. Additionally, it exhibits outstanding stability, maintaining performance over a 10-h continuous operation, which is attributed to the robust structural stability of the dispersed RuO2 sub-nanocluster morphology. Atomic-scale investigations reveal a layer-by-layer growth mechanism of Ru on the Co3O4 substrate, transitioning from single atoms to monolayer clusters and ultimately to sub-nanoclusters as Ru loading increases. This growth mechanism provides a rational strategy for the precise design and synthesis of advanced cluster-based catalysts. Density functional theory (DFT) calculations further elucidate the strong oxide-support interactions between RuO2 clusters and the Co3O4 matrix, facilitating electron transfer from RuO2 to Co3O4 and generating an electron-deficient region. This electronic modulation enhances –OH adsorption and accelerates OER kinetics. These findings underscore the potential of metal sub-nanoclusters for designing highly efficient and durable electrocatalysts for water electrolysis.

Keywords

Co3O4 matrix / oxygen evolution reaction / RuO2 sub-nanocluster / single atom

Cite this article

Download citation ▾
Ziye Li, Yangfan Liu, Jiandong Hu, Wenhui Luo, Yang Wang, Zhao Xin, Yanlin Jia, Yong Pang, Hong Zhang, Zhi Liang Zhao, Yejun Li, Qi Wang. RuO2 sub-nanocluster decorated Co3O4 as efficient and pH-universal oxygen evolution electrocatalyst. InfoMat, 2025, 7(5): e70003 DOI:10.1002/inf2.70003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

An L, Wei C, Lu M, et al. Recent development of oxygen evolution electrocatalysts in acidic environment. Adv Mater. 2021; 33(20): 2006328.

[2]

Peng L, Yang N, Yang Y, et al. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew Chem Int Ed. 2021; 60(46): 24612-24619.

[3]

Li Y, Pei W, He J, et al. Hybrids of PtRu nanoclusters and black phosphorus nanosheets for highly efficient alkaline hydrogen evolution reaction. ACS Catal. 2019; 9(12): 10870-10875.

[4]

Sui J, Liu H, Hu S, et al. A general strategy to immobilize single-atom catalysts in metal-organic frameworks for enhanced photocatalysis. Adv Mater. 2021; 34(6): 2109203.

[5]

Yang W, Liu X, Chen X, et al. A sulfur-tolerant MOF-based single-atom Fe catalyst for efficient oxidation of NO and HgO. Adv Mater. 2022; 34(20): 2110123.

[6]

Zhou Y, Song E, Chen W, et al. Dual-metal interbonding as the chemical facilitator for single-atom dispersions. Adv Mater. 2020; 32(46): 2003484.

[7]

Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem. 2011; 3(8): 634-641.

[8]

Wu Y, Wu Q, Zhang Q, et al. An organometal halide perovskite supported Pt single-atom photocatalyst for H2 evolution. Energy Environ Sci. 2022; 15(3): 1271-1281.

[9]

Zhang Q, Guan J. Single-atom catalysts for electrocatalytic applications. Adv Funct Mater. 2020; 30(31): 2000768.

[10]

Liu J-C, Ma X-L, Li Y, Wang YG, Xiao H, Li J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat Commun. 2018; 9(1): 1610.

[11]

Ma X-L, Liu J-C, Xiao H, Li J. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J Am Chem Soc. 2017; 140(1): 46-49.

[12]

Zhang Y-X, Zhang S, Huang H, et al. General synthesis of a diatomic catalyst library via a macrocyclic precursor-mediated approach. J Am Chem Soc. 2023; 145(8): 4819-4827.

[13]

Li H, Di S, Niu P, et al. A durable half-metallic diatomic catalyst for efficient oxygen reduction. Energy Environ Sci. 2022; 15(4): 1601-1610.

[14]

Zeng Z, Gan LY, Bin Yang H, et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat Commun. 2021; 12(1): 4088.

[15]

Wei YS, Sun L, Wang M, et al. Fabricating dual-atom iron catalysts for efficient oxygen evolution reaction: a heteroatom modulator approach. Angew Chem Int Ed. 2020; 59(37): 16013-16022.

[16]

Zhang S, Wu J, Zheng M, et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nat Commun. 2023; 14(1): 3634.

[17]

Zhang L, Si R, Liu H, et al. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat Commun. 2019; 10(1): 4936.

[18]

Wang N, Sun Q, Zhang T, et al. Impregnating subnanometer metallic Nanocatalysts into self-pillared zeolite nanosheets. J Am Chem Soc. 2021; 143(18): 6905-6914.

[19]

Wang Q, Zhao ZL, Zhang Z, et al. Sub-3 nm intermetallic ordered Pt3In clusters for oxygen reduction reaction. Adv Sci. 2019; 7(2): 1901279.

[20]

Liu M, Wang L, Zhao K, et al. Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ Sci. 2019; 12(10): 2890-2923.

[21]

Yang M, Wang S, Fu J, et al. Quantum size effect to induce colossal high-temperature energy storage density and efficiency in polymer/inorganic cluster composites. Adv Mater. 2023; 35(30): 2301936.

[22]

Hou C-C, Wang H-F, Li C, Xu Q. From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ Sci. 2020; 13(6): 1658-1693.

[23]

Wang X, Qiu S, Feng J, et al. Confined Fe-Cu clusters as sub-nanometer reactors for efficiently regulating the electrochemical nitrogen reduction reaction. Adv Mater. 2020; 32(40): 2004382.

