Inkjet-printed reconfigurable and recyclable memristors on paper

Jinrui Chen , Mingfei Xiao , Zesheng Chen , Sibghah Khan , Saptarsi Ghosh , Nasiruddin Macadam , Zhuo Chen , Binghan Zhou , Guolin Yun , Kasia Wilk , Georgios Psaltakis , Feng Tian , Simon Fairclough , Yang Xu , Rachel Oliver , Tawfique Hasan

InfoMat ›› 2025, Vol. 7 ›› Issue (5) : e70000

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (5) : e70000 DOI: 10.1002/inf2.70000
RESEARCH ARTICLE

Inkjet-printed reconfigurable and recyclable memristors on paper

Author information +
History +
PDF

Abstract

Reconfigurable memristors featuring neural and synaptic functions hold great potential for neuromorphic circuits by simplifying system architecture, cutting power consumption, and boosting computational efficiency. Building upon these attributes, their additive manufacturing on sustainable substrates further offers unique advantages for future electronics, including low environmental impact. Here, exploiting the structure–property relationship of inkjet-printed MoS2 nanoflake-based resistive layer, we present paper-based reconfigurable memristors. We demonstrate a sustainable process covering material exfoliation, device fabrication, and device recycling. With >90% yield from a 16 ×  65 device array, our memristors demonstrate robust resistive switching, with >105 ON–OFF ratio and <0.5 V operation in non-volatile state. Through modulation of compliance current, the devices transition into a volatile state, with only 50 pW switching power consumption. These performances rival state-of-the-art metal oxide-based counterparts. We show device recyclability and stable, reconfigurable operation following disassembly, material collection and re-fabrication. We further demonstrate synaptic plasticity and neuronal leaky integrate-and-fire functionality, with disposable applications in smart packaging and simulated medical image diagnostics. Our work shows a sustainable pathway toward printable, reconfigurable neuromorphic devices, with minimal environmental footprints.

Keywords

inkjet printing / papertronics / reconfigurable memory device / sustainable electronics

Cite this article

Download citation ▾
Jinrui Chen, Mingfei Xiao, Zesheng Chen, Sibghah Khan, Saptarsi Ghosh, Nasiruddin Macadam, Zhuo Chen, Binghan Zhou, Guolin Yun, Kasia Wilk, Georgios Psaltakis, Feng Tian, Simon Fairclough, Yang Xu, Rachel Oliver, Tawfique Hasan. Inkjet-printed reconfigurable and recyclable memristors on paper. InfoMat, 2025, 7(5): e70000 DOI:10.1002/inf2.70000

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang JJ, Strukov DB, Stewart DR. Memristive devices for computing. Nat Nanotechnol. 2013; 8(1): 13-24.

[2]

Boybat I, Le Gallo M, Nandakumar SR, et al. Neuromorphic computing with multi-memristive synapses. Nat Commun. 2018; 9(1): 2514.

[3]

Strukov DB, Snider GS, Stewart DR, Williams RS. The missing memristor found. Nature. 2008; 453(7191): 80-83.

[4]

Rao M, Tang H, Wu J, et al. Thousands of conductance levels in memristors integrated on CMOS. Nature. 2023; 615(7954): 823-829.

[5]

Yao P, Wu H, Gao B, et al. Fully hardware-implemented memristor convolutional neural network. Nature. 2020; 577(7792): 641-646.

[6]

Wong HS, Salahuddin S. Memory leads the way to better computing. Nat Nanotechnol. 2015; 10(3): 191-194.

[7]

Prezioso M, Merrikh-Bayat F, Hoskins BD, Adam GC, Likharev KK, Strukov DB. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature. 2015; 521(7550): 61-64.

[8]

Mehonic A, Kenyon AJ. Brain-inspired computing needs a master plan. Nature. 2022; 604(7905): 255-260.

[9]

Chen J, Xu W. 2D-materials-based optoelectronic synapses for neuromorphic applications. eScience. 2023; 3(6): 100178.

[10]

Jiang C, Liu J, Ni Y, et al. Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement. Nat Commun. 2023; 14(1): 1344.

[11]

Fu T, Liu X, Fu S, et al. Self-sustained green neuromorphic interfaces. Nat Commun. 2021; 12(1): 3351.

