Harnessing conversion bridge strategy by organic semiconductor in polymer matrix memristors for high-performance multi-modal neuromorphic signal processing

Weijia Dong , Xuan Ji , Chuanbin An , Chenhui Xu , Xuwen Zhang , Bin Zhao , Yuqian Liu , Shiyu Wang , Xi Yu , Xinjun Liu , Yang Han , Yanhou Geng

InfoMat ›› 2025, Vol. 7 ›› Issue (5) : e12659

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (5) : e12659 DOI: 10.1002/inf2.12659
RESEARCH ARTICLE

Harnessing conversion bridge strategy by organic semiconductor in polymer matrix memristors for high-performance multi-modal neuromorphic signal processing

Author information +
History +
PDF

Abstract

Organic memristors, integrating chemically designed resistive switching and mechanical flexibility, present promising hardware opportunities for neuromorphic computing, particularly in the development of next-generation wearable artificial intelligence devices. However, challenges persist in achieving high yield, controllable switching, and multi-modal information processing. In this study, we introduce an efficient distribution of conversion bridges (EDCB) strategy by dispersing organic semiconductor (poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene], PBTTT) in elastomer (polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene, SEBS). This innovative approach results in memristors with exceptional yield, high stretchability, and reliable switching performance. By fine-tuning the semiconductor content, we shift the primary charge carriers from ions to electrons, realizing modulable non-volatile, and volatile duo-mode memristors. This advancement enables multi-modal signal processing at distinct operational mechanisms—non-volatile mode for image recognition in convolutional neural networks (CNNs) and volatile mode for dynamic classification and prediction in reservoir computing (RC). A fully analog RC hardware system is further demonstrated by integrating the distinct volatile and non-volatile modes of the EDCB-based memristor into the dynamic neuron network and the linear regression layer of the RC respectively, achieving high accuracy in online arrhythmia detection tasks. Our work paves the way for high-yield organic memristors with mechanical flexibility, advancing efficient multi-mode neuromorphic computing within a unified memristor system integrating volatile and non-volatile functionalities.

Keywords

convolutional neural network / neuromorphic computing / organic memristors / reservoir computing / stretchable electronics

Cite this article

Download citation ▾
Weijia Dong, Xuan Ji, Chuanbin An, Chenhui Xu, Xuwen Zhang, Bin Zhao, Yuqian Liu, Shiyu Wang, Xi Yu, Xinjun Liu, Yang Han, Yanhou Geng. Harnessing conversion bridge strategy by organic semiconductor in polymer matrix memristors for high-performance multi-modal neuromorphic signal processing. InfoMat, 2025, 7(5): e12659 DOI:10.1002/inf2.12659

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Philip Chen CL, Zhang CY. Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inform Sci. 2014; 275(10): 314-347.

[2]

Van De Burgt Y, Melianas A, Keene ST, Malliaras G, Salleo A. Organic electronics for neuromorphic computing. Nat Electron. 2018; 1(7): 386-397.

[3]

Zhu J, Zhang T, Yang Y, Huang R. A comprehensive review on emerging artificial neuromorphic devices. Appl Phys Rev. 2020; 7(1): 011312.

[4]

Hou C, Zhang S, Liu R, et al. Boosting flexible electronics with integration of two-dimensional materials. InfoMat. 2024; 6(7): e12555.

[5]

Sun N, Han Y, Huang W, et al. A holistic review of C=C crosslinkable conjugated molecules in solution-processed organic electronics: insights into stability, processibility, and mechanical properties. Adv Mater. 2024; 36(18): 2309779.

[6]

Yuan J, Li Y, Wang M, et al. Ultrasound: a new strategy for artificial synapses modulation. InfoMat. 2024; 6(6): e12528.

[7]

Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H. State-of-the-art in artificial neural network applications: a survey. Heliyon. 2018; 4(11): e00938.

[8]

Zhang C, Ye WB, Zhou K, et al. Bioinspired artificial sensory nerve based on nafion memristor. Adv Funct Mater. 2019; 29(20): 1808783.

[9]

Xu X, Cho EJ, Bekker L, et al. A bioinspired artificial injury response system based on a robust polymer memristor to mimic a sense of pain, sign of injury, and healing. Adv Sci. 2022; 9(15): 2200629.

[10]

Wang H, Yao Y, He Z, et al. A highly stretchable liquid metal polymer as reversible transitional insulator and conductor. Adv Mater. 2019; 31(23): 1901337.

