Hybrid materials based on covalent organic frameworks for photocatalysis

Shunhang Wei , Ruipeng Hou , Qiong Zhu , Imran Shakir , Zebo Fang , Xiangfeng Duan , Yuxi Xu

InfoMat ›› 2025, Vol. 7 ›› Issue (3) : e12646

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (3) : e12646 DOI: 10.1002/inf2.12646
REVIEW ARTICLE

Hybrid materials based on covalent organic frameworks for photocatalysis

Author information +
History +
PDF

Abstract

Covalent organic frameworks (COFs) feature π-conjugated structure, high porosity, structural regularity, large specific surface area, and good stability, being considered as ideal platform for photocatalytic application. Although single COFs have achieved significant progress in photocatalysis benefiting from their distinctive properties, the COFs-based hybrids provide an extraordinary opportunity to achieve superior photocatalytic performance. From the perspective of carrier transfer mechanism, a systematic summary of hybrids based on COFs and other functional materials (metal single atoms, metal clusters/nanoparticles, inorganic semiconductors, metal–organic frameworks, and other polymers) can offer valuable guidance for the design of COFs-based hybrids. In this review, the photocatalytic mechanism for hybrid materials (such as Schottky junction, type II heterojunction, Z-scheme heterojunction, and S-scheme heterojunction) is briefly introduced. Subsequently, the performance of COFs-based hybrids in photocatalytic water splitting, CO2 reduction, and pollutant degradation are comprehensively reviewed. Specifically, the carrier separation and transfer in different types of hybrids are highlighted. Finally, the challenges and prospects of COFs-based hybrids for photocatalysis are envisaged. The insights presented in this review are expected to be helpful in the rational design of COFs-based hybrids to obtain outstanding photocatalytic activity.

Keywords

COFs / hybrids / photocatalytic application

Cite this article

Download citation ▾
Shunhang Wei, Ruipeng Hou, Qiong Zhu, Imran Shakir, Zebo Fang, Xiangfeng Duan, Yuxi Xu. Hybrid materials based on covalent organic frameworks for photocatalysis. InfoMat, 2025, 7(3): e12646 DOI:10.1002/inf2.12646

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liras M, Barawi M. Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: from environmental to energy applications. Chem Soc Rev. 2019; 48(22): 5454-5487.

[2]

Wang C, Lyu P, Chen Z, Xu Y. Green and scalable synthesis of atomic-thin crystalline two-dimensional Triazine polymers with ultrahigh photocatalytic properties. J Am Chem Soc. 2023; 145(23): 12745-12754.

[3]

Wei S, Chang S, Li H, Fang Z, Zhu L, Xu Y. Polymer photocatalysts for photocatalytic hydrogen peroxide production. Green Chem. 2024; 26(11): 6382-6403.

[4]

Zhu Q, Shi L, Li Z, Li G, Xu X. Protonation of an imine-linked covalent organic framework for efficient H2O2 photosynthesis under visible light up to 700 nm. Angew Chem Int Ed. 2024; 63(32): e202408041.

[5]

Liang A, Li W, Li A, et al. Covalent triazine frameworks materials for photo- and electro-catalysis. Nano Res. 2024; 17(9): 7830-7839.

[6]

Cheng XY, Guan RQ, Wu ZK, Sun YN, Che WL, Shang QK. Establishing carrier transport channels based on Ti-S bonds and enhancing the photocatalytic performance of MXene quantum dots-ZnIn2S4 for ammonia synthesis. InfoMat. 2024; 6(4): e12535.

[7]

Wang C, Zhang H, Luo W, Sun T, Xu Y. Ultrathin crystalline covalent-triazine-framework nanosheets with electron donor groups for synergistically enhanced photocatalytic water splitting. Angew Chem Int Ed. 2021; 60(48): 25381-25390.

[8]

Ma D, Zhang Z, Zou Y, Chen J, Shi J-W. The progress of g-C3N4 in photocatalytic H2 evolution: from fabrication to modification. Coord Chem Rev. 2024; 500: 215489.

[9]

Hu H, Zhang X, Zhang K, et al. Construction of a 2D/2D crystalline porous materials based S-scheme heterojunction for efficient photocatalytic H2 production. Adv Energy Mater. 2024; 14(11): 2303638.

[10]

Niu P, Dai JJ, Zhi XJ, Xia ZH, Wang SL, Li L. Photocatalytic overall water splitting by graphitic carbon nitride. InfoMat. 2021; 3(9): 931-961.

[11]

Gao M, Tian F, Zhang X, Chen Z, Yang W, Yu Y. Improved plasmonic hot-electron capture in Au nanoparticle/polymeric carbon nitride by Pt single atoms for broad-spectrum photocatalytic H2 evolution. Nano-Micro Lett. 2023; 15(1): 129.

[12]

Guo S, Tan SC. Unlocking solar-driven synergistic clean water harvesting and sustainable fuel production. Joule. 2024; 8(2): 291-294.

[13]

Li C, Wang J, Tong L, et al. Recent progress and challenges of photocatalytic CO2 conversion into value-added multi-carbon products. Coord Chem Rev. 2024; 502: 215623.

[14]

Feng C, Bo T, Maity P, et al. Regulating photocatalytic CO2 reduction kinetics through modification of surface coordination sphere. Adv Funct Mater. 2024; 34(9): 2309761.

