Trap-induced persistent luminescence in organic light-emitting diodes

Zishuang Wu , Cunjian Lin , Rujun Yang , Chenhan Zhan , Yajing Wang , Kai-Ning Tong , Shihai You , Ying Lv , Guodan Wei , Jumpei Ueda , Yixi Zhuang , Rong-Jun Xie

InfoMat ›› 2025, Vol. 7 ›› Issue (5) : e12657

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (5) : e12657 DOI: 10.1002/inf2.12657
RESEARCH ARTICLE

Trap-induced persistent luminescence in organic light-emitting diodes

Author information +
History +
PDF

Abstract

Luminescence in organics that lasts for seconds to a few hours after light excitation has been reported recently, showcasing significant application potentials in flexible electronics and bioimaging. In contrast, long-lasting luminescence that can be electrically excited, whether in organics or inorganics, is much rarer and often less efficient. In this study, we report persistent luminescence (PersL) in organic light-emitting diodes (OLEDs) that lasts over 100 s and an energy storage effect beyond 60 min after charging with a direct-current electric field. Thermoluminescence studies reveal that the PersL in OLEDs is induced by traps formed in a host-guest molecular system serving as an emission layer (EML) with a trap depth of approximately 0.24 eV, consistent with the results from the same EML materials under light irradiation. Integrating results from electronic spin resonance, and density functional theory calculations, we propose a model delineating the charge carrier migration responsible for the trap-induced PersL in OLEDs. This study on trap-induced PersL in OLEDs may deepen our understanding of the luminescence mechanism in organic semiconductors and pave the way for expanding their applications in optoelectronics, energy storage and biological detection technologies.

Keywords

DFT calculations / organic light-emitting diodes / organic persistent luminescence / time–temperature indicators / traps in organics

Cite this article

Download citation ▾
Zishuang Wu, Cunjian Lin, Rujun Yang, Chenhan Zhan, Yajing Wang, Kai-Ning Tong, Shihai You, Ying Lv, Guodan Wei, Jumpei Ueda, Yixi Zhuang, Rong-Jun Xie. Trap-induced persistent luminescence in organic light-emitting diodes. InfoMat, 2025, 7(5): e12657 DOI:10.1002/inf2.12657

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou B, Yan D. Long persistent luminescence from metal-organic compounds: state of the art. Adv Funct Mater. 2023; 33(19): 2300735.

[2]

Li Q, Tang Y, Hu W, Li Z. Fluorescence of nonaromatic organic systems and room temperature phosphorescence of organic luminogens: the intrinsic principle and recent progress. Small. 2018; 14(38): 1801560.

[3]

Huang Y, Hsiang E-L, Deng M-Y, Wu S-T. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light Sci Appl. 2020; 9(1): 105.

[4]

Chow PC, Someya T. Organic photodetectors for next-generation wearable electronics. Adv Mater. 2020; 32(15): 1902045.

[5]

Ling H, Liu S, Zheng Z, Yan F. Organic flexible electronics. Small Methods. 2018; 2(10): 1800070.

[6]

Zhao W, He Z, Tang BZ. Room-temperature phosphorescence from organic aggregates. Nat Rev Mater. 2020; 5(12): 869-885.

[7]

Ye W, Ma H, Shi H, et al. Confining isolated chromophores for highly efficient blue phosphorescence. Nat Mater. 2021; 20(11): 1539-1544.

[8]

Zhang N, Qu L, Dai S, et al. Intramolecular charge transfer enables highly-efficient x-ray luminescence in cluster scintillators. Nat Commun. 2023; 14(1): 2901.

[9]

An Z, Zheng C, Tao Y, et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat Mater. 2015; 14(7): 685-690.

[10]

Liang Y, Hu P, Zhang H, et al. Enabling highly robust full-color ultralong room-temperature phosphorescence and stable white organic afterglow from polycyclic aromatic hydrocarbons. Angew Chem Int Ed. 2024; 63(10): e202318516.