[11]

Zhou J, Li W, Chen Y, et al. A monochloro copper phthalocyanine memristor with high-temperature resilience for electronic synapse applications. Adv Mater. 2021; 33(5): 2006201.

[12]

Hung CC, Chiu YC, Wu HC, et al. Conception of stretchable resistive memory devices based on nanostructure-controlled carbohydrate-block-polyisoprene block copolymers. Adv Funct Mater. 2017; 27(13): 1606161.

[13]

Xu J, Wang S, Wang GJN, et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science. 2017; 355(6320): 59-64.

[14]

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553): 436-444.

[15]

Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 2002; 14(11): 2531-2560.

[16]

Chen B, Yang H, Song B, et al. A memristor-based hybrid analog-digital computing platform for mobile robotics. Sci Robot. 2020; 5(47): eabb6938.

[17]

Yang Y, Gao P, Gaba S, Chang T, Pan X, Lu W. Observation of conducting filament growth in nanoscale resistive memories. Nat Commun. 2012; 3(1): 732.

[18]

Pazos S, Xu X, Guo T, Zhu K, Alshareef HN, Lanza M. Solution-processed memristors: performance and reliability. Nat Rev Mater. 2024; 12(5): 358-373.

[19]

Kwon DH, Kim KM, Jang JH, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotech. 2010; 5(2): 148-153.

[20]

Yang JJ, Strukov DB, Stewart DR. Memristive devices for computing. Nat Nanotech. 2013; 8(1): 13-24.

[21]

Li Y, Qian Q, Zhu X, et al. Recent advances in organic-based materials for resistive memory applications. InfoMat. 2020; 2(6): 995-1033.

[22]

Neamen DA. Semiconductor Physics and Devices: Basic Principles. 4th ed. Publishing House of Electronics Industry; 2018.

[23]

Choi S, Tan SH, Li Z, et al. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat Mater. 2018; 17(4): 335-340.

[24]

Sze SM, Lee MK, Lee MK. Semiconductor Devices, Physics and Technology. 3rd ed. Wiley; 2012.

[25]

Wu C. Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat Commun. 2019; 10(1): 73.

[26]

Wang W, Zhang S, Zhang L, et al. Electropolymerized bipolar poly(2,3-diaminophenazine) cathode for high-performance aqueous Al-ion batteries with an extended temperature range of −20 to 45°C. Adv Mater. 2024; 36(24): 2400642.

[27]

Hansen CM. Polymer additives and solubility parameters. Prog Org Coat. 2004; 51(2): 109-112.

[28]

McCulloch I, Heeney M, Bailey C, et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater. 2006; 5(4): 328-333.

[29]

Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012; 33(5): 580-592.

[30]

Zhang J, Lu T. Efficient evaluation of electrostatic potential with computerized optimized code. Phys Chem Chem Phys. 2021; 23(36): 20323-20328.

[31]

Ye L, Jiao X, Zhou M, et al. Manipulating aggregation and molecular orientation in all-polymer photovoltaic cells. Adv Mater. 2015; 27(39): 6046-6054.

[32]

Gasperini A, Sivula K. Effects of molecular weight on microstructure and carrier transport in a semicrystalline poly(thieno)thiophene. Macromolecules. 2013; 46(23): 9349-9358.

[33]

Wang Y, Wang W, Zhang C, et al. A digital-analog integrated memristor based on a ZnO NPs/CuO NWs heterostructure for neuromorphic computing. ACS Appl Electron Mater. 2022; 4(7): 3525-3534.

[34]

Li Y, Chu J, Duan W, et al. Analog and digital bipolar resistive switching in solution-combustion-processed NiO memristor. ACS Appl Mater Interfaces. 2018; 10(29): 24598-24606.

[35]

Cheng S, Zhong L, Yin J, et al. Controllable digital and analog resistive switching behavior of 2D layered WSe 2 nanosheets for neuromorphic computing. Nanoscale. 2023; 15(10): 4801-4808.

[36]

Bersuker G, Gilmer DC. Metal Oxide Resistive Random Access Memory (RRAM) Technology. Elsevier; 2014.

[37]

Zhang T, Wang L, Ding W, et al. Rationally designing high-performance versatile organic memristors through molecule-mediated ion movements. Adv Mater. 2023; 35(40): 2302863.

