Recent advancements in metal oxide-based hybrid nanocomposite resistive random-access memories for artificial intelligence

Anirudh Kumar , Kirti Bhardwaj , Satendra Pal Singh , Youngmin Lee , Sejoon Lee , Mohit Kumar , Sanjeev K. Sharma

InfoMat ›› 2025, Vol. 7 ›› Issue (3) : e12644

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (3) : e12644 DOI: 10.1002/inf2.12644
REVIEW ARTICLE

Recent advancements in metal oxide-based hybrid nanocomposite resistive random-access memories for artificial intelligence

Author information +
History +
PDF

Abstract

Artificial intelligence (AI) advancements are driving the need for highly parallel and energy-efficient computing analogous to the human brain and visual system. Inspired by the human brain, resistive random-access memories (ReRAMs) have recently emerged as an essential component of the intelligent circuitry architecture for developing high-performance neuromorphic computing systems. This occurs due to their fast switching with ultralow power consumption, high ON/OFF ratio, excellent data retention, good endurance, and even great possibilities for altering resistance analogous to their biological counterparts for neuromorphic computing applications. Additionally, with the advantages of photoelectric dual modulation of resistive switching, ReRAMs allow optically inspired artificial neural networks and reconfigurable logic operations, promoting innovative in-memory computing technology for neuromorphic computing and image recognition tasks. Optoelectronic neuromorphic computing architectured ReRAMs can simulate neural functionalities, such as light-triggered long-term/short-term plasticity. They can be used in intelligent robotics and bionic neurological optoelectronic systems. Metal oxide (MOx)–polymer hybrid nanocomposites can be beneficial as an active layer of the bistable metal–insulator–metal ReRAM devices, which hold promise for developing high-performance memory technology. This review explores the state of the art for developing memory storage, advancement in materials, and switching mechanisms for selecting the appropriate materials as active layers of ReRAMs to boost the ON/OFF ratio, flexibility, and memory density while lowering programming voltage. Furthermore, material design cum-synthesis strategies that greatly influence the overall performance of MOx–polymer hybrid nanocomposite ReRAMs and their performances are highlighted. Additionally, the recent progress of multifunctional optoelectronic MOx–polymer hybrid composites-based ReRAMs are explored as artificial synapses for neural networks to emulate neuromorphic visualization and memorize information. Finally, the challenges, limitations, and future outlooks of the fabrication of MOx–polymer hybrid composite ReRAMs over the conventional von Neumann computing systems are discussed.

Keywords

memory capacity / metal oxide–polymer nanocomposites / multifunctional artificial synapse / optoelectronic ReRAM / switching mechanism

Cite this article

Download citation ▾
Anirudh Kumar, Kirti Bhardwaj, Satendra Pal Singh, Youngmin Lee, Sejoon Lee, Mohit Kumar, Sanjeev K. Sharma. Recent advancements in metal oxide-based hybrid nanocomposite resistive random-access memories for artificial intelligence. InfoMat, 2025, 7(3): e12644 DOI:10.1002/inf2.12644

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pehle C, Wetterich C. Neuromorphic quantum computing. Phys Rev E. 2022; 106(4): 045311.

[2]

Park HL, Lee Y, Kim N, Seo DG, Go GT, Lee TW. Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv Mater. 2020; 32(15): 1903558.

[3]

Zhong W-M, Tang X-G, Liu Q-X, Jiang Y-P. Artificial optoelectronic synaptic characteristics of Bi2FeMnO6 ferroelectric memristor for neuromorphic computing. Mater Des. 2022; 222: 111046.

[4]

Shi Q, Dong B, He T, et al. Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things. InfoMat. 2020; 2(6): 1131-1162.

[5]

Choi S, Yang J, Wang G. Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing. Adv Mater. 2020; 32(51): 2004659.

[6]

Dwivedi YK, Hughes L, Ismagilova E, et al. Artificial intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int J Inf Manag. 2021; 57: 101994.

[7]

Hassanzadeh P. The capabilities of nanoelectronic 2-D materials for bio-inspired computing and drug delivery indicate their significance in modern drug design. Life Sci. 2021; 279: 119272.

[8]

Oniani S, Marques G, Barnovi S, Pires IM, Bhoi AK. Artificial intelligence for internet of things and enhanced medical systems. Bio-Inspired Neurocomput. 2021; 903: 43-59.

[9]

Christensen DV, Dittmann R, Linares-Barranco B, et al. 2022 Roadmap on neuromorphic computing and engineering. Neuromorphic Comput Eng. 2022; 2(2): 022501.

[10]

He K, Liu Y, Yu J, et al. Artificial neural pathway based on a memristor synapse for optically mediated motion learning. ACS Nano. 2022; 16(6): 9691-9700.

[11]

Feng G, Zhang X, Tian B, Duan C. Retinomorphic hardware for in-sensor computing. InfoMat. 2023; 5(9): e12473.

[12]

Kumar M, Kim J, Kim J, Seo H. Adaptable photonic artificial neurons for attention-based object identification. Nano Energy. 2024; 121: 109221.

[13]

Liu L, Cheng Z, Jiang B, et al. Optoelectronic artificial synapses based on two-dimensional transitional-metal trichalcogenide. ACS Appl Mater Interfaces. 2021; 13(26): 30797-30805.

[14]

Sun L, Wang Z, Jiang J, et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci Adv. 2021; 7(20): eabg1455.

