Visible–near-infrared wavelength-selective photodetection and imaging based on floating-gate phototransistors

Bo Wang , Ningning Zhang , Jie You , Xin Wu , Yichi Zhang , Tian Miao , Yang Liu , Zuimin Jiang , Zhenyang Zhong , Hao Sun , Hui Guo , Huiyong Hu , Liming Wang , Zhangming Zhu

InfoMat ›› 2025, Vol. 7 ›› Issue (6) : e12661

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (6) : e12661 DOI: 10.1002/inf2.12661
RESEARCH ARTICLE

Visible–near-infrared wavelength-selective photodetection and imaging based on floating-gate phototransistors

Author information +
History +
PDF

Abstract

Wavelength selective imaging has a wide range of applications in image recognition and other application scenarios, which can effectively improve the recognition rate of objects. However, in the existing technical scenarios, it is usually necessary to use complex optical devices such as filters or gratings to achieve wavelength extraction. These methods inevitably bring about the problems of complex structure and low integration. Therefore, it is necessary to realize the wavelength extraction function at the device level. Here, we realize the wavelength extraction function and wide-spectrum imaging function in the visible to infrared band based on a visible light absorber/floating gate storage layer/near-infrared (NIR) photogating layer configuration. Under infrared irradiation, the device exhibits negative photoresponse through the absorption of infrared light by the Ge substrate and the photogating effect, and realizes visible positive light response through the absorption of visible light by MoS2. Utilizing the memory function of the device, by cleverly changing the gate voltage pulse, the photoresponse state of the output voltage is effectively adjusted to achieve three imaging states: visible light response only, response to both visible and infrared light, and infrared light response only. Active selective imaging of the word “XDU” was achieved at 532 and 1550 nm wavelength. By using the photoresponse data of the device, the passive imaging of the topography of Xi'an, Shaanxi Province was obtained, which effectively improves the recognition rate of mountains and rivers. The proposed reconfigurable visible–infrared wavelength-selective imaging photodetector can effectively extract image information and improve the image recognition rate while ensuring a simple structure. The single-chip-based spectral separation imaging solution lays a good foundation for the further development of visible–infrared vision applications.

Keywords

floating-gate phototransistors / visible–near-infrared / wavelength-selective photodetection

Cite this article

Download citation ▾
Bo Wang, Ningning Zhang, Jie You, Xin Wu, Yichi Zhang, Tian Miao, Yang Liu, Zuimin Jiang, Zhenyang Zhong, Hao Sun, Hui Guo, Huiyong Hu, Liming Wang, Zhangming Zhu. Visible–near-infrared wavelength-selective photodetection and imaging based on floating-gate phototransistors. InfoMat, 2025, 7(6): e12661 DOI:10.1002/inf2.12661

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma J, Chen C, Li C, Huang J. Infrared and visible image fusion via gradient transfer and total variation minimization. Inf Fusion. 2016; 31: 100-109.

[2]

Ma J, Yu W, Liang P, Li C, Jiang J. FusionGAN: a generative adversarial network for infrared and visible image fusion. Inf Fusion. 2019; 48: 11-26.

[3]

Kamimura M, Kanayama N, Tokuzen K, Soga K, Nagasaki Y. Near-infrared (1550 nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly(4-vinylbenzylphosphonate). Nanoscale. 2011; 3(9): 3705-3713.

[4]

McDaniel RV, Scribner DA, Krebs WK, Warren PR, Ockman N, McCarley J. Paper presented at: Infrared Technology and Applications XXIV; 1998.

[5]

Jalali B, Kitayama K-i. AI and Optical Data Sciences II. Sciences. 2021; 2: 1170301.

[6]

Al Naboulsi M, Sizun H, de Fornel FDR. Fog attenuation prediction for optical and infrared waves. Opt Engi. 2004; 43(2): 319.

[7]

Zhang X, Zhang ZW. Fabrication and performance of a NiMn2O4/LaNiO3 composite film detector with multi electrodes for night vision imaging application. Sens Actuators A Phys. 2021; 326: 112713.

[8]

Mitrofanov O. Paper presented at: Proceedings of SPIE Volume; 2019.

[9]

Hu W, Cong H, Huang W, et al. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light Sci Appl. 2019; 8(1): 106.

[10]

Lan Z, Lei Y, Chan WKE, Chen S, Luo D, Zhu F. Near-infrared and visible light dual-mode organic photodetectors. Sci Adv. 2020; 6(5): eaaw8065.

[11]

Wang Y, Siegmund B, Tang Z, et al. Stacked dual-wavelength near-infrared organic photodetectors. Adv Opt Mater. 2021; 9(6): 2001784.

[12]

Lee JW, Kim DY, Baek S, Yu H, So F. Inorganic UV-visible-SWIR broadband photodetector based on monodisperse PbS nanocrystals. Small. 2016; 12(10): 1328-1333.