[38]

Liu X, Ren S, Li Z, et al. Flexible transparent high-efficiency photoelectric perovskite resistive switching memory. Adv Funct Mater. 2022; 32(38): 2202951.

[39]

Lei P, Duan H, Qin L, et al. High-performance memristor based on 2D layered BiOI nanosheet for low-power artificial optoelectronic synapses. Adv Funct Mater. 2022; 32(25): 2201276.

[40]

Zhao B, Zhao X, Li Q, et al. Reproducible and low-power multistate bio-memristor from interpenetrating network electrolyte design. InfoMat. 2022; 4(11): e12350.

[41]

Zhou Z, Mao H, Wang X, et al. Transient and flexible polymer memristors utilizing full-solution processed polymer nanocomposites. Nanoscale. 2018; 10(31): 14824-14829.

[42]

Yan X, Zhao Q, Chen AP, et al. Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing. Small. 2019; 15(24): 1901423.

[43]

Kumar S. Dynamical memristors for higher-complexity neuromorphic computing. Nat Rev Mater. 2022; 7(7): 575-591.

[44]

Zidan MA. The future of electronics based on memristive systems. Nat Electron. 2018; 1(1): 22-29.

[45]

Wu L, Liu H, Lin J, Wang S. Volatile and nonvolatile memory operations implemented in a Pt/HfO₂/Ti memristor. IEEE Trans Electron Dev. 2021; 68(4): 1622-1626.

[46]

Lai YC, Wang YX, Huang YC, et al. Rewritable, moldable, and flexible sticker-type organic memory on arbitrary substrates. Adv Funct Mater. 2014; 24(10): 1430-1438.

[47]

Yan X, Zhao J, Liu S, et al. Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv Funct Mater. 2018; 28(1): 1705320.

[48]

Liu L, Geng B, Ji W, Wu L, Lei S, Hu W. A highly crystalline single layer 2D polymer for low variability and excellent scalability molecular memristors. Adv Mater. 2023; 35(6): 2208377.

[49]

Liu J, Yang F, Cao L, et al. A robust nonvolatile resistive memory device based on a freestanding ultrathin 2D imine polymer film. Adv Mater. 2019; 31(28): 1902264.

[50]

Wang L, Yang J, Zhu Y, et al. Rectification-regulated memristive characteristics in electron-type CuPc-based element for electrical synapse. Adv Electron Mater. 2017; 3(7): 1700063.

[51]

Zhang B, Chen W, Zeng J, et al. 90% yield production of polymer nano-memristor for in-memory computing. Nat Commun. 2021; 12(1): 1984.

[52]

Sun W, Gao B, Chi M, et al. Understanding memristive switching via in situ characterization and device modeling. Nat Commun. 2019; 10(1): 3453.

[53]

Huang F, Ke C, Li J, et al. Controllable resistive switching in ReS2/WS2 heterostructure for nonvolatile memory and synaptic simulation. Adv Sci. 2023; 10(28): 2302813.

[54]

Li J, Qian Y, Li W, et al. Polymeric memristor based artificial synapses with ultra-wide operating temperature. Adv Mater. 2023; 35(23): 2209728.

[55]

Dearnaley G, Stoneham AM, Morgan DV. Electrical phenomena in amorphous oxide films. Rep Prog Phys. 1970; 33(3): 1129-1191.

[56]

Lin J, Ma D. Origin of negative differential resistance and memory characteristics in organic devices based on tri(8-hydroxyquinoline) aluminum. J Appl Phys. 2024; 103(12): 124505.

[57]

Kim K. Multifilamentary switching of Cu/SiOx memristive devices with a Ge-implanted a-Si underlayer for analog synaptic devices. NPG Asia Mater. 2023; 15(1): 48.

[58]

Huh W, Lee D, Lee C. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv Mater. 2020; 32(51): 2002092.

[59]

Yin L, Cheng R, Wang Z, et al. Two-dimensional unipolar memristors with logic and memory functions. Nano Lett. 2020; 20(6): 4144-4152.

[60]

Hu Z. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem Soc Rev. 2018; 47(9): 3100-3128.

[61]

Xu Z, Li Y, Xia Y, et al. Organic frameworks memristor: An emerging candidate for data storage, artificial synapse, and neuromorphic device. Adv Funct Mater. 2024; 34(16): 2312658.

[62]

Mengüç Y, Park YL, Pei H, et al. Wearable soft sensing suit for human gait measurement. Int J Robot Res. 2014; 33(14): 1748-1764.