[15]

Zhang SR, Zhou L, Mao JY, et al. Artificial synapse emulated by charge trapping-based resistive switching device. Adv Mater Technol. 2019; 4(2): 1800342.

[16]

Xu H, Shang D, Luo Q, et al. A low-power vertical dual-gate neurotransistor with short-term memory for high energy-efficient neuromorphic computing. Nat Commun. 2023; 14(1): 6385.

[17]

Zhang J, Dai S, Zhao Y, Zhang J, Huang J. Recent progress in photonic synapses for neuromorphic systems. Adv Intell Syst. 2020; 2(3): 1900136.

[18]

Liu Y, Zhong J, Li E, et al. Self-powered artificial synapses actuated by triboelectric nanogenerator. Nano Energy. 2019; 60: 377-384.

[19]

Liao Q, Wang Y, Lv Z, et al. Electronic synapses mimicked in bilayer organic-inorganic heterojunction based memristor. Org Electron. 2021; 90: 106062.

[20]

Kumar A, Preeti K, Singh SP, Lee S, Kaushik A, Sharma SK. ZnO-based hybrid nanocomposite for high-performance resistive switching devices: way to smart electronic synapses. Mater Today. 2023; 69: 262-286.

[21]

Zhang J. Basic neural units of the brain: neurons, synapses and action potential. arXiv preprint. 2019; arXiv:1906.01703.

[22]

Uhrig RE, ed. Introduction to Artificial Neural Networks. IEEE; 1995.

[23]

Luo Z-D, Xia X, Yang M-M, Wilson NR, Gruverman A, Alexe M. Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano. 2019; 14(1): 746-754.

[24]

Ku B, Koo B, Sokolov AS, Ko MJ, Choi C. Two-terminal artificial synapse with hybrid organic-inorganic perovskite (CH3NH3) PbI3 and low operating power energy (∼47 fJ/μm2). J Alloys Compd. 2020; 833: 155064.

[25]

Guo J, Wang L, Liu Y, et al. Highly reliable low-voltage memristive switching and artificial synapse enabled by van der Waals integration. Matter. 2020; 2(4): 965-976.

[26]

Wang T-Y, Meng J-L, Rao M-Y, et al. Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett. 2020; 20(6): 4111-4120.

[27]

Mandal S, El-Amin A, Alexander K, Rajendran B, Jha R. Novel synaptic memory device for neuromorphic computing. Sci Rep. 2014; 4(1): 5333.

[28]

Herrmann E, Rush A, Bailey T, Jha R. Gate controlled three-terminal metal oxide memristor. IEEE Electron Device Lett. 2018; 39(4): 500-503.

[29]

Chen S, Lou Z, Chen D, Shen G. An artificial flexible visual memory system based on an UV-motivated memristor. Adv Mater. 2018; 30(7): 1705400.

[30]

Kumar M, Han S-I, Lim S, Seo H. Hybrid volatile/nonvolatile resistive switching memory in ternary metal oxide enabling Hopfield neural classification. ACS Appl Electron Mater. 2023; 5(2): 896-904.

[31]

Kumar M, Kim U, Lee W, Seo H. Ultrahigh-speed in-memory electronics enabled by proximity-oxidation-evolved metal oxide redox transistors. Adv Mater. 2022; 34(20): 2200122.

[32]

Yan X, Zhao J, Liu S, et al. Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv Funct Mater. 2018; 28(1): 1705320.

[33]

More SS, Patil PA, Kadam KD, et al. Resistive switching and synaptic properties modifications in gallium-doped zinc oxide memristive devices. Results Phys. 2019; 12: 1946-1955.

[34]

Kumar M, Han S-I, Ahn Y, Jeon Y, Park J, Seo H. Switchable polar nanotexture in nanolaminates HfO2-ZrO2 for ultrafast logic-in-memory operations. Small. 2023; 19(25): 2206736.

[35]

Wang J, Lv Z, Xing X, et al. Optically modulated threshold switching in core-shell quantum dot based memristive device. Adv Funct Mater. 2020; 30(16): 1909114.

[36]

Shan X, Zhao C, Wang X, et al. Plasmonic optoelectronic Memristor enabling fully light-modulated synaptic plasticity for neuromorphic vision. Adv Sci. 2022; 9(6): 2104632.

[37]

Han J, Yan Z, Lin Y, et al. Humidity-mediated synaptic plasticity in Ag loaded porous SiOx based memristor for multimodal neuromorphic sensory system. Mater Today Nano. 2024; 25: 100461.

[38]

Chen Z, Zhang Y, Yu Y, et al. Resistive switching memory based on polyvinyl alcohol-graphene oxide hybrid material for the visual perception nervous system. Mater Des. 2022; 223: 111218.

[39]

Zhou W, Yang R, He H-K, Huang H-M, Xiong J, Guo X. Optically modulated electric synapses realized with memristors based on ZnO nanorods. Appl Phys Lett. 2018; 113(6): 061107.

[40]

Chen W, Zhang Z, Liu G. Retinomorphic optoelectronic devices for intelligent machine vision. iScience. 2022; 25(1): 103729.

[41]

Mao JY, Zhou L, Zhu X, Zhou Y, Han ST. Photonic memristor for future computing: a perspective. Adv Opt Mater. 2019; 7(22): 1900766.

[42]

Kumar M, Park H, Seo H. Transformative multifunction deep ultraviolet photodetectors for on-demand applications: from fast optical communication to tunable in-sensor photocurrent integration. ACS Appl Mater Interfaces. 2024; 16(21): 27550-27559.

