Advanced carbon as emerging energy materials in lithium batteries: A theoretical perspective

Legeng Yu , Xiang Chen , Nan Yao , Yu-Chen Gao , Yu-Hang Yuan , Yan-Bin Gao , Cheng Tang , Qiang Zhang

InfoMat ›› 2025, Vol. 7 ›› Issue (5) : e12653

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (5) : e12653 DOI: 10.1002/inf2.12653
REVIEW ARTICLE

Advanced carbon as emerging energy materials in lithium batteries: A theoretical perspective

Author information +
History +
PDF

Abstract

Lithium batteries are becoming increasingly vital thanks to electric vehicles and large-scale energy storage. Carbon materials have been applied in battery cathode, anode, electrolyte, and separator to enhance the electrochemical performance of rechargeable lithium batteries. Their functions cover lithium storage, electrochemical catalysis, electrode protection, charge conduction, and so on. To rationally implement carbon materials, their properties and interactions with other battery materials have been probed by theoretical models, namely density functional theory and molecular dynamics. This review summarizes the use of theoretical models to guide the employment of carbon materials in advanced lithium batteries, providing critical information difficult or impossible to obtain from experiments, including lithiophilicity, energy barriers, coordination structures, and species distribution at interfaces. Carbon materials under discussion include zero-dimensional fullerenes and capsules, one-dimensional nanotubes and nanoribbons, two-dimensional graphene, and three-dimensional graphite and amorphous carbon, as well as their derivatives. Their electronic conductivities are explored, followed by applications in cathode and anode performance. While the role of theoretical models is emphasized, experimental data are also touched upon to clarify background information and show the effectiveness of strategies. Evidently, carbon materials prove promising in achieving superior energy density, rate performance, and cycle life, especially when informed by theoretical endeavors.

Keywords

carbon energy materials / density functional theory / electrode materials / lithium batteries / molecular dynamics

Cite this article

Download citation ▾
Legeng Yu, Xiang Chen, Nan Yao, Yu-Chen Gao, Yu-Hang Yuan, Yan-Bin Gao, Cheng Tang, Qiang Zhang. Advanced carbon as emerging energy materials in lithium batteries: A theoretical perspective. InfoMat, 2025, 7(5): e12653 DOI:10.1002/inf2.12653

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Grey CP, Hall DS. Prospects for lithium-ion batteries and beyond—a 2030 vision. Nat Commun. 2020; 11(1): 6279.

[2]

Xie J, Lu Y-C. A retrospective on lithium-ion batteries. Nat Commun. 2020; 11(1): 2499.

[3]

Larcher D, Tarascon J-M. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015; 7(1): 19-29.

[4]

Wulandari T, Fawcett D, Majumder SB, Poinern GEJ. Lithium-based batteries, history, current status, challenges, and future perspectives. Battery Energy. 2023; 2(6): 20230030.

[5]

Xin S, Zhang X, Wang L, et al. Roadmap for rechargeable batteries: present and beyond. Sci China Chem. 2024; 67(1): 13-42.

[6]

Cheng X-B, Liu H, Yuan H, et al. A perspective on sustainable energy materials for lithium batteries. SusMat. 2021; 1(1): 38-50.

[7]

Zhang S, Li S, Lu Y. Designing safer lithium-based batteries with nonflammable electrolytes: a review. eScience. 2021; 1(2): 163-177.

[8]

Kumar Prajapati A, Bhatnagar A. A review on anode materials for lithium/sodium-ion batteries. J Energy Chem. 2023; 83: 509-540.

[9]

Xu P, Shuang Z-Y, Zhao C-Z, et al. A review of solid-state lithium metal batteries through in-situ solidification. Sci China Chem. 2024; 67(1): 67-86.

[10]

Shen X, Zhang X-Q, Ding F, et al. Advanced electrode materials in lithium batteries: retrospect and prospect. Energy Mater Adv. 2021; 2021: 1205324.

[11]

Zhang X-Q, Zhao C-Z, Huang J-Q, Zhang Q. Recent advances in energy chemical engineering of next-generation lithium batteries. Engineering. 2018; 4(6): 831-847.

[12]

Jin C-B, Shi P, Zhang X-Q, Huang J-Q. Advances in carbon materials for stable lithium metal batteries. New Carbon Mater. 2022; 37(1): 1-24.

[13]

Cai W, Yao Y-X, Zhu G-L, et al. A review on energy chemistry of fast-charging anodes. Chem Soc Rev. 2020; 49(12): 3806-3833.

[14]

Chen L, Wu H, Ai X, Cao Y, Chen Z. Toward wide-temperature electrolyte for lithium-ion batteries. Battery Energy. 2022; 1(2): 20210006.

[15]

Rodrigues M-TF, Babu G, Gullapalli H, et al. A materials perspective on Li-ion batteries at extreme temperatures. Nat Energy. 2017; 2(8): 17108.