[63]

Chung JY, Nolte AJ, Stafford CM. Surface wrinkling: a versatile platform for measuring thin-film properties. Adv Mater. 2011; 23(3): 349-368.

[64]

Kim JH, Nizami A, Hwangbo Y, et al. Tensile testing of ultra-thin films on water surface. Nat Commun. 2013; 4(1): 2520.

[65]

Wu HC, Benight SJ, Chortos A, et al. A rapid and facile soft contact lamination method: evaluation of polymer semiconductors for stretchable transistors. Chem Mater. 2014; 26(15): 4544-4551.

[66]

Quoc An V, Kim H, Nguyen VL, et al. A high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking. Adv Mater. 2017; 29(44): 1703363.

[67]

Zhang F, Chen X. Bioinspired strategies for stretchable conductors. Chem Res Chin Univ. 2023; 39(1): 30-41.

[68]

Feng B, Sun T, Wang W, et al. Venation-mimicking, ultrastretchable, room-temperature-attachable metal tapes for integrated electronic skins. Adv Mater. 2023; 35(8): 2208568.

[69]

Choi JH, Park CW, Na BS, et al. Highly stable Mo/Al bilayer electrode for stretchable electronics. J Inform Display. 2023; 24(2): 137-145.

[70]

Moon J, Ma W, Shin JH, et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat Electron. 2019; 2(10): 480-487.

[71]

Ghafoor F, Ismail M, Kim H, et al. Realization of future neuro-biological architecture in power efficient memristors of Fe3O4/WS2 hybrid nanocomposites. Nano Energy. 2024; 122: 109272.

[72]

Park S, Oh S, Lee D, Park JH. Ferro-floating memory: dual-mode ferroelectric floating memory and its application to in-memory computing. InfoMat. 2022; 4(11): e12367.

[73]

Sharbati MT, Du Y, Torres J, Ardolino ND, Yun M, Xiong F. Low-power, electrochemically tunable graphene synapses for neuromorphic computing. Adv Mater. 2018; 30(36): 1802353.

[74]

Shi Y, Nguyen L, Oh S, et al. Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays. Nat Commun. 2018; 9(1): 5312.

[75]

Lu XF, Zhang Y, Wang N, et al. Exploring low power and ultrafast memristor on p-type van der waals SnS. Nano Lett. 2021; 21(20): 8800-8807.

[76]

Krizhevsky A. Learning Multiple Layers of Features from Tiny Images. Department of Computer Science, University of Toronto; 2009.

[77]

Ielmini D, Wong HSP. In-memory computing with resistive switching devices. Nat Electron. 2018; 1(6): 333-343.

[78]

Yao P, Wu H, Gao B, et al. Fully hardware-implemented memristor convolutional neural network. Nature. 2020; 577(7792): 641-646.

[79]

Sun SY, Xu H, Li J, Li Q, Liu H. Cascaded architecture for memristor crossbar array based larger-scale neuromorphic computing. IEEE Access. 2019; 7: 61679-61688.

[80]

Liu G, Wang W, Guo Z, et al. Silicon based Bi0.9La0.1FeO3 ferroelectric tunnel junction memristor for convolutional neural network application. Nanoscale. 2023; 15(31): 13009-13017.

[81]

Zhong Y, Tang J, Li X, Gao B, Qian H, Wu H. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat Commun. 2021; 12(1): 408.

[82]

Sun T, Feng B, Huo J, et al. Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano-Micro Lett. 2024; 16(1): 14.

[83]

Paquot Y, Duport F, Smerieri A, et al. Optoelectronic reservoir computing. Sci Rep. 2012; 2(1): 287.

[84]

Torrejon J, Riou M, Araujo FA, et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature. 2017; 547(7664): 428-431.

[85]

Hénon M. The Theory of Chaotic Attractors. Springer; 2004.

[86]

Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag. 2001; 20(3): 45-50.

[87]

Van De Burgt Y, Lubberman E, Fuller EJ, et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat Mater. 2017; 16(4): 414-418.

[88]

Zhong Y, Tang J, Li X, et al. A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing. Nat Electron. 2022; 5(10): 672-681.

[89]

Chen Z, Li W, Fan Z, et al. All-ferroelectric implementation of reservoir computing. Nat Commun. 2023; 14(1): 3585.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

4

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/