[43]

Kumar M, Abbas S, Kim J. All-oxide-based highly transparent photonic synapse for neuromorphic computing. ACS Appl Mater Interfaces. 2018; 10(40): 34370-34376.

[44]

Shan X, Wang Z, Xie J, et al. Hemispherical retina emulated by plasmonic optoelectronic memristors with all-optical modulation for neuromorphic stereo vision. Adv Sci. 2024; 11(36): 2405160.

[45]

Lian H, Cheng X, Hao H, et al. Metal-containing organic compounds for memory and data storage applications. Chem Soc Rev. 2022; 51(6): 1926-1982.

[46]

Meena JS, Sze SM, Chand U, Tseng T-Y. Overview of emerging nonvolatile memory technologies. Nanoscale Res Lett. 2014; 9(1): 1-33.

[47]

Huang J, Zhao X, Zhang H, et al. Flash memory devices and bistable nonvolatile resistance switching properties based on PFO doping with ZnO. RSC Adv. 2019; 9(17): 9392-9400.

[48]

Melianas A, Kang MA, VahidMohammadi A, et al. High-speed ionic synaptic memory based on 2D titanium carbide MXene. Adv Funct Mater. 2022; 32(12): 2109970.

[49]

Xiong X, Kang J, Hu Q, et al. Reconfigurable logic-in-memory and multilingual artificial synapses based on 2D heterostructures. Adv Funct Mater. 2020; 30(11): 1909645.

[50]

Feng X, Li S, Wong SL, et al. Self-selective multi-terminal memtransistor crossbar array for in-memory computing. ACS Nano. 2021; 15(1): 1764-1774.

[51]

John RA, Ko J, Kulkarni MR, et al. Flexible ionic-electronic hybrid oxide synaptic TFTs with programmable dynamic plasticity for brain-inspired neuromorphic computing. Small. 2017; 13(32): 1701193.

[52]

Kang H, Park J, Lee D, et al. Two-and three-terminal HfO2-based multilevel resistive memories for neuromorphic analog synaptic elements. Neuromorphic Comput Eng. 2021; 1(2): 021001.

[53]

Jiang H, Han L, Lin P, et al. Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Sci Rep. 2016; 6(1): 28525.

[54]

Li Y, Ang K-W. Hardware implementation of neuromorphic computing using large-scale memristor crossbar arrays. Adv Intell Syst. 2021; 3(1): 2000137.

[55]

Hasina D, Saini M, Kumar M, et al. Site-specific emulation of neuronal synaptic behavior in Au nanoparticle-decorated self-organized TiOx surface. Small. 2024; 20(7): 2305605.

[56]

Lin Y, Zeng T, Xu H, et al. Transferable and flexible artificial memristive synapse based on WOx schottky junction on arbitrary substrates. Adv Electron Mater. 2018; 4(12): 1800373.

[57]

Yu Y, Wang C, Jiang C, et al. Nitrogen-doped titanium dioxide nanorod array memristors with synaptic features and tunable memory lifetime for neuromorphic computing. J Alloys Compd. 2021; 868: 159194.

[58]

Pan Y, Wan T, Du H, et al. Mimicking synaptic plasticity and learning behaviours in solution processed SnO2 memristor. J Alloys Compd. 2018; 757: 496-503.

[59]

Yang L, Huang X, Li Y, et al. Self-selective memristor-enabled in-memory search for highly efficient data mining. InfoMat. 2023; 5(5): e12416.

[60]

Kawahara A, Azuma R, Ikeda Y, et al. An 8 Mb multi-layered cross-point ReRAM macro with 443 MB/s write throughput. IEEE J Solid State Circuits. 2012; 48(1): 178-185.

[61]

Chien T-K, Chiou L-Y, Sheu S-S, et al. Low-power MCU with embedded ReRAM buffers as sensor hub for IoT applications. IEEE J Emerg Sel Top Circuits Syst. 2016; 6(2): 247-257.

[62]

Yu S, Wu Y, Jeyasingh R, Kuzum D, Wong HSP. An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans Electron Devices. 2011; 58(8): 2729-2737.

[63]

Gul F. Carrier transport mechanism and bipolar resistive switching behavior of a nano-scale thin film TiO2 memristor. Ceram Int. 2018; 44(10): 11417-11423.

[64]

Zhao B, Zhao X, Li Q, et al. Reproducible and low-power multistate bio-memristor from interpenetrating network electrolyte design. InfoMat. 2022; 4(11): e12350.

[65]

Wang W, Li Y, Yue W, et al. Study on multilevel resistive switching behavior with tunable ON/OFF ratio capability in forming-free ZnO QDs-based RRAM. IEEE Trans Electron Devices. 2020; 67(11): 4884-4890.

[66]

Xue Q, Hang T, Liang J, et al. Nonvolatile resistive memory and synaptic learning using hybrid flexible memristor based on combustion synthesized Mn-ZnO. J Mater Sci Technol. 2022; 119: 123-130.

[67]

Adam GC, Hoskins BD, Prezioso M, Merrikh-Bayat F, Chakrabarti B, Strukov DB. 3-D memristor crossbars for analog and neuromorphic computing applications. IEEE Trans Electron Devices. 2016; 64(1): 312-318.