[15]

Li K, Peng B, Peng T. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016; 6(11): 7485-7527.

[16]

Bian XN, Zhang S, Zhao YX, Shi R, Zhang TR. Layered double hydroxide-based photocatalytic materials toward renewable solar fuels production. InfoMat. 2021; 3(7): 719-738.

[17]

Wang K, Hu Z, Yu P, et al. Understanding bridging sites and accelerating quantum efficiency for photocatalytic CO2 reduction. Nano-Micro Lett. 2023; 16(1): 5.

[18]

Guo W, Guo T, Zhang Y, Yin L, Dai Y. Progress on simultaneous photocatalytic degradation of pollutants and production of clean energy: a review. Chemosphere. 2023; 339: 139486.

[19]

Solangi NH, Karri RR, Mazari SA, et al. MXene as emerging material for photocatalytic degradation of environmental pollutants. Coord Chem Rev. 2023; 477: 214965.

[20]

Wei S, Gao J, Wu P, et al. Bi and Al co-doped anatase titania for photosensitized degradation of Rhodamine B under visible-light irradiation. Ceram Int. 2021; 47(20): 28296-28303.

[21]

Li S, Dong K, Cai M, Li X, Chen X. A plasmonic S-scheme Au/MIL-101(Fe)/BiOBr photocatalyst for efficient synchronous decontamination of Cr(VI) and norfloxacin antibiotic. eScience. 2024; 4(2): 100208.

[22]

Guo Q, Zhou C, Ma Z, Yang X. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater. 2019; 31(50): 1901997.

[23]

Qi K, Cheng B, Yu J, Ho W. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloys Compd. 2017; 727: 792-820.

[24]

Mu LC, Zhao Y, Li AL, et al. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting. Energy Environ Sci. 2016; 9(7): 2463-2469.

[25]

Yang L, Nandakumar DK, Miao L, et al. Energy harvesting from atmospheric humidity by a hydrogel-integrated ferroelectric-semiconductor system. Joule. 2020; 4(1): 176-188.

[26]

Mishra SR, Gadore V, Ahmaruzzaman M. An overview of In2S3 and In2S3-based photocatalyst: characteristics, synthesis, modifications, design strategies, and catalytic environmental application. J Environ Chem Eng. 2024; 12(5): 113449.

[27]

Jing H, Li H, Yue J, et al. Synergistic effects of the Rh-S bond and spatially separated dual cocatalysts on photocatalytic overall water splitting activity of ZnIn2S4 nanosheets under visible light irradiation. Dalton Trans. 2023; 52(10): 2924-2927.

[28]

Yu JG, Yu YF, Zhou P, Xiao W, Cheng B. Morphology-dependent photocatalytic H2 production activity of CdS. Appl Catal B-Environ. 2014; 156: 184-191.

[29]

Chen S, Shen S, Liu G, Qi Y, Zhang F, Li C. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew Chem Int Ed. 2015; 127(10): 3090-3094.

[30]

Li H, Xiao J, Vequizo JJM, et al. One-step excitation overall water splitting over a modified Mg-doped BaTaO2N photocatalyst. ACS Catal. 2022; 12(16): 10179-10185.

[31]

Yu JX, Shi L, Li RH, et al. Single-crystalline LaTiO2N Nanosheets with regulated defects for photocatalytic overall water splitting under visible light up to 600 nm. ACS Catal. 2023; 14(2): 608-618.

[32]

Wang L, Zhang Y, Chen L, Xu H, Xiong Y. 2D polymers as emerging materials for photocatalytic overall water splitting. Adv Mater. 2018; 30(48): 1801955.

[33]

Wei S, Wang L, Yue J, Wu R, Fang Z, Xu Y. Recent progress in polymer nanosheets for photocatalysis. J Mater Chem A. 2023; 11(44): 23720-23741.

[34]

Ren Y, Xu Y. Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chem Soc Rev. 2024; 53(4): 1823-1869.

[35]

Zhang Z, Xu Y. Hydrothermal synthesis of highly crystalline Zwitterionic Vinylene-linked covalent organic frameworks with exceptional photocatalytic properties. J Am Chem Soc. 2023; 145(46): 25222-25232.

[36]

Feng G, Li X, Zhang M, et al. Covalent organic framework monolayer: accurate syntheses and advanced application. Nano Res. 2024; 17(7): 6603-6618.

[37]

Wang H, Wang H, Wang Z, et al. Covalent organic framework photocatalysts: structures and applications. Chem Soc Rev. 2020; 49(12): 4135-4165.

[38]

Zhao W, Luo L, Cong M, et al. Nanoscale covalent organic frameworks for enhanced photocatalytic hydrogen production. Nat Commun. 2024; 15(1): 6482.

[39]

Qi S-P, Guo R-T, Bi Z-X, Zhang Z-R, Li C-F, Pan W-G. Recent progress of covalent organic frameworks-based materials in photocatalytic applications: a review. Small. 2023; 19(48): 2303632.

[40]

Gong Y-N, Guan X, Jiang H-L. Covalent organic frameworks for photocatalysis: synthesis, structural features, fundamentals and performance. Coord Chem Rev. 2023; 475: 214889.