[16]

Li Z, Yao N, Yu L, et al. Inhibiting gas generation to achieve ultralong-lifespan lithium-ion batteries at low temperatures. Matter. 2023; 6(7): 2274-2292.

[17]

Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017; 12(3): 194-206.

[18]

Xu B, Li X, Yang C, et al. Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J Am Chem Soc. 2021; 143(17): 6542-6550.

[19]

Xu W, Wang J, Ding F, et al. Lithium metal anodes for rechargeable batteries. Energ Environ Sci. 2014; 7(2): 513-537.

[20]

Mo R, Tan X, Li F, et al. Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities. Nat Commun. 2020; 11(1): 1374.

[21]

Liu H, Cheng X, Yan C, et al. A perspective on energy chemistry of low-temperature lithium metal batteries. iEnergy. 2022; 1(1): 72-81.

[22]

Huang W-Z, Xu P, Huang X-Y, et al. Lithium metal anode: past, present, and future. MetalMat. 2024; 1(1): e6.

[23]

Yang S-J, Jiang F-N, Hu J-K, et al. Life cycle safety issues of lithium metal batteries: a perspective. Electron. 2023; 1(2): e8.

[24]

Huang J, Li F, Wu M, et al. Electrolyte chemistry for lithium metal batteries. Sci China Chem. 2022; 65(5): 840-857.

[25]

Yuan S, Kong T, Zhang Y, et al. Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions. Angew Chem Int Ed. 2021; 60(49): 25624-25638.

[26]

He Z, Chen Y, Huang F, et al. Fluorinated solvents for lithium metal batteries. Acta Phys Chim Sin. 2022; 38: 2205005.

[27]

Yang Y, Yan C, Huang J. Research progress of solid electrolyte interphase in lithium batteries. Acta Phys Chim Sin. 2021; 37: 2010076.

[28]

Zhang L, Zhu C, Yu S, Ge D, Zhou H. Status and challenges facing representative anode materials for rechargeable lithium batteries. J Energy Chem. 2022; 66: 260-294.

[29]

Rosolen JM, Decker F. Stress in carbon film electrodes during Li+ electrochemical intercalation. J Electrochem Soc. 1996; 143(8): 2417-2421.

[30]

Shi P, Li T, Zhang R, et al. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries. Adv Mater. 2019; 31(8): 1807131.

[31]

Lee J, Lee TH, Jang HW, Park HS. Chemical modification of ordered/disordered carbon nanostructures for metal hosts and electrocatalysts of lithium-air batteries. InfoMat. 2022; 4(1): e12268.

[32]

Li Z, Huang Y, Yuan L, Hao Z, Huang Y. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon. 2015; 92: 41-63.

[33]

Han J-G, Hwang C, Kim SH, et al. An antiaging electrolyte additive for high-energy-density lithium-ion batteries. Adv Energy Mater. 2020; 10(20): 2000563.

[34]

Yan K, Lee H-W, Gao T, et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014; 14(10): 6016-6022.

[35]

Wu L, Yao X, Liu Y, et al. A g-C3N4-coated paper-based separator for sodium metal batteries. J Solid State Electrochem. 2021; 25(4): 1373-1381.

[36]

Yao N, Sun S-Y, Chen X, et al. The anionic chemistry in regulating the reductive stability of electrolytes for lithium metal batteries. Angew Chem Int Ed. 2022; 61(52): e202210859.

[37]

Beltran SP, Cao X, Zhang J-G, Balbuena PB. Localized high concentration electrolytes for high voltage lithium-metal batteries: correlation between the electrolyte composition and its reductive/oxidative stability. Chem Mater. 2020; 32(14): 5973-5984.

[38]

Wang F, Sun Y, Cheng J. Switching of redox levels leads to high reductive stability in water-in-salt electrolytes. J Am Chem Soc. 2023; 145(7): 4056-4064.

[39]

Gao Y-C, Yao N, Chen X, et al. Data-driven insight into the reductive stability of ion-solvent complexes in lithium battery electrolytes. J Am Chem Soc. 2023; 145(43): 23764-23770.

[40]

Chen X, Bai Y-K, Zhao C-Z, Shen X, Zhang Q. Lithium bonds in lithium batteries. Angew Chem Int Ed. 2020; 59(28): 11192-11195.

[41]

Hou T-Z, Xu W-T, Chen X, Peng H-J, Huang JQ, Zhang Q. Lithium bond chemistry in lithium-sulfur batteries. Angew Chem Int Ed. 2017; 56(28): 8178-8182.

[42]

Feng S, Fu Z-H, Chen X, et al. An electrocatalytic model of the sulfur reduction reaction in lithium-sulfur batteries. Angew Chem Int Ed. 2022; 61(52): e202211448.