[12]

van de Burgt Y, Lubberman E, Fuller EJ, et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat Mater. 2017; 16(4): 414-418.

[13]

Cho H, Lee I, Jang J, et al. Real-time finger motion recognition using skin-conformable electronics. Nat Electron. 2023; 6(8): 619-629.

[14]

Kumar S, Wang X, Strachan JP, Yang Y, Lu WD. Dynamical memristors for higher-complexity neuromorphic computing. Nat Rev Mater. 2022; 7(7): 575-591.

[15]

Zhang X, Lu J, Wang Z, et al. Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks. Sci Bull. 2021; 66(16): 1624-1633.

[16]

Portilla L, Loganathan K, Faber H, et al. Wirelessly powered large-area electronics for the internet of things. Nat Electron. 2023; 6(1): 10-17.

[17]

Wang T, Meng J, Zhou X, et al. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat Commun. 2022; 13(1): 7432.

[18]

Fu T, Liu X, Gao H, et al. Bioinspired bio-voltage memristors. Nat Commun. 2020; 11(1): 1861.

[19]

Feng X, Li Y, Wang L, et al. A fully printed flexible MoS2 memristive artificial synapse with femtojoule switching energy. Adv Electron Mater. 2019; 5(12): 1900740.

[20]

Sivan M, Li Y, Veluri H, et al. All WSe2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nat Commun. 2019; 10(1): 5201.

[21]

Catenacci MJ, Flowers PF, Cao C, Andrews JB, Franklin AD, Wiley BJ. Fully printed memristors from Cu-SiO2 core-shell nanowire composites. J Electron Mater. 2017; 46(7): 4596-4603.

[22]

Bessonov AA, Kirikova MN, Petukhov DI, Allen M, Ryhänen T, Bailey MJA. Layered memristive and memcapacitive switches for printable electronics. Nat Mater. 2015; 14(2): 199-204.

[23]

Yang L, Hu H, Scholz A, et al. Laser printed microelectronics. Nat Commun. 2023; 14(1): 1103.

[24]

Zhu K, Vescio G, González-Torres S, et al. Inkjet-printed h-BN memristors for hardware security. Nanoscale. 2023; 15(23): 9985-9992.

[25]

Peng Z, Grillo A, Pelella A, et al. Fully printed memristors made with MoS2 and graphene water-based inks. Mater Horiz. 2024; 11(5): 1344-1353.

[26]

Xu Y, Wang H, Ye D, Yang R, Huang Y, Miao X. Electrohydrodynamically printed flexible organic memristor for leaky integrate and fire neuron. IEEE Electron Device Lett. 2022; 43(1): 116-119.

[27]

Conti S, Pimpolari L, Calabrese G, et al. Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nat Commun. 2020; 11(1): 3566.

[28]

Karagiannidis PG, Hodge SA, Lombardi L, et al. Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano. 2017; 11(3): 2742-2755.

[29]

Tölle FJ, Fabritius M, Mülhaupt R. Emulsifier-free graphene dispersions with high graphene content for printed electronics and freestanding graphene films. Adv Funct Mater. 2012; 22(6): 1136-1144.

[30]

Tang B, Veluri H, Li Y, et al. Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat Commun. 2022; 13(1): 3037.

[31]

Wilcoxon JP, Newcomer PP, Samara GA. Synthesis and optical properties of MoS₂ and isomorphous nanoclusters in the quantum confinement regime. J Appl Phys. 1997; 81(12): 7934-7944.

[32]

Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. Photoluminescence from chemically exfoliated MoS₂. Nano Lett. 2011; 11(12): 5111-5116.

[33]

Pan C, Ji Y, Xiao N, et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv Funct Mater. 2017; 27(10): 1604811.

[34]

Hu G, Yang L, Yang Z, et al. A general ink formulation of 2D crystals for wafer-scale inkjet printing. Sci Adv. 2020; 6(33): eaba5029.

[35]

Hu G, Albrow-Owen T, Jin X, et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat Commun. 2017; 8(1): 278.

[36]

Wang W, Wang M, Ambrosi E, et al. Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices. Nat Commun. 2019; 10(1): 81.

[37]

Shi Y, Liang X, Yuan B, et al. Electronic synapses made of layered two-dimensional materials. Nat Electron. 2018; 1(8): 458-465.