[41]

Wei S, Wang J, Li Y, Fang Z, Wang L, Xu Y. Recent progress in COF-based electrode materials for rechargeable metal-ion batteries. Nano Res. 2023; 16(5): 6753-6770.

[42]

Ma M, Yang Y, Huang Z, Fuhong H, Li Q, Liu H. Recent progress in the synthesis and applications of covalent organic frameworks-based composites. Nanoscale. 2024; 16(4): 1600-1632.

[43]

Li J, Zhou J, Wang X-H, et al. In situ construction of single-atom electronic bridge on COF to enhance photocatalytic H2 production. Angew Chem Int Ed. 2024; 63(45): e202411721.

[44]

Khaing KK, Yin D, Ouyang Y, et al. Fabrication of 2D-2D heterojunction catalyst with covalent organic framework (COF) and MoS2 for highly efficient photocatalytic degradation of organic pollutants. Inorg Chem. 2020; 59(10): 6942-6952.

[45]

Chen C-X, Xiong Y-Y, Zhong X, et al. Enhancing photocatalytic hydrogen production via the construction of robust multivariate Ti-MOF/COF composites. Angew Chem Int Ed. 2022; 61(3): e202114071.

[46]

Wang L, Lian R, Zhang Y, et al. Rational preparation of cocoon-like g-C3N4/COF hybrids: accelerated intramolecular charge delivery for photocatalytic hydrogen evolution. Appl Catal B-Environ. 2022; 315: 121568.

[47]

Wu Y, Wang R, Kim Y. Single-atom catalysts on covalent organic frameworks for energy applications. ACS Appl Mater Interfaces. 2024.

[48]

Chen K, Cai A, Li T-T. Covalent organic framework-semiconductor-based Heterostructures for photocatalytic applications. ChemSusChem. 2023; 16(10): e202300021.

[49]

Zhong W, Shen S, He M, et al. The pulsed laser-induced Schottky junction via in-situ forming Cd clusters on CdS surfaces toward efficient visible light-driven photocatalytic hydrogen evolution. Appl Catal B-Environ. 2019; 258: 117967.

[50]

Sun Z, Fang W, Zhao L, Wang H. 3D porous Cu-NPs/g-C3N4 foam with excellent CO2 adsorption and Schottky junction effect for photocatalytic CO2 reduction. Appl Surf Sci. 2020; 504: 144347.

[51]

Zhang Z, Yates JT. Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev. 2012; 112(10): 5520-5551.

[52]

Kumari P, Bahadur N, Kong LX, O'Dell LA, Merenda A, Dumée LF. Engineering Schottky-like and heterojunction materials for enhanced photocatalysis performance - a review. Mater Adv. 2022; 3(5): 2309-2323.

[53]

Wang C, Shi S, Duan F, et al. Anchoring ultrafine CdS nanoparticles in TpPa-1-COF: a type II heterojunction for enhanced photocatalytic N2 fixation. J Mater Chem A. 2022; 10(31): 16524-16532.

[54]

Ren X, Wu K, Qin Z, Zhao X, Yang H. The construction of type II heterojunction of Bi2WO6/BiOBr photocatalyst with improved photocatalytic performance. J Alloys Compd. 2019; 788: 102-109.

[55]

Wang H, Zhang L, Chen Z, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev. 2014; 43(15): 5234-5244.

[56]

Wen XJ, Shen CH, Fei ZH, et al. Recent developments on AgI based heterojunction photocatalytic systems in photocatalytic application. Chem Eng J. 2020; 383: 383.

[57]

Guo H, Niu H-Y, Liang C, et al. Insight into the energy band alignment of magnetically separable Ag2O/ZnFe2O4 p-n heterostructure with rapid charge transfer assisted visible light photocatalysis. J Catal. 2019; 370: 289-303.

[58]

Bard AJ. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem. 1979; 10(1): 59-75.

[59]

Xu Q, Zhang L, Yu J, Wageh S, Al-Ghamdi AA, Jaroniec M. Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater Today. 2018; 21(10): 1042-1063.

[60]

Maeda K. Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 2013; 3(7): 1486-1503.

[61]

Yuan Y, Guo R-t, Hong L-f, et al. A review of metal oxide-based Z-scheme heterojunction photocatalysts: actualities and developments. Mater Today Energy. 2021; 21: 100829.

[62]

Kato H, Sasaki Y, Shirakura N, Kudo A. Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. J Mater Chem A. 2013; 1(39): 12327-12333.

[63]

Maeda K, Higashi M, Lu D, Abe R, Domen K. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc. 2010; 132(16): 5858-5868.

[64]

Low J, Jiang C, Cheng B, Wageh S, Al-Ghamdi AA, Yu J. A review of direct Z-scheme photocatalysts. Small Methods. 2017; 1(5): 1700080.

[65]

Ng B-J, Putri LK, Kong XY, Teh YW, Pasbakhsh P, Chai S-P. Z-scheme photocatalytic systems for solar water splitting. Adv Sci. 2020; 7(7): 1903171.

[66]

Yu X, Qiu H, Wang B, et al. A ternary photocatalyst of all-solid-state Z-scheme TiO2-Au-BiOBr for efficiently degrading various dyes. J Alloys Compd. 2020; 839: 155597.

