LAX phases: A family of novel stable layered materials, informatics-based discovery

Ehsan Alibagheri , Mohammad Khazaei , Mehdi Estili , Alireza Seyfi , Hiroshi Mizoguchi , Kaoru Ohno , Hideo Hosono , S. Mehdi Vaez Allaei

InfoMat ›› 2025, Vol. 7 ›› Issue (7) : e12664

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (7) : e12664 DOI: 10.1002/inf2.12664
RESEARCH ARTICLE

LAX phases: A family of novel stable layered materials, informatics-based discovery

Author information +
History +
PDF

Abstract

Ternary MAX phases, characterized by the chemical formula M₂AX, represent a group of layered materials with hexagonal lattices. These MAX phases have been the subject of extensive experimental and theoretical studies. Formation energy and thermodynamic calculations indicate that MAX phases containing late transition metals, such as Rh, Ru, Pt, Pd, Co, and Ni, are unlikely to form. Here, we introduce an alternative family of orthorhombic and monoclinic materials, the LAX phases, which exhibit similarities to MAX phases in terms of their layered structure and A and X elements. However, LAX materials incorporate late transition metals in place of the early transition metals. Advanced techniques for predicting the crystal structure of materials, coupled with data-driven materials research and machine learning algorithms, were employed to investigate the stable structures containing transition metals from the last groups of the d-block elements. The analyses revealed 207 ternary LAX systems that demonstrate robust stability against decomposition, with 100 of these systems showing dynamic stability. An in-depth examination of the top 10 structures revealed five LAX systems that are phase stable and exhibit superior mechanical properties, outperforming MAX phase counterparts in Young's modulus, stiffness, and hardness. These findings indicate that many LAX phase structures are viable candidates for future synthesis, highlighting the potential of heuristic-based structure searches in material discovery.

Keywords

evolutionary algorithm / LAX phases / machine learning / materials discovery / materials informatics / MAX phases

Cite this article

Download citation ▾
Ehsan Alibagheri, Mohammad Khazaei, Mehdi Estili, Alireza Seyfi, Hiroshi Mizoguchi, Kaoru Ohno, Hideo Hosono, S. Mehdi Vaez Allaei. LAX phases: A family of novel stable layered materials, informatics-based discovery. InfoMat, 2025, 7(7): e12664 DOI:10.1002/inf2.12664

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nowotny VH. Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn. Prog Solid State Chem. 1971; 5: 27-70.

[2]

Barsoum MW. The MN+1AXN phases: a new class of solids. Prog Solid State Chem. 2000; 28(1): 201-281.

[3]

Khazaei M, Arai M, Sasaki T, Estili M, Sakka Y. Trends in electronic structures and structural properties of MAX phases: a first-principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases. J Phys Condens Matter. 2014; 26(50): 505503.

[4]

Zhang Z, Duan X, Jia D, Zhou Y, van der Zwaag S. On the formation mechanisms and properties of MAX phases: a review. J Eur Ceram Soc. 2021; 41(7): 3851-3878.

[5]

Gonzalez-Julian J. Processing of MAX phases: from synthesis to applications. J Am Ceram Soc. 2021; 104(2): 659-690.

[6]

Barsoum MW. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. Wiley; 2013.

[7]

Michałowski PP, Anayee M, Mathis TS, et al. Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry. Nat Nanotechnol. 2022; 17(11): 1192-1197.

[8]

Li B, Wu N, Wu Q, et al. From “100%” utilization of MAX/MXene to direct engineering of wearable, multifunctional E-textiles in extreme environments. Adv Funct Mater. 2023; 33(41): 2307301.

[9]

Fukamachi S, Solís-Fernández P, Kawahara K, et al. Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays. Nat Electron. 2023; 6(2): 126-136.

[10]

Chen Y, Zheng Y, Zhou Y, et al. Multi-layered cement-hydrogel composite with high toughness, low thermal conductivity, and self-healing capability. Nat Commun. 2023; 14(1): 3438.

[11]

Kumar S, Kumar S. Ultrafast THz probing of nonlocal orbital current in transverse multilayer metallic heterostructures. Nat Commun. 2023; 14(1): 8185.

[12]

Bae S, Kang Y-G, Khazaei M, et al. Electronic and magnetic properties of carbide MXenes—the role of electron correlations. Mater Today Adv. 2021; 9: 100118.