[43]

Yao N, Chen X, Fu Z-H, Zhang Q. Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries. Chem Rev. 2022; 122(12): 10970-11021.

[44]

Sundararaman R, Vigil-Fowler D, Schwarz K. Improving the accuracy of atomistic simulations of the electrochemical interface. Chem Rev. 2022; 122(12): 10651-10674.

[45]

Yao N, Chen X, Shen X, et al. An atomic insight into the chemical origin and variation of the dielectric constant in liquid electrolytes. Angew Chem Int Ed. 2021; 60(39): 21473-21478.

[46]

Yao N, Yu L, Fu Z-H, et al. Probing the origin of viscosity of liquid electrolytes for lithium batteries. Angew Chem Int Ed. 2023; 62(41): e202305331.

[47]

Sakong S, Huang J, Eikerling M, Groß A. The structure of the electric double layer: atomistic versus continuum approaches. Curr Opin Electrochem. 2022; 33: 100953.

[48]

Eyvazi N, Biagooi M, Nedaaee OS. Molecular dynamics investigation of charging process in polyelectrolyte-based supercapacitors. Sci Rep. 2022; 12(1): 1098.

[49]

Lee HG, Kim SY, Lee JS. Dynamic observation of dendrite growth on lithium metal anode during battery charging/discharging cycles. npj Comput Mater. 2022; 8(1): 103.

[50]

Chen X, Shen X, Li B, et al. Ion-solvent complexes promote gas evolution from electrolytes on a sodium metal anode. Angew Chem Int Ed. 2018; 57(3): 734-737.

[51]

Feng S, Fu Z-H, Chen X, Zhang Q. A review on theoretical models for lithium-sulfur battery cathodes. InfoMat. 2022; 4: e12304.

[52]

Matsumura Y, Wang S, Mondori J. Interactions between disordered carbon and lithium in lithium ion rechargeable batteries. Carbon. 1995; 33(10): 1457-1462.

[53]

Miranda D, Costa CM, Lanceros-Mendez S. Lithium ion rechargeable batteries: state of the art and future needs of microscopic theoretical models and simulations. J Electroanal Chem. 2015; 739: 97-110.

[54]

Miranda D, Gonçalves R, Wuttke S, Costa CM, Lanceros-Méndez S. Overview on theoretical simulations of lithium-ion batteries and their application to battery separators. Adv Energy Mater. 2023; 13(13): 2203874.

[55]

Wu Y, He J, Yang L, et al. Multiscale and multiphysics theoretical model and computational method for lithium-ion batteries. Energy Storage Sci Technol. 2023; 12(7): 2141-2154.

[56]

Chen A, Wang Z, Vidaurre KLL, et al. Knowledge-reused transfer learning for molecular and materials science. J Energy Chem. 2024; 98: 149-168.

[57]

Fu Z-H, Chen X, Zhang Q. Review on the lithium transport mechanism in solid-state battery materials. WIREs Comput Mol Sci. 2023; 13(1): e1621.

[58]

Chen X, Zhang Q. Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc Chem Res. 2020; 53(9): 1992-2002.

[59]

Amaral MM, Real CG, Yukuhiro VY, et al. In situ and operando infrared spectroscopy of battery systems: progress and opportunities. J Energy Chem. 2023; 81: 472-491.

[60]

Alvira D, Antorán D, Manyà JJ. Plant-derived hard carbon as anode for sodium-ion batteries: a comprehensive review to guide interdisciplinary research. Chem Eng J. 2022; 447: 137468.

[61]

Chen X, Liu C, Fang Y, et al. Understanding of the sodium storage mechanism in hard carbon anodes. Carbon Energy. 2022; 4(6): 1133-1150.

[62]

Bommel S, Kleppmann N, Weber C, et al. Unravelling the multilayer growth of the fullerene C60 in real time. Nat Commun. 2014; 5(1): 5388.

[63]

Diener MD, Alford JM. Isolation and properties of small-bandgap fullerenes. Nature. 1998; 393(6686): 668-671.

[64]

Haddon RC, Hebard AF, Rosseinsky MJ, et al. Conducting films of C60 and C70 by alkali-metal doping. Nature. 1991; 350(6316): 320-322.

[65]

Hebard AF, Rosseinsky MJ, Haddon RC, et al. Superconductivity at 18 K in potassium-doped C60. Nature. 1991; 350(6319): 600-601.

[66]

Ramirez AP. Superconductivity in alkali-doped C60. Physica C Supercond. 2015; 514: 166-172.

[67]

Schön JH, Kloc C, Siegrist T, Steigerwald M, Svensson C, Batlogg B. Superconductivity in single crystals of the fullerene C70. Nature. 2001; 413(6858): 831-833.

[68]

Tanigaki K, Ebbesen TW, Saito S, et al. Superconductivity at 33 K in CsxRbyC60. Nature. 1991; 352(6332): 222-223.