[67]

Zou L, Wang HR, Wu C, Li L, Yuan GL, Wang X. Construction of all-solid-state Z-scheme 2D BiVO4/Ag/CdS composites with robust photoactivity and stability. Appl Surf Sci. 2019; 498: 143900.

[68]

Sun YK, Zhu Q, Bai B, Li YL, He C. Novel all-solid-state Z-scheme SnO2/Pt/In2O3 photocatalyst with boosted photocatalytic performance on water splitting and 2,4-dichlorophenol degradation under visible light. Chem Eng J. 2020; 390: 124518.

[69]

Jo W-K, Selvam NCS. Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation. Chem Eng J. 2017; 317: 913-924.

[70]

Yu JG, Wang SH, Low JX, Xiao W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys Chem Chem Phys. 2013; 15(39): 16883-16890.

[71]

Xu C, Jin ZH, Yang J, et al. A direct Z-scheme LaFeO3/WO3 photocatalyst for enhanced degradation of phenol under visible light irradiation. J Environ Chem Eng. 2021; 9(5): 106337.

[72]

Ke XC, Zhang JF, Dai K, Lv JL, Liang CH. Novel visible-light-driven direct Z-scheme Zn3V2O8/Ag3PO4 heterojunctions for enhanced photocatalytic performance. J Alloys Compd. 2019; 799: 113-123.

[73]

Yang G, Chen DM, Ding H, et al. Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency. Appl Catal B-Environ. 2017; 219: 611-618.

[74]

Xu JJ, Li XP, Niu JF, Chen MD, Yue JP. Synthesis of direct Z-scheme Bi3TaO7/CdS composite photocatalysts with enhanced photocatalytic performance for ciprofloxacin degradation under visible light irradiation. J Alloys Compd. 2020; 834: 834.

[75]

Fernández-Catalá J, Greco R, Navlani-García M, Cao W, Berenguer-Murcia A, Cazorla-Amorós D. g-C3N4-based direct Z-scheme photocatalysts for environmental applications. Catalysts. 2022; 12(10): 1137.

[76]

Xu Q, Zhang L, Cheng B, Fan J, Yu J. S-scheme heterojunction photocatalyst. Chem. 2020; 6(7): 1543-1559.

[77]

Zhang L, Zhang J, Yu H, Yu J. Emerging S-scheme photocatalyst. Adv Mater. 2022; 34(11): 2107668.

[78]

Zhu B, Sun J, Zhao Y, Zhang L, Yu J. Construction of 2D S-scheme heterojunction photocatalyst. Adv Mater. 2024; 36(8): 2310600.

[79]

Fu J, Xu Q, Low J, Jiang C, Yu J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B-Environ. 2019; 243: 556-565.

[80]

Deng X, Zhang J, Qi K, Liang G, Xu F, Yu J. Ultrafast electron transfer at the In2O3/Nb2O5 S-scheme interface for CO2 photoreduction. Nat Commun. 2024; 15(1): 4807.

[81]

Meng A, Cheng B, Tan H, Fan J, Su C, Yu J. TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity. Appl Catal B-Environ. 2021; 289: 120039.

[82]

Nie C, Wang X, Lu P, Zhu Y, Li X, Tang H. Advancements in S-scheme heterojunction materials for photocatalytic environmental remediation. J Mater Sci Technol. 2024; 169: 182-198.

[83]

Bao Y, Song S, Yao G, Jiang S. S-scheme photocatalytic systems. Sol RRL. 2021; 5(7): 2100118.

[84]

Liu L, Zhang X, Yang L, Ren L, Wang D, Ye J. Metal nanoparticles induced photocatalysis. Natl Sci Rev. 2017; 4(5): 761-780.

[85]

Shang Q, Liu Y, Ai J, et al. Embedding Au nanoclusters into the pores of carboxylated COF for the efficient photocatalytic production of hydrogen peroxide. J Mater Chem A. 2023; 11(39): 21109-21122.

[86]

Ren X, Li C, Liu J, et al. The fabrication of Pd single atoms/clusters on COF layers as co-catalysts for photocatalytic H2 evolution. ACS Appl Mater Interfaces. 2022; 14(5): 6885-6893.

[87]

He S, Rong Q, Niu H, Cai Y. Platform for molecular-material dual regulation: a direct Z-scheme MOF/COF heterojunction with enhanced visible-light photocatalytic activity. Appl Catal B-Environ. 2019; 247: 49-56.

[88]

Qiu Y, Jiang C, Xin X, et al. Site-specified MOF/COF heteronanosheets for enhancing photocatalytic CO2 reduction. ACS Appl Nano Mater. 2024; 7(10): 11234-11247.

[89]

Li Y, Yang L, He H, et al. In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production. Nat Commun. 2022; 13(1): 1355.

[90]

Ming J, Liu A, Zhao J, et al. Hot π-electron tunneling of metal-insulator-COF nanostructures for efficient hydrogen production. Angew Chem Int Ed. 2019; 58(50): 18290-18294.

[91]

Liu Z, Huang Y, Chang S, et al. Highly dispersed Ru nanoparticles on a bipyridine-linked covalent organic framework for efficient photocatalytic CO2 reduction. Sustain Energy Fuels. 2021; 5(11): 2871-2876.

[92]

Guo K, Zhu X, Peng L, et al. Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles. Chem Eng J. 2021; 405: 127011.