[13]

Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano. 2012; 6(2): 1322-1331.

[14]

Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater. 2014; 26(7): 992-1005.

[15]

Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017; 2(2): 1-17.

[16]

Khazaei M, Ranjbar A, Esfarjani K, Bogdanovski D, Dronskowski R, Yunoki S. Insights into exfoliation possibility of MAX phases to MXenes. Phys Chem Chem Phys. 2018; 20(13): 8579-8592.

[17]

Khazaei M, Ranjbar A, Arai M, Sasaki T, Yunoki S. Electronic properties and applications of MXenes: a theoretical review. J Mater Chem C. 2017; 5(10): 2488-2503.

[18]

Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano. 2019; 13(8): 8491-8494.

[19]

Fang CM, Ahuja R, Eriksson O. Prediction of MAX phases, VN+1SiCN (N = 1,2), from first-principles theory. J Appl Phys. 2007; 101(1): 013511.

[20]

Ahuja R. Nanolayered MAX phases from ab initio calculations. Particle and Continuum Aspects of Mesomechanics. Wiley; 2007: 199-204.

[21]

Anasori B, Xie Y, Beidaghi M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano. 2015; 9(10): 9507-9516.

[22]

Rosen J, Dahlqvist M, Tao Q, Hultman L. In- and out-of-plane ordered MAX phases and their MXene derivatives. In: Anasori B, Gogotsi Y, eds. 2D Metal Carbides and Nitrides (MXenes). Springer; 2019: 37-52.

[23]

Zhou J, Tao Q, Ahmed B, et al. High-entropy laminate metal carbide (MAX phase) and its two-dimensional derivative MXene. Chem Mater. 2022; 34(5): 2098-2106.

[24]

Khazaei M, Bae S, Khaledialidusti R, et al. Superlattice MAX phases with A-layers reconstructed into 0D-clusters, 1D-chains, and 2D-lattices. J Phys Chem C. 2023; 127(30): 14906-14913.

[25]

Khazaei M, Maleki I, Koshi NA, et al. Beyond metals: theoretical discovery of semiconducting MAX phases and their potential application in thermoelectrics. Phys Chem Chem Phys. 2024; 26(27): 18907-18917.

[26]

Barsoum MW, Zhen T, Kalidindi SR, Radovic M, Murugaiah A. Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. Nat Mater. 2003; 2(2): 107-111.

[27]

El-Raghy T, Barsoum MW, Zavaliangos A, et al. Processing and mechanical properties of Ti3SiC2: II, effect of grain size and deformation temperature. J Am Ceram Soc. 1999; 82(10): 2855-2860.

[28]

Bao YW, Zhou YC, Zhang HB. Investigation on reliability of nanolayer-grained Ti3SiC2 via Weibull statistics. J Mater Sci. 2007; 42(12): 4470-4475.

[29]

Wolfsgruber H, Nowotny H, Benesovsky F. Die Kristallstruktur von Ti3GeC2. Monatshefte Für Chem. 1967; 98(6): 2403-2405.

[30]

Barsoum MW, El-Raghy T. The MAX phases: unique new carbide and nitride materials: ternary ceramics turn out to be surprisingly soft and machinable, yet also heat-tolerant, strong and lightweight. Am Sci. 2001; 89(4): 334-343.

[31]

Sokol M, Natu V, Kota S, Barsoum MW. On the chemical diversity of the MAX phases. Trends Chem. 2019; 1(2): 210-223.

[32]

Zhang Y, Mao Z, Han Q, et al. The role of Hume-Rothery's rules play in the MAX phases formability. Materialia. 2020; 12: 100810.

[33]

Cover MF, Warschkow O, Bilek MMM, McKenzie DR. A comprehensive survey of M(2)AX phase elastic properties. J Phys Condens Matter Inst Phys J. 2009; 21(30): 305403.

[34]

Frey NC, Wang J, Vega Bellido GI, Anasori B, Gogotsi Y, Shenoy VB. Prediction of synthesis of 2D metal carbides and nitrides (MXenes) and their precursors with positive and unlabeled machine learning. ACS Nano. 2019; 13(3): 3031-3041.

[35]

Dahlqvist M, Rosen J. Predictive theoretical screening of phase stability for chemical order and disorder in quaternary 312 and 413 MAX phases. Nanoscale. 2020; 12(2): 785-794.

[36]

Lukatskaya MR, Halim J, Dyatkin B, et al. Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew Chem. 2014; 126(19): 4977-4980.