[24]

Duan R, Qi W, Tang K, Liu W. Sub-nano cluster decoration for the manipulation of the photogenerated carrier behavior of MoS2. InfoMat. 2025; 7(2): e12610.

[25]

Zhang A, Liang Y, Zhang H, Geng Z, Zeng J. Doping regulation in transition metal compounds for electrocatalysis. Chem Soc Rev. 2021; 50(17): 9817-9844.

[26]

Su Y, Fu K, Zheng Y, et al. Catalytic oxidation of dichloromethane over Pt-Co/HZSM-5 catalyst: synergistic effect of single-atom Pt, Co3O4, and HZSM-5. Appl Catal B Environ. 2021; 288(1): 119980.

[27]

Lou Y, Cai Y, Hu W, et al. Identification of active area as active center for CO oxidation over single Au atom catalyst. ACS Catal. 2020; 10(11): 6094-6101.

[28]

Kulkarni VK, Khiarak BN, Takano S, et al. N-heterocyclic carbene-stabilized Hydrido Au24 nanoclusters: synthesis, structure, and electrocatalytic reduction of CO2. J Am Chem Soc. 2022; 144(20): 9000-9006.

[29]

Zhang SL, Guan BY, Lu XF, et al. Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution. Adv Mater. 2020; 32(31): 2002235.

[30]

Dong C, Li Y, Cheng D, et al. Supported metal clusters: fabrication and application in heterogeneous catalysis. ACS Catal. 2020; 10(19): 11011-11045.

[31]

Cai Z, Bi Y, Hu E, et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv Energy Mater. 2017; 8(3): 1701694.

[32]

Zhao ZL, Wang Q, Huang X, et al. Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media. Energy Environ Sci. 2020; 13(12): 5143-5151.

[33]

Hao Y, Hung S-F, Zeng W-J, et al. Switching the oxygen evolution mechanism on atomically dispersed Ru for enhanced acidic reaction kinetics. J Am Chem Soc. 2023; 145(43): 23659-23669.

[34]

Wang Y, Cao L, Libretto NJ, et al. Ensemble effect in bimetallic electrocatalysts for CO2 reduction. J Am Chem Soc. 2019; 141(42): 16635-16642.

[35]

Jose V, Nsanzimana JMV, Hu H, Choi J, Wang X, Lee JM. Highly efficient oxygen reduction reaction activity of N-doped carbon-cobalt boride heterointerfaces. Adv Energy Mater. 2021; 11(17): 2100157.

[36]

Wang Q, Huang X, Zhao ZL, et al. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J Am Chem Soc. 2020; 142(16): 7425-7433.

[37]

Fu J, Dong J, Si R, et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst. ACS Catal. 2021; 11(4): 1952-1961.

[38]

Zheng X, Yang J, Xu Z, et al. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew Chem Int Ed. 2022; 61(32): e202205946.

[39]

Wang Q, Zhang Z, Cai C, et al. Single iridium atom doped Ni2P catalyst for optimal oxygen evolution. J Am Chem Soc. 2021; 143(34): 13605-13615.

[40]

Zhang N, Zhou T, Ge J, et al. High-density planar-like Fe2N6 structure catalyzes efficient oxygen reduction. Matter. 2020; 3(2): 509-521.

[41]

Cai C, Wang M, Han S, et al. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal. 2020; 11(1): 123-130.

[42]

Zhao X, Zhao K, Liu Y, et al. Highly efficient electrochemical CO2 reduction on a precise homonuclear diatomic Fe-Fe catalyst. ACS Catal. 2022; 12(18): 11412-11420.

[43]

Luo W, Wang Y, Luo L, et al. Single-atom and bimetallic nanoalloy supported on nanotubes as a bifunctional electrocatalyst for ultrahigh-current-density overall water splitting. ACS Catal. 2022; 12(2): 1167-1179.

[44]

Hu Y, Luo G, Wang L, et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv Energy Mater. 2020; 11(1): 2002816.

[45]

Liu Q, Wang Q, Wang J, et al. TpyCo2+-based coordination polymers by water-induced gelling trigged efficient oxygen evolution reaction. Adv Funct Mater. 2020; 30(38): 2000593.

[46]

Zhu J, Li J, Lu R, et al. Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nat Commun. 2023; 14(1): 4670.

[47]

Wang J, Chao G, Zong W, et al. Efficient nitrate electroreduction to ammonia over copper catalysts supported on electron-delocalized covalent organic frameworks. Chem Eng J. 2024; 499(1): 156343.

[48]

Kang W, Wei R, Yin H, et al. Unraveling sequential oxidation kinetics and determining roles of multi-cobalt active sites on Co3O4 catalyst for water oxidation. J Am Chem Soc. 2023; 145(6): 3470-3477.

[49]

Wu T, Han M-Y, Xu ZJ. Size effects of electrocatalysts: more than a variation of surface area. ACS Nano. 2022; 16(6): 8531-8539.

[50]

Chen B, Jiang Y-F, Xiao H, Li J. Selective CO2-to-HCOOH electroreduction on graphdiyne-supported bimetallic single-cluster catalysts. ACS Catal. 2024; 14(14): 10510-10518.

[51]

Wei B, Fu Z, Legut D, et al. Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts. Adv Mater. 2021; 33(40): 2102595.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

3

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/