[93]

Cui J-X, Fu Y-M, Meng B, et al. A novel cobalt-anchored covalent organic framework for photocatalytic conversion of CO2 into widely adjustable syngas. J Mater Chem A. 2022; 10(25): 13418-13427.

[94]

Lu M, Li Q, Liu J, et al. Installing earth-abundant metal active centers to covalent organic frameworks for efficient heterogeneous photocatalytic CO2 reduction. Appl Catal B-Environ. 2019; 254: 624-633.

[95]

Deng Y, Zhang Z, Du P, et al. Embedding ultrasmall Au clusters into the pores of a covalent organic framework for enhanced photostability and photocatalytic performance. Angew Chem Int Ed. 2020; 132(15): 6138-6145.

[96]

Wang H, Xiong Y, He Y, et al. Photocatalytic degradation of benzotriazole through synergy of electron donor-acceptor units and Au clusters in covalent organic frameworks. Chem Eng J. 2024; 480: 148309.

[97]

Ma S-H, Jin W-L, Li W, et al. Plasmonic Bi/COF nanoheterojunctions for visible-light photodegradation of phenolic pollutants. ACS Appl Nano Mater. 2023; 6(15): 14151-14164.

[98]

Cargnello M, Doan-Nguyen VV, Gordon TR, et al. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science. 2013; 341(6147): 771-773.

[99]

Yang X-F, Wang A, Qiao B, Li J, Liu J, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res. 2013; 46(8): 1740-1748.

[100]

Guo W, Wang Z, Wang X, Wu Y. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv Mater. 2021; 33(34): 2004287.

[101]

Xia B, Zhang Y, Ran J, Jaroniec M, Qiao S-Z. Single-atom photocatalysts for emerging reactions. ACS Cent Sci. 2021; 7(1): 39-54.

[102]

Hasija V, Patial S, Raizada P, et al. Covalent organic frameworks promoted single metal atom catalysis: strategies and applications. Coord Chem Rev. 2022; 452: 214298.

[103]

You J, Zhao Y, Wang L, Bao W. Recent developments in the photocatalytic applications of covalent organic frameworks: a review. J Clean Prod. 2021; 291: 125822.

[104]

Dong P, Wang Y, Zhang A, Cheng T, Xi X, Zhang J. Platinum single atoms anchored on a covalent organic framework: boosting active sites for photocatalytic hydrogen evolution. ACS Catal. 2021; 11(21): 13266-13279.

[105]

Ma F, Tang Q, Xi S, et al. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution. Chin J Catal. 2023; 48: 137-149.

[106]

Xia Y, Zhu B, Li L, et al. Single-atom engineering of covalent organic framework for photocatalytic H2 production coupled with benzylamine oxidation. Small. 2023; 19(35): 2301928.

[107]

Zhang Y, Chen Z-A, Xu Z-J, et al. Anchoring single-atomic metal sites in metalloporphyrin-based covalent organic frameworks for enhanced photocatalytic hydrogen evolution. ChemSusChem. 2024; 17(20): e202400556.

[108]

Zhu L, Liang Z, Li H, et al. A π-conjugated van der Waals heterostructure between single-atom Ni-anchored Salphen-based covalent organic framework and polymeric carbon nitride for high-efficiency interfacial charge separation. Small. 2023; 19(33): 2301017.

[109]

Zhong W, Sa R, Li L, et al. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J Am Chem Soc. 2019; 141(18): 7615-7621.

[110]

Zhang Y, Liu Y, Li H, Bai G, Lan X. Regulating local charge distribution of single Ni sites in covalent organic frameworks for enhanced photocatalytic CO2 reduction. Chem Eng J. 2024; 489: 151479.

[111]

Wang Y, Sun T, Zheng T, et al. Two-dimensional Kagome covalent organic frameworks with single atomic Co sites for superior photocatalytic CO2 reduction. ACS Mater Lett. 2024; 6(1): 140-152.

[112]

Ran L, Li Z, Ran B, et al. Engineering single-atom active sites on covalent organic frameworks for boosting CO2 photoreduction. J Am Chem Soc. 2022; 144(37): 17097-17109.

[113]

Ai LY, Wang Q, Chen XW, Jiang GF. One-dimensional phenanthroline-based covalent organic framework bearing single cobalt atoms for efficient photocatalytic CO2 reduction. Aggregate. 2024; 5(5): e582.

[114]

Zhou M, Wang Z, Mei A, et al. Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework. Nat Commun. 2023; 14(1): 2473.

[115]

Zhang M, Xu K, Sun N, Zhuang Y, Wang L, Yan D. Bimetallic single-atom catalysts for electrocatalytic and photocatalytic hydrogen production. Catalysts. 2023; 13(11): 1409.

[116]

Kou M, Liu W, Wang Y, et al. Photocatalytic CO2 conversion over single-atom MoN2 sites of covalent organic framework. Appl Catal B-Environ. 2021; 291: 120146.

[117]

Zhang Y, Cao L, Bai G, Lan X. Engineering single Cu sites into covalent organic framework for selective photocatalytic CO2 reduction. Small. 2023; 19(22): 2300035.

[118]

Wang X, Fu Z, Zheng L, et al. Covalent organic framework nanosheets embedding single cobalt sites for photocatalytic reduction of carbon dioxide. Chem Mater. 2020; 32(21): 9107-9114.