[38]

Sun J, He L, Lo YC, et al. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat Mater. 2014; 13(11): 1007-1016.

[39]

Zhang Y, He W, Wu Y, et al. Highly compact artificial memristive neuron with low energy consumption. Small. 2018; 14(51): 1802188.

[40]

Wang Z, Joshi S, Savel'ev SE, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat Mater. 2017; 16(1): 101-108.

[41]

Williams NX, Bullard G, Brooke N, Therien MJ, Franklin AD. Printable and recyclable carbon electronics using crystalline nanocellulose dielectrics. Nat Electron. 2021; 4(4): 261-268.

[42]

Likhitha AS, Ahad HA, Haranath D, et al. Effective disposal of biological and pharmaceutical waste: a note to the health care professional. Int J Life Sci Pharm Res. 2022; 11(1): 52-58.

[43]

Sun L, Hwang G, Choi W, et al. Ultralow switching voltage slope based on two-dimensional materials for integrated memory and neuromorphic applications. Nano Energy. 2020; 69: 104472.

[44]

Li H, Hu J, Chen A, et al. Single-transistor neuron with excitatory-inhibitory spatiotemporal dynamics applied for neuronal oscillations. Adv Mater. 2022; 34(51): 2207371.

[45]

Kuzum D, Yu S, Wong HS. Synaptic electronics: materials, devices and applications. Nanotechnology. 2013; 24(38): 382001.

[46]

Ippolito S, Kelly AG, Furlan de Oliveira R, et al. Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices. Nat Nanotechnol. 2021; 16(5): 592-598.

[47]

Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev. 1999; 51(1): 7-61.

[48]

Monaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol. 1989; 29(1): 365-402.

[49]

Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952; 117(4): 500-544.

[50]

Kim MK, Lee JS. Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano. 2018; 12(2): 1680-1687.

[51]

Bliss TVP, Lømo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973; 232(2): 331-356.

[52]

Ambrogio S, Balatti S, Cubeta A, Calderoni A, Ramaswamy N, Ielmini D. Statistical fluctuations in HfOx resistive-switching memory: part II—random telegraph noise. IEEE Trans Electron Devices. 2014; 61(8): 2920-2927.

[53]

Ghaani M, Cozzolino CA, Castelli G, Farris S. An overview of the intelligent packaging technologies in the food sector. Trends Food Sci Technol. 2016; 51: 1-11.

[54]

Göransson M, Nilsson F, Jevinger Å. Temperature performance and food shelf-life accuracy in cold food supply chains—insights from multiple field studies. Food Control. 2018; 86: 332-341.

[55]

Skawińska E, Zalewski RI. Economic impact of temperature control during food transportation—a COVID-19 perspective. Foods. 2022; 11(3): 467.

[56]

Albrecht A, Ibald R, Raab V, Reichstein W, Haarer D, Kreyenschmidt J. Implementation of time temperature indicators to improve temperature monitoring and support dynamic shelf life in meat supply chains. J Packag Technol Res. 2020; 4(1): 23-32.

[57]

Anbukarasu P, Sauvageau D, Elias AL. Time-temperature indicator based on enzymatic degradation of dye-loaded polyhydroxybutyrate. Biotechnol J. 2017; 12(9): 1700050.

[58]

Wang S, Liu X, Yang M, Zhang Y, Xiang K, Tang R. Review of time temperature indicators as quality monitors in food packaging. Packag Technol Sci. 2015; 28(10): 839-867.

[59]

Roychowdhury S, Koozekanani DD, Parhi KK. DREAM: diabetic retinopathy analysis using machine learning. IEEE J Biomed Health Inform. 2014; 18(5): 1717-1728.

[60]

Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012; 35(3): 556-564.

[61]

Schoenfeld ER, Greene JM, Wu SY, Leske MC. Patterns of adherence to diabetes care guidelines: baseline findings from the diabetic retinopathy awareness program. Ophthalmology. 2001; 108(3): 563-571.

[62]

Zhang X, Saaddine JB, Chou CF, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008. Jama. 2010; 304(6): 649-656.

[63]

Papers With Code: DiaretDB1 Dataset. Accessed July 7, 2024. https://paperswithcode.com/dataset/diaretdb1

[64]

Coleman JN, Lotya M, O'Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011; 331(6017): 568-571.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

3

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/