[37]

Zhang Y, Xu Y, Huang Q, et al. Structure maps for MAX phases formability revisited. Ceram Int. 2024; 50(2, Part A): 2855-2863.

[38]

Dahlqvist M, Barsoum MW, Rosen J. MAX phases—past, present, and future. Mater Today. 2024; 72: 1-24.

[39]

Barsoum MW, Radovic M. Elastic and mechanical properties of the MAX phases. Annu Rev Mat Res. 2011; 41(1): 195-227.

[40]

Lei X, Lin N. Structure and synthesis of MAX phase materials: a brief review. Crit Rev Solid State Mater Sci. 2022; 47(5): 736-771.

[41]

Wang L, Chen Q, Yang T, Guo B, Cheng Y, Xu W. Synthesis of (Ti1−xWx)3SiC2 MAX phase solid solution and its high-temperature oxidation performance. J Mater Sci Mater Electron. 2022; 33(22): 17446-17452.

[42]

Li S, Li H, Zhou Y, Zhai H. Mechanism for abnormal thermal shock behavior of Cr2AlC. J Eur Ceram Soc. 2014; 34(5): 1083-1088.

[43]

Manoun B, Gulve RP, Saxena SK, Gupta S, Barsoum MW, Zha CS. Compression behavior of M2AlC (M = Ti, V, Cr, Nb, and Ta) phases to above 50GPa. Phys Rev B. 2006; 73(2): 024110.

[44]

Hettinger JD, Lofland SE, Finkel P, et al. Electrical transport, thermal transport, and elastic properties of M2AlC (M = Ti, Cr, Nb, and V). Phys Rev B. 2005; 72(11): 115120.

[45]

Sun Z, Music D, Ahuja R, Schneider JM. Theoretical investigation of the bonding and elastic properties of nanolayered ternary nitrides. Phys Rev B. 2005; 71(19): 193402.

[46]

Miao N, Wang J, Gong Y, et al. Computational prediction of boron-based MAX phases and MXene derivatives. Chem Mater. 2020; 32(16): 6947-6957.

[47]

Duan X, Fang Z, Yang T, et al. Maximizing the mechanical performance of Ti3AlC2-based MAX phases with aid of machine learning. J Adv Ceram. 2022; 11(8): 1307-1318.

[48]

Mahmood A, Wang J-L. Machine learning for high performance organic solar cells: current scenario and future prospects. Energ Environ Sci. 2021; 14(1): 90-105.

[49]

Lv C, Zhou X, Zhong L, et al. Machine learning: an advanced platform for materials development and state prediction in lithium-ion batteries. Adv Mater. 2022; 34(25): 2101474.

[50]

Kim S, Noh J, Gu GH, Aspuru-Guzik A, Jung Y. Generative adversarial networks for crystal structure prediction. ACS Cent Sci. 2020; 6(8): 1412-1420.

[51]

Raccuglia P, Elbert KC, Adler PDF, et al. Machine-learning-assisted materials discovery using failed experiments. Nature. 2016; 533(7601): 73-76.

[52]

Mortazavi B, Podryabinkin EV, Roche S, Rabczuk T, Zhuang X, Shapeev AV. Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures. Mater Horiz. 2020; 7(9): 2359-2367.

[53]

Rajan K. Materials informatics. Mater Today. 2005; 8(10): 38-45.

[54]

Pilania G, Wang C, Jiang X, Rajasekaran S, Ramprasad R. Accelerating materials property predictions using machine learning. Sci Rep. 2013; 3(1): 2810.

[55]

Guo K, Yang Z, Yu C-H, Buehler MJ. Artificial intelligence and machine learning in design of mechanical materials. Mater Horiz. 2021; 4(8): 1153-1172.

[56]

Alibagheri E, Ranjbar A, Khazaei M, Kühne TD, Vaez Allaei SM. Remarkable optoelectronic characteristics of synthesizable square-octagon haeckelite structures: machine learning materials discovery. Adv Funct Mater. 2024; 34(27): 2402390.

[57]

Alibagheri E, Mortazavi B, Rabczuk T. Predicting the electronic and structural properties of two-dimensional materials using machine learning. Comput Mater Contin. 2021; 67(1): 1287-1300.

[58]

Wang D, Ivey DG. Crystal structure determination of Ni2lnP. J Mater Sci Lett. 1995; 14(2): 117-123.