[69]

Kim TJ, Yoon JH, Yi G-R, Yoo PJ. Si nanoparticle clusters in hollow carbon capsules (SNC@C) as lithium battery anodes: toward high initial coulombic efficiency. Nanoscale. 2019; 11(28): 13650-13658.

[70]

Zhang S, Ao X, Huang J, et al. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021; 21(22): 9691-9698.

[71]

Xiao Z, Yu Z, Ma X, Xu C. S,N-codoped carbon capsules with microsized entrance: highly stable S reservoir for Li-S batteries. Adv Powder Technol. 2021; 32(5): 1757-1765.

[72]

Chen Z, Narita A, Müllen K. Graphene nanoribbons: on-surface synthesis and integration into electronic devices. Adv Mater. 2020; 32(45): 2001893.

[73]

Wang H, Wang HS, Ma C, et al. Graphene nanoribbons for quantum electronics. Nat Rev Phys. 2021; 3(12): 791-802.

[74]

Gu Y, Qiu Z, Müllen K. Nanographenes and graphene nanoribbons as multitalents of present and future materials science. J Am Chem Soc. 2022; 144(26): 11499-11524.

[75]

Saraswat V, Jacobberger RM, Arnold MS. Materials science challenges to graphene nanoribbon electronics. ACS Nano. 2021; 15(3): 3674-3708.

[76]

Huang LF, Zhang GR, Zheng XH, et al. Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon. J Phys Condens Matter. 2013; 25: 055304.

[77]

Mota EAV, da Silva CAB, Del Nero J. Theoretical investigation of width effects in the electronic and transport properties of carbon nanoribbons with 5-8-5 carbon rings: a first-principles study. J Mater Chem C. 2024; 12(4): 1459-1473.

[78]

Bang K, Chee S-S, Kim K, et al. Effect of ribbon width on electrical transport properties of graphene nanoribbons. Nano Converg. 2018; 5(1): 7.

[79]

Yang L, Park C-H, Son Y-W, Cohen ML, Louie SG. Quasiparticle energies and band gaps in graphene nanoribbons. Phys Rev Lett. 2007; 99(18): 186801.

[80]

Kosynkin DV, Lu W, Sinitskii A, Pera G, Sun Z, Tour JM. Highly conductive graphene nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor. ACS Nano. 2011; 5(2): 968-974.

[81]

Son Y-W, Cohen ML, Louie SG. Half-metallic graphene nanoribbons. Nature. 2006; 444(7117): 347-349.

[82]

Aprojanz J, Power SR, Bampoulis P, et al. Ballistic tracks in graphene nanoribbons. Nat Commun. 2018; 9(1): 4426.

[83]

Baringhaus J, Ruan M, Edler F, et al. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature. 2014; 506(7488): 349-354.

[84]

Qin L-C. Determination of the chiral indices (n,m) of carbon nanotubes by electron diffraction. Phys Chem Chem Phys. 2007; 9(1): 31-48.

[85]

Slepyan GY, Maksimenko SA, Lakhtakia A, Yevtushenko O, Gusakov AV. Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions, and surface wave propagation. Phys Rev B. 1999; 60(24): 17136-17149.

[86]

Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature. 1996; 382(6586): 54-56.

[87]

Javey A, Guo J, Wang Q, Lundstrom M, Dai H. Ballistic carbon nanotube field-effect transistors. Nature. 2003; 424(6949): 654-657.

[88]

White CT, Todorov TN. Carbon nanotubes as long ballistic conductors. Nature. 1998; 393(6682): 240-242.

[89]

Zhao M-Q, Liu X-F, Zhang Q, et al. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries. ACS Nano. 2012; 6(12): 10759-10769.

[90]

He Z, Xiao Z, Yue H, et al. Single-walled carbon nanotube film as an efficient conductive network for Si-based anodes. Adv Funct Mater. 2023; 33(26): 2300094.

[91]

Dressler RA, Dahn JR. Optimization of Si-containing and SiO based anodes with single-walled carbon nanotubes for high energy density applications. J Electrochem Soc. 2024; 171(3): 030520.

[92]

Lim SH, Li R, Ji W, Lin J. Effects of nitrogenation on single-walled carbon nanotubes within density functional theory. Phys Rev B. 2007; 76(19): 195406.

[93]

Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys. 2009; 81(1): 109-162.

[94]

Rizzi L, Zienert A, Schuster J, Köhne M, Schulz SE. Electrical conductivity modeling of graphene-based conductor materials. ACS Appl Mater Interfaces. 2018; 10(49): 43088-43094.

[95]

Xu H, Ma L, Jin Z. Nitrogen-doped graphene: synthesis, characterizations and energy applications. J Energy Chem. 2018; 27(1): 146-160.