[119]

Dong Z, Zhang L, Gong J, Zhao Q. Covalent organic framework nanorods bearing single Cu sites for efficient photocatalysis. Chem Eng J. 2021; 403: 126383.

[120]

Xu X, Shao W, Tai G, et al. Single-atomic Co-N site modulated exciton dissociation and charge transfer on covalent organic frameworks for efficient antibiotics degradation via peroxymonosulfate activation. Sep Purif Technol. 2024; 333: 125890.

[121]

Li S, Yu H, Wang Y, et al. Engineering covalently integrated COF@ CeO2 Z-scheme heterostructure for visible light driven photocatalytic CO2 conversion. Appl Surf Sci. 2023; 615: 156335.

[122]

Shen H, Shang D, Li L, Li D, Shi W. Rational design of 2D/2D covalent-organic framework/TiO2 nanosheet heterojunction with boosted photocatalytic H2 evolution. Appl Surf Sci. 2022; 578: 152024.

[123]

Shang D, Li D, Chen B, Luo B, Huang Y, Shi W. 2D-2D SnS2/covalent organic framework heterojunction photocatalysts for highly enhanced solar-driven hydrogen evolution without cocatalysts. ACS Sustain Chem Eng. 2021; 9(42): 14238-14248.

[124]

Yang D, Li Z-G, Zhang X, et al. Rational design of ZnCdS/TpPa-1-COF heterostructure photocatalyst by strengthening the interface connection in solar hydrogen production reactions. Nano Res. 2024; 17(3): 1027-1034.

[125]

Dong P, Cheng T, Zhang J-l, et al. Fabrication of an organic/inorganic hybrid TpPa-1-COF/ZnIn2S4 S-scheme heterojunction for boosted photocatalytic hydrogen production. ACS Appl Energy Mater. 2023; 6(2): 1103-1115.

[126]

Sun L, Li L, Fan J, Xu Q, Ma D. Construction of highly active WO3/TpPa-1-COF S-scheme heterojunction toward photocatalytic H2 generation. J Mater Sci Technol. 2022; 123: 41-48.

[127]

Zhang Y-P, Han W, Yang Y, et al. S-scheme heterojunction of black TiO2 and covalent-organic framework for enhanced photocatalytic hydrogen evolution. Chem Eng J. 2022; 446: 137213.

[128]

Sun L, Li L, Yang J, Fan J, Xu Q. Fabricating covalent organic framework/CdS S-scheme heterojunctions for improved solar hydrogen generation. Chin J Catal. 2022; 43(2): 350-358.

[129]

Bao S, Tan Q, Wang S, et al. TpBD COF@ ZnIn2S4 nanosheets: a novel S-scheme heterojunction with enhanced photoreactivity for hydrogen production. Appl Catal B-Environ. 2023; 330: 122624.

[130]

Gao R, Bai J, Shen R, et al. 2D/2D covalent organic framework/CdS Z-scheme heterojunction for enhanced photocatalytic H2 evolution: insights into interfacial charge transfer mechanism. J Mater Sci Technol. 2023; 137: 223-231.

[131]

Dong B, Wan Y, Cheng Q, Zhou H, Pan Z. Construction of novel MoS2@COF-Ph heterojunction photocatalysts for boosted photocatalytic efficiency and hydrogen production performance under sunlight. Environ Sci-Nano. 2022; 9(8): 2799-2814.

[132]

Yan H, Liu Y-H, Yang Y, et al. Covalent organic framework based WO3@COF/rGO for efficient visible-light-driven H2 evolution by two-step separation mode. Chem Eng J. 2022; 431: 133404.

[133]

Shen R, Liang G, Hao L, Zhang P, Li X. In situ synthesis of chemically bonded 2D/2D covalent organic frameworks/O-vacancy WO3 Z-scheme heterostructure for photocatalytic overall water splitting. Adv Mater. 2023; 35(33): 2303649.

[134]

Liu L, Zhang J, Tan X, et al. Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Nano Res. 2020; 13(4): 983-988.

[135]

Wang Y, Dai Z, Wang J, et al. Scheme-II heterojunction of Bi2WO6@Br-COFs hybrid materials for CO2 photocatalytic reduction. Chem Eng J. 2023; 471: 144559.

[136]

Ou S, Zhou M, Chen W, Zhang Y, Liu Y. COF-5/CoAl-LDH nanocomposite heterojunction for enhanced visible-light-driven CO2 reduction. ChemSusChem. 2022; 15(7): e202200184.

[137]

An X, Bian J, Zhu K, Liu R, Liu H, Qu J. Facet-dependent activity of TiO2/covalent organic framework S-scheme heterostructures for CO2 photoreduction. Chem Eng J. 2022; 442: 135279.

[138]

Zhang M, Lu M, Lang ZL, et al. Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis. Angew Chem Int Ed. 2020; 132(16): 6562-6568.

[139]

Wang Y, Hu Z, Wang W, et al. Rational design of defect metal oxide/covalent organic frameworks Z-scheme heterojunction for photoreduction CO2 to CO. Appl Catal B-Environ. 2023; 327: 122419.