[13]

Tang X, Ackerman MM, Chen M, Guyot-Sionnest P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat Photon. 2019; 13(4): 277-282.

[14]

Long M, Liu E, Wang P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 2016; 16(4): 2254-2259.

[15]

Wu D, Guo J, Du J, et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano. 2019; 13(9): 9907-9917.

[16]

Chen Y, Wang Y, Wang Z, et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat Electron. 2021; 4(5): 357-363.

[17]

Lukman S, Ding L, Xu L, et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat Nanotechnol. 2020; 15(8): 675-682.

[18]

Li A, Chen Q, Wang P, et al. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/graphene/SnS2p-g-n junctions. Adv Mater. 2019; 31(6): 1805656.

[19]

Hu L, Yuan J, Ren Y, et al. Phosphorene/ZnO nano-heterojunctions for broadband photonic nonvolatile memory applications. Adv Mater. 2018; 30(30): 1801232.

[20]

Pi L, Wang P, Liang S-J, et al. Broadband convolutional processing using band-alignment-tunable heterostructures. Nat Electron. 2022; 5(4): 248-254.

[21]

Yu J, Yang X, Gao G, et al. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci Adv. 2021; 7(12): eabd9117.

[22]

Pospischil A, Furchi MM, Mueller T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat Nanotechnol. 2014; 9(4): 257-261.

[23]

Tao Q, Wu R, Li Q, et al. Reconfigurable electronics by disassembling and reassembling van der Waals heterostructures. Nat Commun. 2021; 12(1): 1825.

[24]

Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nat Rev Mater. 2017; 2(8): 1.

[25]

Liu Y, Weiss NO, Duan X, Cheng H-C, Huang Y, Duan X. Van der Waals heterostructures and devices. Nat Rev Mater. 2016; 1(9): 1.

[26]

Buscema M, Island JO, Groenendijk DJ, et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev. 2015; 44(11): 3691-3718.

[27]

Xiong X, Huang M, Hu B, et al. A transverse tunnelling field-effect transistor made from a van der Waals heterostructure. Nat Electron. 2020; 3(2): 106-112.

[28]

Tsai M-Y, Huang C-T, Lin C-Y, et al. A reconfigurable transistor and memory based on a two-dimensional heterostructure and photoinduced trapping. Nat Electron. 2023; 6(10): 755-764.

[29]

Wang S, Pan X, Lyu L, et al. Nonvolatile van der Waals heterostructure phototransistor for encrypted optoelectronic logic circuit. ACS Nano. 2022; 16(3): 4528-4535.

[30]

Jang H, Liu C, Hinton H, et al. An atomically thin optoelectronic machine vision processor. Adv Mater. 2020; 32(36): 2002431.

[31]

Lee J, Duong NT, Bang S, et al. Modulation of junction modes in SnSe2/MoTe2 broken-gap van der Waals heterostructure for multifunctional devices. Nano Lett. 2020; 20(4): 2370-2377.

[32]

Sun X, Zhu C, Yi J, et al. Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nat Electron. 2022; 5(11): 752-760.

[33]

Gao A, Lai J, Wang Y, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat Nanotechnol. 2019; 14(3): 217-222.

[34]

Pan C, Wang C-Y, Liang S-J, et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat Electron. 2020; 3(7): 383-390.

[35]

Kahng D, Sze SM. A floating gate and its application to memory devices. Bell Syst Tech J. 1967; 46(6): 1288-1295.

[36]

Yang Q, Luo ZD, Zhang D, et al. Controlled optoelectronic response in van der Waals heterostructures for in-sensor computing. Adv Funct Mater. 2022; 32(45): 202207290.

[37]

Long M, Wang P, Fang H, Hu W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater. 2019; 29(19): 1803807.

[38]

Wang B, Wang L, Zhang Y, et al. Mixed-dimensional MoS2/Ge heterostructure junction field-effect transistors for logic operation and photodetection. Adv Funct Mater. 2021; 32(10): 32.

[39]

Yang M, You J, Wang L, et al. Gate-tunable molybdenum disulfide/germanium heterostructure with ambipolar infrared photoresponse. Appl Phys Lett. 2022; 120(2): 120.

[40]

Luo Z-D, Xia X, Yang M-M, Wilson NR, Gruverman A, Alexe M. Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano. 2019; 14(1): 746-754.

[41]

Mukherjee B, Zulkefli A, Watanabe K, Taniguchi T, Wakayama Y, Nakaharai S. Laser-assisted multilevel non-volatile memory device based on 2D van-der-Waals few-layer-ReS2/h-BN/graphene heterostructures. Adv Funct Mater. 2020; 30(42): 2001688.

[42]

Seo S, Jo S-H, Kim S, et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat Commun. 2018; 9(1): 5106.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

3

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/