[68]

Vourkas I, Sirakoulis GC. A novel design and modeling paradigm for memristor-based crossbar circuits. IEEE Trans Nanotechnol. 2012; 11(6): 1151-1159.

[69]

Kim H, Mahmoodi MR, Nili H, Strukov DB. 4K-memristor analog-grade passive crossbar circuit. Nat Commun. 2021; 12(1): 5198.

[70]

Pi S, Li C, Jiang H, et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat Nanotechnol. 2019; 14(1): 35-39.

[71]

Teng C, Yu Q, Sun Y, et al. Homologous gradient heterostructure-based artificial synapses for neuromorphic computation. InfoMat. 2023; 5(1): e12351.

[72]

Kumar A, Baghini MS. Experimental study for selection of electrode material for ZnO-based memristors. Electron Lett. 2014; 50(21): 1547-1549.

[73]

Filatov DO, Vrzheshch DV, Tabakov OV, et al. Noise-induced resistive switching in a memristor based on ZrO2 (Y)/Ta2O5 stack. J Stat Mech Theory Exp. 2019; 2019(12): 124026.

[74]

Zhang Y, Mao G-Q, Zhao X, et al. Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nat Commun. 2021; 12(1): 7232.

[75]

Lin Y, Meng F, Zeng T, et al. Direct observation of oxygen ion dynamics in a WO3−x based second-order memristor with dendritic integration functions. Adv Funct Mater. 2023; 33(35): 2302787.

[76]

Poddar S, Zhang Y, Gu L, et al. Down-scalable and ultra-fast memristors with ultra-high density three-dimensional arrays of perovskite quantum wires. Nano Lett. 2021; 21(12): 5036-5044.

[77]

Zhang X, Yang H, Jiang Z, et al. Photoresponse of nonvolatile resistive memory device based on all-inorganic perovskite CsPbBr3 nanocrystals. J Phys D Appl Phys. 2019; 52(12): 125103.

[78]

Long Z, Ding Y, Qiu X, Zhou Y, Kumar S, Fan Z. A dual-mode image sensor using an all-inorganic perovskite nanowire array for standard and neuromorphic imaging. J Semicond. 2023; 44(9): 092604.

[79]

Qian WH, Cheng XF, Zhou J, et al. Lead-free perovskite MASnBr3-based memristor for quaternary information storage. InfoMat. 2020; 2(4): 743-751.

[80]

Meng J, Wang T, He Z, et al. A high-speed 2D optoelectronic in-memory computing device with 6-bit storage and pattern recognition capabilities. Nano Res. 2022; 15(3): 1-7.

[81]

Kim M, Lee Y, Kumar S, et al. UV light controlled optoelectronic memory based on WSe2 and hBN encapsulated graphene heterostructures. J Alloys Compd. 2023; 936: 168333.

[82]

Yang F, Sun L, Duan Q, et al. Vertical-organic-nanocrystal-arrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing. SmartMat. 2021; 2(1): 99-108.

[83]

Zhang T, Wang L, Ding W, et al. Rationally designing high-performance versatile organic memristors through molecule-mediated ion movements. Adv Mater. 2023; 40: 2302863.

[84]

Bennett CH, Chabi D, Cabaret T, et al., eds. Supervised Learning with Organic Memristor Devices and Prospects for Neural Crossbar Arrays. IEEE; 2015.

[85]

Ercan E, Chen JY, Tsai PC, et al. A redox-based resistive switching memory device consisting of organic-inorganic hybrid perovskite/polymer composite thin film. Adv Electron Mater. 2017; 3(12): 1700344.

[86]

Siddiqui GU, Rehman MM, Choi KH. Enhanced resistive switching in all-printed, hybrid and flexible memory device based on perovskite ZnSnO3 via PVOH polymer. Polymer. 2016; 100: 102-110.

[87]

Patil AR, Dongale TD, Kamat RK, Rajpure KY. Binary metal oxide-based resistive switching memory devices: a status review. Mater Today Commun. 2023; 34: 105356.

[88]

Xu Y, Zhang J, Han X, et al. Squeeze-printing ultrathin 2D gallium oxide out of liquid metal for forming-free neuromorphic memristors. ACS Appl Mater Interfaces. 2023; 15(21): 25831-25837.

[89]

Li Y, Zhong Y, Xu L, et al. Ultrafast synaptic events in a chalcogenide memristor. Sci Rep. 2013; 3(1): 1619.

[90]

Yang J, Hu L, Shen L, et al. Optically driven intelligent computing with ZnO memristor. Fundam Res. 2022; 4(1): 158-166.

[91]

Li D, Wu B, Zhu X, et al. MoS2 memristors exhibiting variable switching characteristics toward biorealistic synaptic emulation. ACS Nano. 2018; 12(9): 9240-9252.

[92]

Mohammad B, Jaoude MA, Kumar V, et al. State of the art of metal oxide memristor devices. Nanotechnol Rev. 2016; 5(3): 311-329.

[93]

Bogle K, Narwade R, Phatangare A, Dahiwale S, Mahabole M, Khairnar R. Optically modulated resistive switching in BiFeO3 thin film. Phys Status Solidi A: Appl Mater Sci. 2016; 213(8): 2183-2188.

[94]

Wang TY, Meng JL, Chen L, et al. Flexible 3D memristor array for binary storage and multi-states neuromorphic computing applications. InfoMat. 2021; 3(2): 212-221.