[140]

Wu Y, Liu J, Rong J, et al. Combination of covalent-organic framework and Bi2O2S by covalent bonds to form pn heterojunction for enhanced photocatalytic CO2 conversion. Appl Surf Sci. 2023; 620: 156781.

[141]

Yang R, Chen Q, Huang G, Bi J. Interfacial engineering of novel inorganic-organic β-Ga2O3/COF heterojunction for accelerated charge transfer towards artificial photosynthesis. Environ Res. 2023; 216(Pt 1): 114541.

[142]

Li L, Yin D, Xiandi G. Construction of a novel 2D-2D heterojunction by coupling a covalent organic framework and In2S3 for photocatalytic removal of organic pollutants with high efficiency. New J Chem. 2021; 45(35): 15789-15800.

[143]

Wu Y, Liu J, Zhao J, et al. An oxygen vacancy-rich BiO2−x/COF heterojunction for photocatalytic degradation of diclofenac. Nanoscale. 2024; 16(22): 10645-10655.

[144]

Ge S, Cai Y, Deng L, et al. Constructing heptazine-COF@ TiO2 heterojunction photocatalysts for efficient photodegradation of acetaminophen under visible light. ChemPlusChem. 2024; 89(6): e202400139.

[145]

Shi Z, Chen Z, Zhang Y, et al. COF TzDa/Ag/AgBr Z-scheme heterojunction photocatalyst for efficient visible light driven elimination of antibiotics tetracycline and heavy metal ion Cr (VI). Sep Purif Technol. 2022; 288: 120717.

[146]

Zhang Y, Chen Z, Shi Z, et al. A direct Z-scheme BiOBr/TzDa COF heterojunction photocatalyst with enhanced performance on visible-light driven removal of organic dye and Cr (VI). Sep Purif Technol. 2021; 275: 119216.

[147]

Bi J, Zhang Z, Tian J, Huang G. Interface engineering in a nitrogen-rich COF/BiOBr S-scheme heterojunction triggering efficient photocatalytic degradation of tetracycline antibiotics. J Colloid Interface Sci. 2024; 661: 761-771.

[148]

Qian Y, Zhang F, Pang H. A review of MOFs and their composites-based photocatalysts: synthesis and applications. Adv Funct Mater. 2021; 31(37): 2104231.

[149]

Luo T, Gilmanova L, Kaskel S. Advances of MOFs and COFs for photocatalytic CO2 reduction, H2 evolution and organic redox transformations. Coord Chem Rev. 2023; 490: 215210.

[150]

Zhang Y, Liu H, Gao F, et al. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem. 2022; 4(4): 100078.

[151]

Guo C, Duan F, Zhang S, et al. Heterostructured hybrids of metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). J Mater Chem A. 2022; 10(2): 475-507.

[152]

Yuan G, Tan L, Wang P, et al. MOF-COF composite photocatalysts: design, synthesis, and mechanism. Cryst Growth Des. 2021; 22(1): 893-908.

[153]

Gong Y, Zhao X, Zhang H, et al. MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol a degradation with peroxymonosulfate under visible light irradiation. Appl Catal B-Environ. 2018; 233: 35-45.

[154]

Zhang FM, Sheng JL, Yang ZD, et al. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew Chem Int Ed. 2018; 57(37): 12106-12110.

[155]

Chen Y, Yang D, Shi B, et al. In situ construction of hydrazone-linked COF-based core-shell hetero-frameworks for enhanced photocatalytic hydrogen evolution. J Mater Chem A. 2020; 8(16): 7724-7732.

[156]

Han W, Shao L-H, Sun X-J, et al. Constructing Cu ion sites in MOF/COF heterostructure for noble-metal-free photoredox catalysis. Appl Catal B-Environ. 2022; 317: 121710.

[157]

Peng H, Raya J, Richard F, et al. Synthesis of robust MOFs@COFs porous hybrid materials via an Aza-diels-alder reaction: towards high-performance supercapacitor materials. Angew Chem Int Ed. 2020; 59(44): 19602-19609.

[158]

Zhang H-Y, Yang Y, Li C-C, et al. A new strategy for constructing covalently connected MOF@COF core-shell heterostructures for enhanced photocatalytic hydrogen evolution. J Mater Chem A. 2021; 9(31): 16743-16750.

[159]

Xue P, Pan X, Huang J, et al. In situ fabrication of porous MOF/COF hybrid photocatalysts for visible-light-driven hydrogen evolution. ACS Appl Mater Interfaces. 2021; 13(50): 59915-59924.

[160]

Niu Q, Dong S, Tian J, Huang G, Bi J, Wu L. Rational design of novel COF/MOF S-scheme heterojunction photocatalyst for boosting CO2 reduction at gas-solid interface. ACS Appl Mater Interfaces. 2022; 14(21): 24299-24308.

[161]

Yu X, Li J, Du M, Song X, Huang H, Nie L. Adaptive lattice-matched MOF and COF core-shell heterostructure for carbon dioxide photoreduction. Cell Rep Phys Sci. 2023; 4(11): 101657.

[162]

Wang L, Mao J, Huang G, et al. Configuration of hetero-framework via integrating MOF and triazine-containing COF for charge-transfer promotion in photocatalytic CO2 reduction. Chem Eng J. 2022; 446: 137011.