[96]

Yuan Y, Zhang L, Xing J, et al. High-yield synthesis and optical properties of g-C3N4. Nanoscale. 2015; 7(29): 12343-12350.

[97]

Wudil YS, Ahmad UF, Gondal MA, et al. Tuning of graphitic carbon nitride (g-C3N4) for photocatalysis: a critical review. Arab J Chem. 2023; 16(3): 104542.

[98]

Zhang Y, Mori T, Ye J, Antonietti M. Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J Am Chem Soc. 2010; 132(18): 6294-6295.

[99]

Dong G, Zhao K, Zhang L. Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem Commun. 2012; 48(49): 6178-6180.

[100]

Lan Z-A, Zhang G, Wang X. A facile synthesis of br-modified g-C3N4 semiconductors for photoredox water splitting. Appl Catal Environ. 2016; 192: 116-125.

[101]

Zhang S, Li J, Zeng M, Li J, Xu J, Wang X. Bandgap engineering and mechanism study of nonmetal and metal ion codoped carbon nitride: C + Fe as an example. Chem A Eur J. 2014; 20(31): 9805-9812.

[102]

Sugihara K, Sato H. Electrical conductivity of graphite. J Physical Soc Japan. 1963; 18(3): 332-341.

[103]

Buerschaper RA. Thermal and electrical conductivity of graphite and carbon at low temperatures. J Appl Phys. 1944; 15(5): 452-454.

[104]

Pietronero L, Strassler S, Zeller HR. Electrical conductivity of a graphite layer. Phys Rev B. 1980; 22(2): 904-910.

[105]

Cermak M, Perez N, Collins M, Bahrami M. Material properties and structure of natural graphite sheet. Sci Rep. 2020; 10(1): 18672.

[106]

Dasgupta D, Demichelis F, Tagliaferro A. Electrical conductivity of amorphous carbon and amorphous hydrogenated carbon. Philos Mag B. 1991; 63(6): 1255-1266.

[107]

Qiu H, Wan J, Zhang J, et al. Probing mechanistic insights into highly efficient lithium storage of C60 fullerene enabled via three-electron-redox chemistry. Adv Sci. 2021; 8: 2101759.

[108]

Seger L, Wen LQ, Schlenoff JB. Prospects for using  C60 and  C70 in lithium batteries. J Electrochem Soc. 1991; 138(12): L81-L82.

[109]

Hudaya C, Halim M, Pröll J, et al. A polymerized C60 coating enhancing interfacial stability at three-dimensional LiCoO2 in high-potential regime. J Power Sources. 2015; 298: 1-7.

[110]

Peng H-J, Huang J-Q, Cheng X-B, Zhang Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv Energy Mater. 2017; 7(24): 1700260.

[111]

An Y, Tian Y, Fei H, et al. Facile preparation of fullerene nanorods for high-performance lithium-sulfur batteries. Mater Lett. 2018; 228: 175-178.

[112]

Xia M, Zhang N, Ge C. Mesoporous hollow carbon capsules as sulfur hosts for highly stable lithium-sulfur batteries. J Mater Sci. 2020; 55(22): 9516-9524.

[113]

Yang Y, Li L, Fei H, Peng Z, Ruan G, Tour JM. Graphene nanoribbon/V2O5 cathodes in lithium-ion batteries. ACS Appl Mater Interfaces. 2014; 6(12): 9590-9594.

[114]

Hou T-Z, Peng H-J, Huang J-Q, Zhang Q, Li B. The formation of strong-couple interactions between nitrogen-doped graphene and sulfur/lithium (poly)sulfides in lithium-sulfur batteries. 2D Mater. 2015; 2(1): 014011.

[115]

Hou T-Z, Chen X, Peng H-J, et al. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small. 2016; 12(24): 3283-3291.

[116]

Peng H-J, Hou T-Z, Zhang Q, et al. Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium-sulfur batteries: mechanistic insight into capacity degradation. Adv Mater Interfaces. 2014; 1(7): 1400227.

[117]

Wu M-r, Gao M-y, Zhang S-y, et al. High-performance lithium-sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method. Int J Min Met Mater. 2021; 28(10): 1656-1665.

[118]

Li Z, Yu L, Bi C-X, et al. A three-way electrolyte with ternary solvents for high-energy-density and long-cycling lithium-sulfur pouch cells. SusMat. 2024; 4(2): e191.

[119]

Zhang Q, Huang J-Q, Qian W-Z, Zhang Y-Y, Wei F. The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small. 2013; 9(8): 1237-1265.

[120]

Yuan Z, Peng H-J, Huang J-Q, et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv Funct Mater. 2014; 24(39): 6105-6112.

[121]

Longo RC, Camacho-Forero LE, Balbuena PB. Li2S growth on graphene: impact on the electrochemical performance of Li-S batteries. J Chem Phys. 2020; 152(1): 014701.