[95]

Wang Q, Wang Y, Wang Y, et al. Long-term and s hort-term plasticity independently mimicked in highly reliable Ru-doped Ge2Sb2Te5 electronic synapses. InfoMat. 2024; 6(8): e12543.

[96]

Kumar M, Ban D-K, Kim SM, Kim J, Wong C-P. Vertically aligned WS2 layers for high-performing memristors and artificial synapses. Adv Electron Mater. 2019; 5(10): 1900467.

[97]

Wang L, Yang C, Wen J, Gai S. Emerging nonvolatile memories to go beyond scaling limits of conventional CMOS nanodevices. J Nanomater. 2014; 2014: 927696.

[98]

Badaroglu M, ed. More Moore. 2021 IEEE International Roadmap for Devices and Systems Outbriefs. IEEE Computer Society; 2021: 30.

[99]

Chandrasekaran S, Simanjuntak FM, Panda D, Tseng T-Y. Enhanced synaptic linearity in ZnO-based invisible memristive synapse by introducing double pulsing scheme. IEEE Trans Electron Devices. 2019; 66(11): 4722-4726.

[100]

Yan X, Qin C, Lu C, et al. Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing. ACS Appl Mater Interfaces. 2019; 11(51): 48029-48038.

[101]

Hu SG, Liu Y, Chen TP, et al. Emulating the Ebbinghaus forgetting curve of the human brain with a NiO-based memristor. Appl Phys Lett. 2013; 103(13): 133701.

[102]

Sarkar B, Lee B, Misra V. Understanding the gradual reset in Pt/Al2O3/Ni RRAM for synaptic applications. Semicond Sci Technol. 2015; 30(10): 105014.

[103]

Kamble GU, Takaloo AV, Teli AM, et al. Highly-stable memristive devices with synaptic characteristics based on hydrothermally synthesized MnO2 active layers. J Alloys Compd. 2021; 872: 159653.

[104]

Patil AP, Nirmal KA, Mali SS, et al. Tuning the analog and digital resistive switching properties of TiO2 by nanocompositing Al-doped ZnO. Mater Sci Semicond Process. 2020; 115: 105110.

[105]

Mao S, Sun B, Zhou G, et al. Analog-to-digital and self-rectifying resistive switching behavior based on flower-like δ-MnO2. Appl Surf Sci. 2022; 595: 153560.

[106]

Li Y, Chu J, Duan W, et al. Analog and digital bipolar resistive switching in solution-combustion-processed NiO memristor. ACS Appl Mater Interfaces. 2018; 10(29): 24598-24606.

[107]

Li H, Geng S, Liu T, Cao M, Su J. Synaptic and gradual conductance switching behaviors in CeO2/Nb-SrTiO3 heterojunction memristors for electrocardiogram signal recognition. ACS Appl Mater Interfaces. 2023; 15(4): 5456-5465.

[108]

Liu Q, Yin L, Zhao C, et al. All-in-one metal-oxide heterojunction artificial synapses for visual sensory and neuromorphic computing systems. Nano Energy. 2022; 97: 107171.

[109]

Wang T-Y, Meng J-L, Li Q-X, et al. Reconfigurable optoelectronic memristor for in-sensor computing applications. Nano Energy. 2021; 89: 106291.

[110]

Lu C, Meng J, Wang T, et al. Fully light modulated self-powered optoelectronic memristor for neuromorphic computing. IEEE Electron Device Lett. 2023; 44(10): 1784-1787.

[111]

Maier P, Hartmann F, Emmerling M, et al. Electro-photo-sensitive memristor for neuromorphic and arithmetic computing. Phys Rev Appl. 2016; 5(5): 054011.

[112]

Li R, Wang W, Li Y, Gao S, Yue W, Shen G. Multi-modulated optoelectronic memristor based on Ga2O3/MoS2 heterojunction for bionic synapses and artificial visual system. Nano Energy. 2023; 111: 108398.

[113]

Jang YH, Han J-K, Moon S, et al. A high-dimensional in-sensor reservoir computing system with optoelectronic memristors for high-performance neuromorphic machine vision. Mater Horizons. 2024; 11(2): 499-509.

[114]

Wei W, Sun H, Dong X, et al. A neotype self-rectifying Cu3SnS4-MoO3 synaptic memristor for neuromorphic applications. Chem Eng J. 2024; 482: 148848.

[115]

Yan X, Zhang Y, Fang Z, et al. A multimode-fused sensory memory system based on a robust self-assembly nanoscaffolded BaTiO3:Eu2O3 memristor. InfoMat. 2023; 5(9): e12429.

[116]

Lin Y, Wang W, Li R, et al. Multifunctional optoelectronic memristor based on CeO2/MoS2 heterojunction for advanced artificial synapses and bionic visual system with nociceptive sensing. Nano Energy. 2024; 121: 109267.

[117]

Liu Y, Wu Y, Han H, et al. CuInP2S6-based electronic/optoelectronic synapse for artificial visual system application. Adv Funct Mater. 2024; 34(1): 2306945.

[118]

Wu P, He T, Zhu H, et al. Next-generation machine vision systems incorporating two-dimensional materials: progress and perspectives. InfoMat. 2022; 4(1): e12275.

[119]

Zhou Z, Pei Y, Zhao J, Fu G, Yan X. Visible light responsive optoelectronic memristor device based on CeOx/ZnO structure for artificial vision system. Appl Phys Lett. 2021; 118(19): 191103.