[59]

Furuseth S, Fjellvåg H, Haaland A, Schilling BER, Volden HV. Crystal structure and properties of Ni2SnP. Acta Chem Scand. 1985; 39a: 537-544.

[60]

Ward L, Dunn A, Faghaninia A, et al. Matminer: an open source toolkit for materials data mining. Comput Mater Sci. 2018; 152: 60-69.

[61]

Khaledialidusti R, Khazaei M, Khazaei S, Ohno K. High-throughput computational discovery of ternary-layered MAX phases and prediction of their exfoliation for formation of 2D MXenes. Nanoscale. 2021; 13(15): 7294-7307.

[62]

Akbarzadeh AR, Ozoliņš V, Wolverton C. First-principles determination of multicomponent hydride phase diagrams: application to the Li-Mg-N-H system. Adv Mater. 2007; 19(20): 3233-3239.

[63]

Kirklin S, Saal JE, Meredig B, et al. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. npj Comput Mater. 2015; 1(1): 1-15.

[64]

Aykol M, Dwaraknath SS, Sun W, Persson KA. Thermodynamic limit for synthesis of metastable inorganic materials. Sci Adv. 2018; 4(4): eaaq0148.

[65]

Sun W, Dacek ST, Ong SP, et al. The thermodynamic scale of inorganic crystalline metastability. Sci Adv. 2016; 2(11): e1600225.

[66]

van der Maaten LJP, Hinton GE. Visualizing high-dimensional data using t-SNE. J Mach Learn Res. 2008; 9(November): 2579-2605.

[67]

Jhi S-H, Ihm J, Louie SG, Cohen ML. Electronic mechanism of hardness enhancement in transition-metal carbonitrides. Nature. 1999; 399(6732): 132-134.

[68]

Ali MA, Islam AKMA, Jahan N, Karimunnesa S. First-principles study of SnO under high pressure. Int J Mod Phys B. 2016; 30(31): 1650228.

[69]

Tian Y, Xu B, Zhao Z. Microscopic theory of hardness and design of novel superhard crystals. Int J Refract Met Hard Mater. 2012; 33: 93-106.

[70]

Gou H, Hou L, Zhang J, Gao F. Pressure-induced incompressibility of ReC and effect of metallic bonding on its hardness. Appl Phys Lett. 2008; 92(24): 241901.

[71]

Barua P, Hossain MM, Ali MA, Uddin MM, Naqib SH, Islam AKMA. Effects of transition metals on physical properties of M2BC (M = V, Nb, Mo and Ta): a DFT calculation. J Alloys Compd. 2019; 770: 523-534.

[72]

Das P, Jahan NA, Ali M. DFT insights into Nb-based 211 MAX phase carbides: Nb2AC (A = Ga, Ge, Tl, Zn, P, In, and Cd). RSC Adv. 2023; 13(8): 5538-5556.

[73]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865-3868.

[74]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999; 59(3): 1758-1775.

[75]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996; 54(16): 11169-11186.

[76]

Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976; 13(12): 5188-5192.

[77]

Togo A. First-principles phonon calculations with Phonopy and Phono3py. J Physical Soc Japan. 2023; 92(1): 012001.

[78]

Togo A, Chaput L, Tadano T, et al. Implementation strategies in phonopy and phono3py. J Phys Condens Matter. 2023; 35(35): 353001.

[79]

Glass CW, Oganov AR, Hansen N. USPEX—evolutionary crystal structure prediction. Comput Phys Commun. 2006; 175(11): 713-720.

[80]

Zhu Q, Li L, Oganov AR, Allen PB. Evolutionary method for predicting surface reconstructions with variable stoichiometry. Phys Rev B. 2013; 87(19): 195317.

[81]

Hu C-H, Oganov AR, Zhu Q, et al. Pressure-induced stabilization and insulator-superconductor transition of BH. Phys Rev Lett. 2013; 110(16): 165504.

[82]

Zhou X-F, Oganov AR, Qian G-R, Zhu Q. First-principles determination of the structure of magnesium borohydride. Phys Rev Lett. 2012; 109(24): 245503.

[83]

Popov ZI, Tikhomirova KA, Demin VA, et al. Novel two-dimensional boron oxynitride predicted using the USPEX evolutionary algorithm. Phys Chem Chem Phys. 2021; 23(46): 26178-26184.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

3

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/