All physical reservoir computing system with tunable temporal dynamics for multi-timescale information processing

Wanxin Huang , Yiru Wang , Jianyu Ming , Shanshuo Liu , Jing Liu , Jingwei Fu , Haotian Wang , Wen Li , Yannan Xie , Linghai Xie , Haifeng Ling , Wei Huang

InfoMat ›› 2025, Vol. 7 ›› Issue (6) : e12658

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (6) : e12658 DOI: 10.1002/inf2.12658
RESEARCH ARTICLE

All physical reservoir computing system with tunable temporal dynamics for multi-timescale information processing

Author information +
History +
PDF

Abstract

Physical reservoir computing (PRC) offers an effective computing paradigm for spatiotemporal information processing with low training costs. Achieving controllable regulation over the temporal dynamics of devices to meet the computational demands of each physical layer is a key challenge for realizing high-performance PRC chips. Here, we proposed a homogeneously integrated all-PRC with tunable temporal dynamics. Utilizing the modulation effect of oxygen vacancies on the energy barrier of the pentacene/ZnO interface, short-term memory, and long-term memory switching characteristics have been achieved within the same device structure. Furthermore, by altering the gate voltage, the reservoir exhibited a broad range ratio of temporal characteristics (>102), which provides the potential to map information with different temporal characteristics. Inspired by the process of encoding and reconstructing spatiotemporal information in the human visual system, a biomimetic obstacle recognition system has been constructed to assist visually impaired individuals in walking, demonstrating excellent accuracy in obstacle types (100%) and distances (97.2%) recognition. This work offers a promising avenue for the development of an integrated PRC system with multi-timescale information processing capability.

Keywords

homogeneous integration / OFET / oxygen vacancies / physical reservoir computing / temporal dynamics

Cite this article

Download citation ▾
Wanxin Huang, Yiru Wang, Jianyu Ming, Shanshuo Liu, Jing Liu, Jingwei Fu, Haotian Wang, Wen Li, Yannan Xie, Linghai Xie, Haifeng Ling, Wei Huang. All physical reservoir computing system with tunable temporal dynamics for multi-timescale information processing. InfoMat, 2025, 7(6): e12658 DOI:10.1002/inf2.12658

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kumar S, Wang X, Strachan JP, Yang Y, Lu WD. Dynamical memristors for higher-complexity neuromorphic computing. Nat Rev Mater. 2022; 7(7): 575-591.

[2]

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553): 436-444.

[3]

Liao F, Zhou Z, Kim BJ, et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat Electron. 2022; 5(2): 84-91.

[4]

Li C, Chen X, Zhang Z, et al. Charge-selective 2D heterointerface-driven multifunctional floating gate memory for in situ sensing-memory-computing. Nano Lett. 2024; 24(47): 15025-15034.

[5]

Chen X, Yang D, Hwang G, et al. Oscillatory neural network-based Ising machine using 2D memristors. ACS Nano. 2024; 18(16): 10758-10767.

[6]

Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 2002; 14(11): 2531-2560.

[7]

Zhang G, Qin J, Zhang Y, et al. Functional materials for memristor-based reservoir computing: dynamics and applications. Adv Funct Mater. 2023; 33(42): 2302929.

[8]

Sun L, Wang Z, Jiang J, et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci Adv. 2021; 7(20): eabg1455.

[9]

Liang X, Tang J, Zhong Y, Gao B, Qian H, Wu H. Physical reservoir computing with emerging electronics. Nat Electron. 2024; 7(3): 193-206.

[10]

Li P, Zhang M, Zhou Q, et al. Reconfigurable optoelectronic transistors for multimodal recognition. Nat Commun. 2024; 15(1): 3257.

[11]

Yan M, Huang C, Bienstman P, Tino P, Lin W, Sun J. Emerging opportunities and challenges for the future of reservoir computing. Nat Commun. 2024; 15(1): 2056.

[12]

Qi Z, Mi L, Qian H, Zheng W, Guo Y, Chai Y. Physical reservoir computing based on nanoscale materials and devices. Adv Funct Mater. 2023; 33(43): 2306149.

[13]

Fang R, Wang S, Zhang W, et al. Oxide-based electrolyte-gated transistors with stable and tunable relaxation responses for deep time-delayed reservoir computing. Adv Electron Mater. 2024; 10(4): 2300652.

[14]

Liu K, Zhang T, Dang B, et al. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat Electron. 2022; 5(11): 761-773.

[15]

Wang Y, Gong Y, Huang S, et al. Memristor-based biomimetic compound eye for real-time collision detection. Nat Commun. 2021; 12(1): 5979.

[16]

Zhou Z, Yan X, Zhao J, et al. Synapse behavior characterization and physical mechanism of a TiN/SiOx/p-Si tunneling memristor device. J Mater Chem C. 2019; 7(6): 1561-1567.

[17]

Yang Z, Wang T, Lin Y, et al. A vision chip with complementary pathways for open-world sensing. Nature. 2024; 629(8014): 1027-1033.

[18]

Chen R, Yang H, Li R, et al. Thin-film transistor for temporal self-adaptive reservoir computing with closed-loop architecture. Sci Adv. 2024; 10(7): eadl1299.

[19]

Gao C, Liu D, Xu C, et al. Toward grouped-reservoir computing: organic neuromorphic vertical transistor with distributed reservoir states for efficient recognition and prediction. Nat Commun. 2024; 15(1): 740.

[20]

Zhong Y, Tang J, Li X, et al. A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing. Nat Electron. 2022; 5(10): 672-681.

[21]

Zha J, Shi S, Chaturvedi A, et al. 2D reconfigurable memory device enabled by defect engineering for multifunctional neuromorphic computing. Adv Mater. 2023; 35(20): 2211598.