[120]

Pei Y, Li Z, Li B, et al. A multifunctional and efficient artificial visual perception nervous system with Sb2Se3/CdS-core/shell (SC) nanorod arrays optoelectronic memristor. Adv Funct Mater. 2022; 32(29): 2203454.

[121]

Shan Y, Lyu Z, Guan X, et al. Solution-processed resistive switching memory devices based on hybrid organic-inorganic materials and composites. Phys Chem Chem Phys. 2018; 20(37): 23837-23846.

[122]

Narasimhan Arunagirinathan R, Gopikrishna P, Das D, Iyer PK. Solution processed donor-acceptor polymer based electrical memory device with high on/off ratio and tunable properties. ACS Appl Electron Mater. 2019; 1(4): 600-607.

[123]

Jang BC, Seong H, Kim SK, et al. Flexible nonvolatile polymer memory array on plastic substrate via initiated chemical vapor deposition. ACS Appl Mater Interfaces. 2016; 8(20): 12951-12958.

[124]

Song S, Cho B, Kim TW, et al. Three-dimensional integration of organic resistive memory devices. Adv Mater. 2010; 22(44): 5048-5052.

[125]

Chen Y, Liu G, Wang C, Zhang W, Li R-W, Wang L. Polymer memristor for information storage and neuromorphic applications. Mater Horizons. 2014; 1(5): 489-506.

[126]

Jang BC, Kim S, Yang SY, et al. Polymer analog memristive synapse with atomic-scale conductive filament for flexible neuromorphic computing system. Nano Lett. 2019; 19(2): 839-849.

[127]

Kim J-E, Kim B, Kwon HT, et al. Flexible parylene C-based RRAM array for neuromorphic applications. IEEE Access. 2022; 10: 109760-109767.

[128]

Zhang B, Chen W, Zeng J, et al. 90% yield production of polymer nano-memristor for in-memory computing. Nat Commun. 2021; 12(1): 1984.

[129]

Han L, Wang D, Li M, et al. Synaptic memristors based on flexible organic pentacene thin films by the thermal evaporation method for neuromorphic computing. Carbon. 2024; 218: 118665.

[130]

Zhao P, Ji R, Lao J, et al. Two-terminal organic optoelectronic synapse based on poly(3-hexylthiophene) for neuromorphic computing. Org Electron. 2022; 100: 106390.

[131]

Mu B, Hsu H-H, Kuo C-C, Han S-T, Zhou Y. Organic small molecule-based RRAM for data storage and neuromorphic computing. J Mater Chem C. 2020; 8(37): 12714-12738.

[132]

Zhang Q, He J, Zhuang H, et al. Rational design of small molecules to implement organic quaternary memory devices. Adv Funct Mater. 2016; 26(1): 146-154.

[133]

Cheng X-F, Li J, Hou X, et al. One-dimensional π-d conjugated coordination polymers: synthesis and their improved memory performance. Sci China Chem. 2019; 62(6): 753-760.

[134]

Li Y, Qian Q, Ling S, et al. A benzothiadiazole-containing π-conjugated small molecule as promising element for nonvolatile multilevel resistive memory device. J Solid State Chem. 2021; 294: 121850.

[135]

Khan SA, Rahmani MK, Kim H, Khan MF, Yun C, Kang MH. Polymer-based non-volatile resistive random-access memory device fabrication with multi-level switching and negative differential resistance state. Org Electron. 2021; 96: 106228.

[136]

Minnekhanov AA, Shvetsov BS, Martyshov MM, et al. On the resistive switching mechanism of parylene-based memristive devices. Org Electron. 2019; 74: 89-95.

[137]

Liu S-H, Yang W-L, Wu C-C, et al. High-performance polyimide-based ReRAM for nonvolatile memory application. IEEE Electron Device Lett. 2012; 34(1): 123-125.

[138]

Wu C-C, Wu W-F, Lin G-W, Yang W-L. Effects of the molecular chain length of polyimide on the characteristics of organic resistive random access memories. IEEE Trans Electron Devices. 2019; 67(1): 277-282.

[139]

Zhou Z, Mao H, Wang X, et al. Transient and flexible polymer memristors utilizing full-solution processed polymer nanocomposites. Nanoscale. 2018; 10(31): 14824-14829.

[140]

Lin WP, Liu SJ, Gong T, Zhao Q, Huang W. Polymer-based resistive memory materials and devices. Adv Mater. 2014; 26(4): 570-606.

[141]

Zhou Y, Han S-T, Xu Z-X, Roy VAL. Low voltage flexible nonvolatile memory with gold nanoparticles embedded in poly (methyl methacrylate). Nanotechnology. 2012; 23(34): 344014.

[142]

Son DI, You CH, Kim WT, Jung JH, Kim TW. Electrical bistabilities and memory mechanisms of organic bistable devices based on colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites. Appl Phys Lett. 2009; 94(13): 132103.

[143]

Li Q, Li T, Zhang Y, et al. Nonvolatile photoelectric memory with CsPbBr3 quantum dots embedded in poly (methyl methacrylate) as charge trapping layer. Org Electron. 2020; 77: 105461.

[144]

Biswas B, Chowdhury A, Sanyal MK, Majumder M, Mallik B. Electric field induced tunable bistable conductance switching and the memory effect of thiol capped CdS quantum dots embedded in poly (methyl methacrylate) thin films. J Mater Chem C. 2013; 1(6): 1211-1222.