[11]

Zhou B, Yan D. Simultaneous long-persistent blue luminescence and high quantum yield within 2D organic-metal halide perovskite micro/nanosheets. Angew Chem Int Ed. 2019; 131(42): 15272-15279.

[12]

Xie Y, Ge Y, Peng Q, Li C, Li Q, Li Z. How the molecular packing affects the room temperature phosphorescence in pure organic compounds: ingenious molecular design, detailed crystal analysis, and rational theoretical calculations. Adv Mater. 2017; 29(17): 1606829.

[13]

Chen C, Chi Z, Chong KC, et al. Carbazole isomers induce ultralong organic phosphorescence. Nat Mater. 2021; 20(2): 175-180.

[14]

Ju C-W, Wang X-C, Li B, et al. Evolution of organic phosphor through precision regulation of nonradiative decay. Proc Natl Acad Sci U S A. 2023; 120(46): e2310883120.

[15]

Miao Y, Lin F, Guo D, et al. Stable and ultralong room-temperature phosphorescent copolymers with excellent adhesion, resistance, and toughness. Sci Adv. 2024; 10(10): eadk3354.

[16]

Xie W, Huang W, Li J, et al. Anti-kasha triplet energy transfer and excitation wavelength dependent persistent luminescence from host-guest doping systems. Nat Commun. 2023; 14(1): 8098.

[17]

Zhou L, Song J, He Z, et al. Achieving efficient dark blue room-temperature phosphorescence with ultra-wide range tunable-lifetime. Angew Chem Int Ed. 2024; 63(22): e202403773.

[18]

Yu J, Sun Z, Ma H, et al. Efficient visible light activated ultralong room temperature phosphorescence triggered by multi-esterification. Angew Chem Int Ed. 2023; 135(52): e202316647.

[19]

Kabe R, Adachi C. Organic long persistent luminescence. Nature. 2017; 550(7676): 384-387.

[20]

Jinnai K, Kabe R, Lin Z, Adachi C. Organic long-persistent luminescence stimulated by visible light in p-type systems based on organic photoredox catalyst dopants. Nat Mater. 2022; 21(3): 338-344.

[21]

Li W, Li Z, Si C, et al. Organic long-persistent luminescence from a thermally activated delayed fluorescence compound. Adv Mater. 2020; 32(45): 2003911.

[22]

Alam P, Leung NLC, Liu J, et al. Two are better than one: a design principle for ultralong-persistent luminescence of pure organics. Adv Mater. 2020; 32(22): 2001026.

[23]

Liang X, Zheng YX, Zuo JL. Two-photon ionization induced stable white organic long persistent luminescence. Angew Chem Int Ed. 2021; 60(31): 16984-16988.

[24]

Alam P, Cheung TS, Leung NLC, et al. Organic long-persistent luminescence from a single-component aggregate. J Am Chem Soc. 2022; 144(7): 3050-3062.

[25]

Jiang K, Wang Y, Lin C, et al. Enabling robust and hour-level organic long persistent luminescence from carbon dots by covalent fixation. Light Sci Appl. 2022; 11(1): 80.

[26]

Zhou Y, Zhang P, Liu Z, et al. Sunlight-activated hour-long afterglow from transparent and flexible polymers. Adv Mater. 2024; 16: 2312439.

[27]

Lin C, Wu Z, Ma H, et al. Charge trapping for controllable persistent luminescence in organics. Nat Photonics. 2024; 18(4): 350-356.

[28]

Liang L, Chen J, Shao K, Qin X, Pan Z, Liu X. Controlling persistent luminescence in nanocrystalline phosphors. Nat Mater. 2023; 22(3): 289-304.

[29]

Ou X, Qin X, Huang B, et al. High-resolution x-ray luminescence extension imaging. Nature. 2021; 590(7846): 410-415.