[163]

Zhang H-X, Ma S-H, Wang H-X, et al. Covalently linked MOF@ COF direct Z-scheme heterojunction for visible light-driven photocatalytic degradation of flotation agents. J Environ Chem Eng. 2024; 12(1): 111899.

[164]

Peng Y, Zhao M, Chen B, et al. Hybridization of MOFs and COFs: a new strategy for construction of MOF@COF core-shell hybrid materials. Adv Mater. 2018; 30(3): 1705454.

[165]

Zhou S, Kuang Y, Yang H, et al. Structure-controlled interpenetrated MOF@ COF via C-C linkage for enhanced Photocatalysis. Angew Chem Int Ed. 2024; 63(45): e202412279.

[166]

Deng Y, Wang Y, Di Z, et al. Confining metal-organic framework in the pore of covalent organic framework: a microscale Z-scheme system for boosting photocatalytic performance. Small Methods. 2022; 6(7): 2200265.

[167]

Xing Y, Yin L, Zhao Y, et al. Construction of the 1D covalent organic framework/2D g-C3N4 heterojunction with high apparent quantum efficiency at 500 nm. ACS Appl Mater Interfaces. 2020; 12(46): 51555-51562.

[168]

Liu Y, Jiang L, Tian Y, et al. Covalent organic framework/g-C3N4 van der Waals heterojunction toward H2 production. Inorg Chem. 2023; 62(7): 3271-3277.

[169]

Hassan AE, Elewa AM, Hussien MS, et al. Designing of covalent organic framework/2D g-C3N4 heterostructure using a simple method for enhanced photocatalytic hydrogen production. J Colloid Interface Sci. 2024; 653: 1650-1661.

[170]

Li Y, Wang J, Xu S, Li M, Chen F. The preparation of 2D TpPa-COF/2D g-C3N4 heterojunction via in-situ growth for enhanced visible-light photocatalysis. Int J Hydrog Energy. 2024; 60: 1433-1441.

[171]

Luan B, Chu X, Wang Y, Qiao X, Jiang Y, Zhang F. Construction of COF/COF organic S-scheme heterostructure for enhanced overall water splitting. Adv Mater. 2024;2412653.

[172]

Wang J, Yu Y, Cui J, et al. Defective g-C3N4/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO2 photoreduction. Appl Catal B-Environ. 2022; 301: 120814.

[173]

Sarkar M, Chakrabortty P, Sengupta M, Kothari AC, Islam MS, Islam SM. Light-mediated sustainable conversion of carbon dioxide to valuable methanol by highly efficient covalent organic framework g-C3N4 composites as a reusable photocatalyst. Ind Eng Chem Res. 2024; 63(13): 5573-5590.

[174]

Hou Y, Cui C-X, Zhang E, et al. A hybrid of g-C3N4 and porphyrin-based covalent organic frameworks via liquid-assisted grinding for enhanced visible-light-driven photoactivity. Dalton Trans. 2019; 48(40): 14989-14995.

[175]

Qi L, Xiao C, Lu W, et al. Triazine-based covalent organic framework/ g-C3N4 heterojunction toward highly efficient photoactivation of peroxydisulfate for sulfonamides degradation. Sep Purif Technol. 2025; 354: 128758.

[176]

Li X, Sun Y, Xu J, et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat Energy. 2019; 4(8): 690-699.

[177]

Shi H, Wang H, Zhou Y, et al. Atomically dispersed indium-copper dual-metal active sites promoting C-C coupling for CO2 photoreduction to ethanol. Angew Chem Int Ed. 2022; 134(40): e202208904.

[178]

Cheng L, Zhang P, Wen Q, Fan J, Xiang Q. Copper and platinum dual-single-atoms supported on crystalline graphitic carbon nitride for enhanced photocatalytic CO2 reduction. Chin J Catal. 2022; 43(2): 451-460.

[179]

Peng H, Yang T, Lin H, et al. Ru/In dual-single atoms modulated charge separation for significantly accelerated photocatalytic H2 evolution in pure water. Adv Energy Mater. 2022; 12(43): 2201688.

[180]

Wang C, Wang K, Feng Y, et al. Co and Pt dual-single-atoms with oxygen-coordinated Co-O-Pt dimer sites for ultrahigh photocatalytic hydrogen evolution efficiency. Adv Mater. 2021; 33(13): 2003327.

[181]

Cheng L, Yue X, Wang L, et al. Dual-single-atom tailoring with bifunctional integration for high-performance CO2 photoreduction. Adv Mater. 2021; 33(49): 2105135.

[182]

Yang S, Hu W, Zhang X, et al. 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction. J Am Chem Soc. 2018; 140(44): 14614-14618.

[183]

Yang Q, Luo M, Liu K, Cao H, Yan H. Covalent organic frameworks for photocatalytic applications. Appl Catal B-Environ. 2020; 276: 119174.

[184]

Chen R, Shi J-L, Ma Y, Lin G, Lang X, Wang C. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew Chem Int Ed. 2019; 58(19): 6430-6434.

[185]

Li M, Chi X, Zhang Z, et al. Mesoporous vinylene-linked covalent organic frameworks with heteroatom-tuned crystallinity and photocatalytic behaviors. Angew Chem Int Ed. 2024; 63(44): e202411474.

RIGHTS & PERMISSIONS

2024 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

3

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/