[145]

Jaafar AH, O'Neill M, Kelly SM, Verrelli E, Kemp NT. Percolation threshold enables optical resistive-memory switching and light-tuneable synaptic learning in segregated nanocomposites. Adv Electron Mater. 2019; 5(7): 1900197.

[146]

Sui W, Zhang C, Xu H-Y, Li J-C. Mechanical strain effects on resistive switching of flexible polymer thin films embedded with ZnO nanoparticles. Mater Res Express. 2018; 5(6): 066425.

[147]

Saini S, Lodhi A, Dwivedi A, Khandelwal A, Tiwari SP. Enhanced resistive switching in flexible hybrid RRAM devices with PVK: MoS2/TiO2 bilayer. IEEE Trans Electron Devices. 2022; 70(1): 53-58.

[148]

Hmar JJL. Non-volatile resistive switching memory device based on ZnO-graphene oxide embedded in a polymer matrix fabricated on a flexible PET substrate. Microelectron Eng. 2020; 233: 111436.

[149]

Singh SP, Sharma SK, Kim DY. Carrier mechanism of ZnO nanoparticles-embedded PMMA nanocomposite organic bistable memory device. Solid State Sci. 2020; 99: 106046.

[150]

Jyoti KR, Singh S, Sharma J, Tripathi SK. Effect of TiO2 concentration on the non-volatile memory behavior of TiO2-PVA polymer nanocomposites. J Electron Mater. 2019; 48(9): 5995-6002.

[151]

Sarkar PK, Bhattacharjee S, Prajapat M, Roy A. Incorporation of SnO2 nanoparticles in PMMA for performance enhancement of a transparent organic resistive memory device. RSC Adv. 2015; 5(128): 105661-105667.

[152]

Jaafar AH, Gee A, Kemp NT. Nanorods versus nanoparticles: a comparison study of Au/ZnO-PMMA/Au non-volatile memory devices showing the importance of nanostructure geometry on conduction mechanisms and switching properties. IEEE Trans Nanotechnol. 2019; 19: 236-246.

[153]

Jaafar AH, Lowe C, Gee A, Kemp NT. Optoelectronic switching memory based on ZnO nanoparticle/polymer nanocomposites. ACS Appl Polym Mater. 2023; 5(4): 2367-2373.

[154]

Zhao P, Ji R, Lao J, et al. Multifunctional two-terminal optoelectronic synapse based on zinc oxide/poly(3-hexylthiophene) heterojunction for neuromorphic computing. ACS Appl Polym Mater. 2022; 4(8): 5688-5695.

[155]

Fan J, Feng J, Gao Y, et al. PEDOT-ZnO nanoparticle hybrid film-based memristors for synapse emulation in neuromorphic computing applications. ACS Appl Nano Mater. 2024; 7(5): 5661-5668.

[156]

Subin PS, Midhun PS, Antony A, Saji KJ, Jayaraj MK. Optoelectronic synaptic plasticity mimicked in ZnO-based artificial synapse for neuromorphic image sensing application. Mater Today Commun. 2022; 33: 104232.

[157]

Zhao E, Liu D, Liu L, Yang X, Kan W, Sun Y. Unipolar nonvolatile memory devices based on the composites of poly (9-vinylcarbazole) and zinc oxide nanoparticles. J Mater Sci Mater Electron. 2017; 28: 11749-11754.

[158]

Khan SA, Rahmani MK, Khan MU, Kim J, Bae J, Kang MH. Multistate resistive switching with self-rectifying behavior and synaptic characteristics in a solution-processed ZnO/PTAA bilayer memristor. J Electrochem Soc. 2022; 169(6): 063517.

[159]

Song J, Han H, Peng B, et al. Role of nanoparticle surface defects in the conduction mechanism of polymer-nanoparticle electrical bistable devices. RSC Adv. 2017; 7(85): 54128-54135.

[160]

Brumm A, Oktaviana AA, Burhan B, et al. Oldest cave art found in Sulawesi. Sci Adv. 2021; 7(3): eabd4648.

[161]

Regulski I. The Origins and Early Development of Writing in Egypt. Oxford Academic; 2016.

[162]

van Middendorp JJ, Sanchez GM, Burridge AL. The Edwin Smith papyrus: a clinical reappraisal of the oldest known document on spinal injuries. Eur Spine J. 2010; 19(11): 1815-1823.

[163]

Kistermann FW. The invention and development of the Hollerith punched card: in commemoration of the 130th anniversary of the birth of Herman Hollerith and for the 100th anniversary of large scale data processing. Ann Hist Comput. 1991; 13(3): 245-259.

[164]

Haeff AV. The memory tube and its application to electronic computation. Math Tables Other Aids Comput. 1948; 3(24): 281-286.

[165]

Rajchman JA, ed. The Selectron-A Tube for Selective Electrostatic Storage. Proceedings of the Institute of Radio Engineers; 1947.

[166]

Stevens LD. The evolution of magnetic storage. IBM J Res Dev. 1981; 25(5): 663-676.

[167]

Dennard RH. Technical literature [reprint of “field-effect transistor memory” (US patent no. 3,387,286)]. IEEE Solid-State Circuits Soc Newsl. 2008; 13(1): 17-25.

[168]

Hickmott TW. Low-frequency negative resistance in thin anodic oxide films. J Appl Phys. 1962; 33(9): 2669-2682.

[169]

Bashara NM, Nielsen PH, eds. Memory effects in thin film negative resistance structures. Annual Report 1963 Conference on Electrical Insulation. IEEE; 1963.