[122]

Su F, Yi Z, Xie L, et al. Critical role of surface defects in the controllable deposition of Li2S on graphene: from molecule to crystallite. ACS Appl Mater Interfaces. 2020; 12(47): 53435-53445.

[123]

Li B-Q, Kong L, Zhao C-X, et al. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries. InfoMat. 2019; 1(4): 533-541.

[124]

Shi Y, Wen L, Pei S, Wu M, Li F. Choice for graphene as conductive additive for cathode of lithium-ion batteries. J Energy Chem. 2019; 30: 19-26.

[125]

Peng H-J, Huang J-Q, Zhao M-Q, et al. Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Adv Funct Mater. 2014; 24(19): 2772-2781.

[126]

Liang Y, Zhang W, Wu D, Ni Q-Q, Zhang MQ. Interface engineering of carbon-based nanocomposites for advanced electrochemical energy storage. Adv Mater Interfaces. 2018; 5(14): 1800430.

[127]

Kong L, Yan C, Huang J-Q. A review of nanocarbon current collectors used in electrochemical energy storage devices. New Carbon Mater. 2017; 32(6): 481-500.

[128]

Zhang X, Cheng X, Zhang Q. Nanostructured energy materials for electrochemical energy conversion and storage: a review. J Energy Chem. 2016; 25(6): 967-984.

[129]

Tang C, Wang H-F, Huang J-Q, et al. 3D hierarchical porous graphene-based energy materials: synthesis, functionalization, and application in energy storage and conversion. Electrochem Energy Rev. 2019; 2(2): 332-371.

[130]

Zou R, Liu W, Ran F. Sulfur-containing polymer cathode materials: from energy storage mechanism to energy density. InfoMat. 2022; 4(8): e12319.

[131]

Lu R, Cheng M, Mao L, et al. Nitrogen-doped nanoarray-modified 3D hierarchical graphene as a cofunction host for high-performance flexible Li-S battery. EcoMat. 2020; 2(1): e12010.

[132]

Liu X-Y, Peng H-J, Zhang Q, et al. Hierarchical carbon nanotube/carbon black scaffolds as short- and long-range electron pathways with superior Li-ion storage performance. ACS Sustainable Chem Eng. 2014; 2(2): 200-206.

[133]

Ni J, Zhang L, Fu S, Savilov SV, Aldoshin SM, Lu L. A review on integrating nano-carbons into polyanion phosphates and silicates for rechargeable lithium batteries. Carbon. 2015; 92: 15-25.

[134]

Shan C, Yen H-J, Wu K, et al. Functionalized fullerenes for highly efficient lithium ion storage: structure-property-performance correlation with energy implications. Nano Energy. 2017; 40: 327-335.

[135]

Teprovich JA, Weeks JA, Ward PA, et al. Hydrogenated C60 as high-capacity stable anode materials for Li ion batteries. ACS Appl Energy Mater. 2019; 2(9): 6453-6460.

[136]

Xu Q, Lin J, Ye C, et al. Air-stable and dendrite-free lithium metal anodes enabled by a hybrid interphase of C60 and Mg. Adv Energy Mater. 2020; 10(6): 1903292.

[137]

Niu S, Zhang S-W, Li D, et al. Sandwiched Li plating between lithiophilic-lithiophobic gradient silver@fullerene interphase layer for ultrastable lithium metal anodes. Chem Eng J. 2022; 429: 132156.

[138]

Liu Z, Huang W, Xiao Y, et al. Nanocomposite current collectors for anode-free all-solid-state lithium batteries. Acta Phys Chim Sin. 2024; 40: 2305040.

[139]

Lee Y-G, Fujiki S, Jung C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat Energy. 2020; 5(4): 299-308.

[140]

Spencer-Jolly D, Agarwal V, Doerrer C, et al. Structural changes in the silver-carbon composite anode interlayer of solid-state batteries. Joule. 2023; 7(3): 503-514.

[141]

Song L, Li R, Zhu H, et al. Deeply lithiated carbonaceous materials for great lithium metal protection in all-solid-state batteries. Adv Mater. 2024; 36(26): 2400165.

[142]

Xie F, Diallo MS, Kim H, Tu QH, Ceder G. The microscopic mechanism of lithiation and delithiation in the Ag/C buffer layer for anode-free solid-state batteries. Adv Energy Mater. 2024; 14(10): 2302960.

[143]

Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule. 2018; 2(4): 764-777.

[144]

Jiang Z, Zeng Z, Yang C, et al. Nitrofullerene, a C60-based bifunctional additive with smoothing and protecting effects for stable lithium metal anode. Nano Lett. 2019; 19(12): 8780-8786.

[145]

Uthaisar C, Barone V, Peralta JE. Lithium adsorption on zigzag graphene nanoribbons. J Appl Phys. 2009; 106(11): 113715.