[22]

Chen Z, Li W, Fan Z, et al. All-ferroelectric implementation of reservoir computing. Nat Commun. 2023; 14(1): 3585.

[23]

Chu FJ, Chen YC, Shih LC, Mao SC, Chen JS. Reconfigurable physical reservoir enabled by polarization of ferroelectric polymer P(VDF-TrFE) and interface charge-trapping/detrapping in dual-gate IGZO transistor. Adv Funct Mater. 2023; 34(10): 2310951.

[24]

Varley JB, Weber JR, Janotti A, Van de Walle CG. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett. 2010; 97(14): 142106.

[25]

Gurylev V, Perng TP. Defect engineering of ZnO: review on oxygen and zinc vacancies. J Eur Ceram Soc. 2021; 41(10): 4977-4996.

[26]

Liu Z, Zhang Q, Xie D, et al. Interface-type tunable oxygen ion dynamics for physical reservoir computing. Nat Commun. 2023; 14(1): 7176.

[27]

Zhang Z, Zhao X, Zhang X, et al. In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat Commun. 2022; 13(1): 6590.

[28]

Lei J, Liu W, Jin Y, Li B. Oxygen vacancy-dependent chemiluminescence: a facile approach for quantifying oxygen defects in ZnO. Anal Chem. 2022; 94(24): 8642-8650.

[29]

Hsieh PT, Chen YC, Kao KS, Wang CM. Luminescence mechanism of ZnO thin film investigated by XPS measurement. Appl Phys A. 2007; 90(2): 317-321.

[30]

Chen M, Wang X, Yu Y, et al. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl Surf Sci. 2000; 158(1-2): 134-140.

[31]

Chang R-H, Yang K-C, Chen T-H, et al. Surface modification on the sputtering-deposited ZnO layer for ZnO-based schottky diode. J Nanomater. 2013; 2013(1): 15.

[32]

Tseng ZL, Chiang CH, Wu CG. Surface engineering of ZnO thin film for high efficiency planar perovskite solar cells. Sci Rep. 2015; 5(1): 13211.

[33]

Zhao Q, Xu XY, Song XF, et al. Enhanced field emission from ZnO nanorods via thermal annealing in oxygen. Appl Phys Lett. 2006; 88(3): 033102.

[34]

Zhang P, Wu J, Zhang T, et al. Perovskite solar cells with ZnO electron-transporting materials. Adv Mater. 2018; 30(3): 1703737.

[35]

Yogev S, Matsubara R, Nakamura M, Zschieschang U, Klauk H, Rosenwaks Y. Fermi level pinning by gap states in organic semiconductors. Phys Rev Lett. 2013; 110(3): 036803.

[36]

Jeong Y, Bae C, Kim D, et al. Bias-stress-stable solution-processed oxide thin film transistors. ACS Appl Mater Interfaces. 2010; 2(3): 611-615.

[37]

Penfold TJ, Szlachetko J, Santomauro FG, et al. Revealing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy. Nat Commun. 2018; 9(1): 478.

[38]

Wang Y, Liao Q, She D, et al. Modulation of binary neuroplasticity in a heterojunction-based ambipolar transistor. ACS Appl Mater Interfaces. 2020; 12(13): 15370-15379.

[39]

Sun Y, Ding Y, Xie D. Mixed-dimensional van der Waals heterostructures enabled optoelectronic synaptic devices for neuromorphic applications. Adv Funct Mater. 2021; 31(47): 2105625.

[40]

Wang L, Zheng C, Fu J, et al. Influence of molecular weight of polymer electret on the synaptic organic field-effect transistor performance. Adv Electron Mater. 2022; 8(9): 2200155.

[41]

Moon J, Ma W, Shin JH, et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat Electron. 2019; 2(10): 480-487.

[42]

Cao J, Zhang X, Cheng H, et al. Emerging dynamic memristors for neuromorphic reservoir computing. Nanoscale. 2022; 14(2): 289-298.

[43]

Jiang N, Tang J, Zhang W, et al. Bioinspired in-sensor reservoir computing for self-adaptive visual recognition with two-dimensional dual-mode phototransistors. Adv Opt Mater. 2023; 11(15): 2300271.

[44]

Yamazaki Y, Kinoshita K. Photonic physical reservoir computing with tunable relaxation time constant. Adv Sci. 2024; 11(3): e2304804.

[45]

Zhao Y, Yu D, Lei Z, et al. An artificial optoelectronic nociceptor based on In2S3 memristor. J Phys D. 2021; 55: 125401.

[46]

Du C, Cai F, Zidan MA, Ma W, Lee SH, Lu WD. Reservoir computing using dynamic memristors for temporal information processing. Nat Commun. 2017; 8(1): 2204.

[47]

Shao H, Li Y, Chen J, et al. Mimicking evasive behavior in wavelength-dependent reconfigurable phototransistors with ultralow power consumption. SmartMat. 2023; 5(4): e1230.

[48]

Yu Z, Liu JK, Jia S, et al. Toward the next generation of retinal neuroprosthesis: visual computation with spikes. Engineering. 2020; 6(4): 449-461.

[49]

Zheng Y, Jia S, Yu Z, Liu JK, Huang T. Unraveling neural coding of dynamic natural visual scenes via convolutional recurrent neural networks. Patterns. 2021; 2(10): 100350.

[50]

Feng S, Cui Z, Han Z, Li H, Yu H. V1-origin bidirectional plasticity in visual thalamo-ventral pathway and its contribution to saliency detection of dynamic visual inputs. J Neurosci. 2022; 42(33): 6359-6379.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

4

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/