[30]

Pan Z, Lu Y-Y, Liu F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat Mater. 2012; 11(1): 58-63.

[31]

Li Y, Gecevicius M, Qiu J. Long persistent phosphors—from fundamentals to applications. Chem Soc Rev. 2016; 45(8): 2090-2136.

[32]

Wei Y, Gong C, Zhao M, et al. Recent progress in synthesis of lanthanide-based persistent luminescence nanoparticles. J Rare Earths. 2022; 40(9): 1333-1342.

[33]

Ueda J. How to design and analyze persistent phosphors? Bull Chem Soc Jpn. 2021; 94(12): 2807-2821.

[34]

Xu J, Tanabe S. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective. Journal of Luminescence. 2019; 205: 581-620.

[35]

Walfort B, Gartmann N, Afshani J, Rosspeintner A, Hagemann H. Effect of excitation wavelength (blue vs near UV) and dopant concentrations on afterglow and fast decay of persistent phosphor SrAl2O4: Eu2+, Dy3+. J Rare Earths. 2022; 40(7): 1022-1028.

[36]

Tang CW, VanSlyke SA. Organic electroluminescent diodes. Appl Phys Lett. 1987; 51(12): 913-915.

[37]

Baldo MA, O'Brien DF, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature. 1998; 395(6698): 151-154.

[38]

Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature. 2012; 492(7428): 234-238.

[39]

Wang L, Xiao L, Gu H, Sun H. Advances in alternating current electroluminescent devices. Adv Opt Mater. 2019; 7(7): 1801154.

[40]

Lv H, Tang H, Cai Y, et al. Highly stable metal-free long-persistent luminescent copolymer for low flicker AC-LEDs. Angew Chem Int Ed. 2022; 134(30): e202204209.

[41]

Kabe R, Notsuka N, Yoshida K, Adachi C. Afterglow organic light-emitting diode. Adv Mater. 2015; 28(4): 655-660.

[42]

Feng H-T, Zeng J, Yin P-A, et al. Tuning molecular emission of organic emitters from fluorescence to phosphorescence through push-pull electronic effects. Nat Commun. 2020; 11(1): 2617.

[43]

Tan S, Jinnai K, Kabe R, Adachi C. Long-persistent luminescence from an exciplex-based organic light-emitting diode. Adv Mater. 2021; 33(23): 2008844.

[44]

Qiu W, Liu D, Chen Z, et al. Afterglow OLEDs incorporating bright closely stacked molecular dimers with ultra-long thermally activated delayed fluorescence. Matter. 2023; 6(4): 1231-1248.

[45]

Song Y, Du J, Yang R, et al. Recyclable time-temperature indicator enabled by light storage in particles. Adv Opt Mater. 2023; 11(8): 2202654.

[46]

Im Y, Kim M, Cho YJ, Seo JA, Yook KS, Lee JY. Molecular design strategy of organic thermally activated delayed fluorescence emitters. Chem Mater. 2017; 29(5): 1946-1963.

[47]

Liu W, Zhang C, Alessandri R, et al. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nat Mater. 2023; 22(6): 737-745.

[48]

Bos AJ. Thermoluminescence as a research tool to investigate luminescence mechanisms. Materials. 2017; 10(12): 1357.

[49]

Xue J, Xu J, Liang Q, et al. Deepening insights into aggregation effect of intermolecular charge-transfer aggregates for highly efficient near-infrared non-doped organic light-emitting diodes over 780 nm. Adv Funct Mater. 2023; 33(30): 2301312.

[50]

McMinn W, Magee T. Kinetics of ascorbic acid degradation and non-enzymic browning in potatoes. Food Bioprod Process. 1997; 75(4): 223-231.

[51]

Singh R, Lund D, Buelow F. Storage stability of intermediate moisture apples: kinetics of quality change. J Food Sci. 1983; 48(3): 939-944.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

4

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/