[146]

Liu Y, Wang X, Dong Y, Wang Z, Zhao Z, Qiu J. Nitrogen-doped graphene nanoribbons for high-performance lithium ion batteries. J Mater Chem A. 2014; 2(40): 16832-16835.

[147]

Li L, Kovalchuk A, Fei H, et al. Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4-graphene nanoribbons as anode materials. Adv Energy Mater. 2015; 5(14): 1500171.

[148]

Lin J, Peng Z, Xiang C, et al. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano. 2013; 7(7): 6001-6006.

[149]

Fuchs T, Haslam CG, Moy AC, et al. Increasing the pressure-free stripping capacity of the lithium metal anode in solid-state-batteries by carbon nanotubes. Adv Energy Mater. 2022; 12(26): 2201125.

[150]

Liu Z, Liu Y, Miao Y, et al. Emerging carbon nanotube-based nanomaterials for stable and dendrite-free alkali metal anodes: challenges, strategies, and perspectives. Energy Environ Mater. 2023; 6(6): e12525.

[151]

Fu Z-H, Chen X, Yao N, et al. Diameter-dependent ultrafast lithium-ion transport in carbon nanotubes. J Chem Phys. 2023; 158(1): 014702.

[152]

Garau C, Frontera A, Quiñonero D, Costa A, Ballester P, Deyà PM. Lithium diffusion in single-walled carbon nanotubes: a theoretical study. Chem Phys Lett. 2003; 374(5-6): 548-555.

[153]

Lv C, Tong Z, Zhou S-Y, et al. Spontaneous local redox reaction to passivate cnts as lightweight current collector for high energy density lithium ion batteries. J Energy Chem. 2023; 80: 553-561.

[154]

Chen S, Bao P, Xiao L, Wang G. Large-scale and low cost synthesis of graphene as high capacity anode materials for lithium-ion batteries. Carbon. 2013; 64: 158-169.

[155]

Pan D, Wang S, Zhao B, et al. Li storage properties of disordered graphene nanosheets. Chem Mater. 2009; 21(14): 3136-3142.

[156]

Huang C, Zhang S, Liu H, Li Y, Cui G, Li Y. Graphdiyne for high capacity and long-life lithium storage. Nano Energy. 2015; 11: 481-489.

[157]

Wang G, Shen X, Yao J, Park J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon. 2009; 47(8): 2049-2053.

[158]

Fan X, Zheng WT, Kuo J-L. Adsorption and diffusion of Li on pristine and defective graphene. ACS Appl Mater Interfaces. 2012; 4(5): 2432-2438.

[159]

Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano. 2010; 4(11): 6337-6342.

[160]

Ma C, Shao X, Cao D. Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem. 2012; 22(18): 8911-8915.

[161]

Zhang R, Cheng X-B, Zhao C-Z, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv Mater. 2016; 28(11): 2155-2162.

[162]

Zhang R, Chen X-R, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew Chem Int Ed. 2017; 56(27): 7764-7768.

[163]

Lv Q, Song R, Wang B, et al. Three-dimensional nitrogen-doped graphene aerogel toward dendrite-free lithium-metal anode. Ionics. 2020; 26(1): 13-22.

[164]

Chen X, Chen X-R, Hou T-Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci Adv. 2019; 5(2): eaau7728.

[165]

Chen X, Bai Y-K, Shen X, Peng H-J, Zhang Q. Sodiophilicity/potassiophilicity chemistry in sodium/potassium metal anodes. J Energy Chem. 2020; 51: 1-6.

[166]

Li B-Q, Chen X-R, Chen X, et al. Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes. Research. 2019; 2019: 4608940.

[167]

Liu H, Chen X, Cheng X-B, et al. Uniform lithium nucleation guided by atomically dispersed lithiophilic CoNx sites for safe lithium metal batteries. Small Methods. 2019; 3(9): 1800354.

[168]

Liu X, Zhang Q, Ma Y, et al. MnO2 nanosheet modified N, P co-doping carbon nanofibers on carbon cloth as lithiophilic host to construct high-performance anodes for Li metal batteries. J Energy Chem. 2022; 69: 270-281.

[169]

Yu L, Yao N, Gao Y-C, et al. Probing the electric double layer structure at nitrogen-doped graphite electrodes by constant-potential molecular dynamics simulations. J Energy Chem. 2024; 93: 299-305.

[170]

Yu L, Chen X, Yao N, Gao Y-C, Zhang Q. Constant-potential molecular dynamics simulation and its application in rechargeable batteries. J Mater Chem A. 2023; 11(21): 11078-11088.

[171]

Tian H, Seh ZW, Yan K, et al. Theoretical investigation of 2D layered materials as protective films for lithium and sodium metal anodes. Adv Energy Mater. 2017; 7(13): 1602528.

[172]

Lin Y, Strobel TA, Cohen RE. Structural diversity in lithium carbides. Phys Rev B. 2015; 92(21): 214106.

[173]

Jamnuch S, Pascal TA. Electronic signatures of lorentzian dynamics and charge fluctuations in lithiated graphite structures. Nat Commun. 2023; 14(1): 2291.

[174]

Mishin Y. Machine-learning interatomic potentials for materials science. Acta Mater. 2021; 214: 116980.

[175]

Deringer VL, Caro MA, Csányi G. Machine learning interatomic potentials as emerging tools for materials science. Adv Mater. 2019; 31(46): 1902765.

[176]

Babar M, Parks HL, Houchins G, Viswanathan V. An accurate machine learning calculator for the lithium-graphite system. J Phys Energy. 2021; 3(1): 014005.

[177]

Wang J, Shen H, Yang R, et al. A deep learning interatomic potential developed for atomistic simulation of carbon materials. Carbon. 2022; 186: 1-8.

[178]

Takenaka N, Suzuki Y, Sakai H, Nagaoka M. On electrolyte-dependent formation of solid electrolyte interphase film in lithium-ion batteries: strong sensitivity to small structural difference of electrolyte molecules. J Phys Chem C. 2014; 118(20): 10874-10882.

[179]

Vatamanu J, Borodin O, Smith GD. Molecular dynamics simulation studies of the structure of a mixed carbonate/LiPF6 electrolyte near graphite surface as a function of electrode potential. J Phys Chem C. 2012; 116(1): 1114-1121.

[180]

Boyer MJ, Vilciauskas L, Hwang GS. Structure and Li+ ion transport in a mixed carbonate/LiPF6 electrolyte near graphite electrode surfaces: a molecular dynamics study. Phys Chem Chem Phys. 2016; 18(40): 27868-27876.

[181]

Leung K. Predicting the voltage dependence of interfacial electrochemical processes at lithium-intercalated graphite edge planes. Phys Chem Chem Phys. 2015; 17(3): 1637-1643.

[182]

Yao Y-X, Chen X, Yao N, et al. Unlocking charge transfer limitations for extreme fast charging of Li-ion batteries. Angew Chem Int Ed. 2023; 62(4): e202214828.

[183]

Liu Y, Shi H, Wu Z-S. Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries. Energ Environ Sci. 2023; 16(11): 4834-4871.

[184]

Ming J, Cao Z, Wahyudi W, et al. New insights on graphite anode stability in rechargeable batteries: Li ion coordination structures prevail over solid electrolyte interphases. ACS Energy Lett. 2018; 3(2): 335-340.

[185]

Tan Z, Ni K, Chen G, et al. Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage. Adv Mater. 2017; 29(8): 1603414.

[186]

Hossain MH, Islam MA, Chowdhury MA, Hossain N. Prospects and challenges of anode materials for lithium-ion batteries—a review. Clean Energy Syst. 2024; 9: 100145.

[187]

Yu T, Yang H, Cheng H-M, Li F. Theoretical progress of 2D six-membered-ring inorganic materials as anodes for non-lithium-ion batteries. Small. 2022; 18(43): 2107868.

[188]

Ding J, Li H, Wang S, et al. Vertical two-dimensional heterostructures and superlattices for lithium batteries and beyond. Nano Energy. 2024; 129: 110042.

[189]

Kumar S, Kumari N, Seo Y. Mxenes: versatile 2D materials with tailored surface chemistry and diverse applications. J Energy Chem. 2024; 90: 253-293.

[190]

Lei H, Li J, Zhang X, et al. A review of hard carbon anode: rational design and advanced characterization in potassium ion batteries. InfoMat. 2022; 4(2): e12272.

[191]

Park S, Seok H, Oh D, et al. Machine learning-based prediction of adsorption capacity of metal-doped and undoped activated carbon: assessing the role of metal doping. Chemosphere. 2024; 366: 143495.

[192]

Ding R, Chen J, Chen Y, Liu J, Bando Y, Wang X. Unlocking the potential: machine learning applications in electrocatalyst design for electrochemical hydrogen energy transformation. Chem Soc Rev. 2024; 53(23): 11390-11461.

[193]

Wang T, Pan R, Martins ML, et al. Machine-learning-assisted material discovery of oxygen-rich highly porous carbon active materials for aqueous supercapacitors. Nat Commun. 2023; 14(1): 4607.

[194]

Ahmed ATA, Soni R, Ansari AS, et al. Biowaste-derived graphitic carbon interfaced TiO2 as anode for lithium-ion battery. Surf Interfaces. 2022; 35: 102404.

[195]

Xia Y, Rong C, Yang X, Lu F, Kuang X. Encapsulating mo-doped TiO2 anatase in N-doped amorphous carbon with excellent lithium storage performances. Front Mater. 2019; 6: 1.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

4

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/