[170]

Gibbons JF, Beadle WE. Switching properties of thin nio films. Solid State Electron. 1964; 7(11): 785-790.

[171]

Lamb DR, Rundle PC. A non-filamentary switching action in thermally grown silicon dioxide films. Br J Appl Phys. 1967; 18(1): 29-32.

[172]

Ovshinsky SR. Symmetrical Current Controlling Device. Google Patents; 1966.

[173]

Hickmott TW. Electroluminescence, Bistable switching, and dielectric breakdown of Nb2O5 diodes. J Vac Sci Technol. 1969; 6(5): 828-833.

[174]

Kahng D, Sze SM. A floating gate and its application to memory devices. Bell Syst Tech J. 1967; 46(6): 1288-1295.

[175]

Masuoka F, Asano M, Iwahashi H, Komuro T, Tanaka S, eds. A 256K flash EEPROM using triple polysilicon technology. 1985 IEEE International Solid-State Circuits Conference Digest of Technical Papers. IEEE; 1985.

[176]

McConnell M, Ashmore B, Bussey R, et al. An experimental 4 Mb flash EEPROM with sector erase. IEEE J Solid State Circuits. 1991; 26(4): 484-491.

[177]

Baker A, Alexis R, Bell S, et al., eds. A 3.3 V 16 Mb flash memory with advanced write automation. Proceedings of IEEE International Solid-State Circuits Conference—ISSCC '94. IEEE; 1994.

[178]

Atsumi S, Umezawa A, Tanzawa T, et al., eds. A channel-erasing 1.8 V-only 32 Mb NOR flash EEPROM with a bit-line direct-sensing scheme. 2000 IEEE International Solid-State Circuits Conference Digest of Technical Papers (Cat No00CH37056). IEEE; 2000.

[179]

Taehee C, Young-Taek L, Euncheol K, et al., eds. A 3.3 V 1 Gb multi-level NAND flash memory with non-uniform threshold voltage distribution. 2001 IEEE International Solid-State Circuits Conference Digest of Technical Papers ISSCC (Cat No01CH37177). IEEE; 2001.

[180]

Dai JY, Lee P-F. Recent patents in semiconductor nanocluster floating gate flash memory. Recent Pat Nanotechnol. 2007; 1(2): 91-97.

[181]

Whang S, Lee K, Shin D, et al., eds. Novel 3-dimensional dual control-gate with surrounding floating-gate (DC-SF) NAND flash cell for 1Tb file storage application. 2010 International Electron Devices Meeting. IEEE; 2010.

[182]

Liu T. A 130.7 mm2 2-Layer 32 Gb ReRAM memory device in 24 nm technology. 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers. IEEE; 2013.

[183]

Lee S, Kim C, Kim M, et al., eds. A 1Tb 4b/cell 64-stacked-WL 3D NAND flash memory with 12MB/s program throughput. 2018 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE; 2018.

[184]

Shibata N, Kanda K, Shimizu T, et al. A 1.33-Tb 4-bit/cell 3-D flash memory on a 96-word-line-layer technology. IEEE J Solid State Circuits. 2019; 55(1): 178-188.

[185]

Siau C, Kim K-H, Lee S, et al. A 512 Gb 3-bit/cell 3D flash memory on 128-wordline-layer with 132MB/s write performance featuring circuit-under-array technology. 2019 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE; 2019.

[186]

Khakifirooz A, Balasubrahmanyam S, Fastow R, et al., eds. 30.2 A 1 Tb 4b/cell 144-tier floating-gate 3D-NAND flash memory with 40 MB/s program throughput and 13.8 Gb/mm2 bit density. 2021 IEEE International Solid-State Circuits Conference (ISSCC). IEEE; 2021.

[187]

Kim DH, Kim H, Yun S, et al., eds. A 1 Tb 4b/cell NAND flash memory with tPROG = 2 ms, tR = 110 μs and 1.2 Gb/s high-speed IO rate. 2020 IEEE International Solid-State Circuits Conference—(ISSCC). IEEE; 2020.

[188]

Merolla PA, Arthur JV, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science. 2014; 345(6197): 668-673.

[189]

Davies M, Srinivasa N, Lin T-H, et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro. 2018; 38(1): 82-99.

[190]

Tossoun B, Sheng X, Strachan JP, Liang D, eds. The Memristor Laser. IEEE; 2020.

[191]

Modha DS, Akopyan F, Andreopoulos A, et al. Neural inference at the frontier of energy, space, and time. Science. 2023; 382(6668): 329-335.

[192]

Frieiro J, López-Vidrier J, Blázquez O, et al. Silicon nanocrystals-based electroluminescent resistive switching device. J Appl Phys. 2019; 126(14): 144501.

[193]

Bricalli A, Ambrosi E, Laudato M, Maestro M, Rodriguez R, Ielmini D. Resistive switching device technology based on silicon oxide for improved ON-OFF ratio—part I: memory devices. IEEE Trans Electron Devices. 2018; 65(1): 115-121.

[194]

Chang K-C, Tsai T-M, Chang T-C, et al. Characteristics and mechanisms of silicon-oxide-based resistance random access memory. IEEE Electron Device Lett. 2013; 34(3): 399-401.

[195]

Avilov V, Polupanov N, Tominov R, et al. Resistive switching of GaAs oxide nanostructures. Materials. 2020; 13(16): 3451.

[196]

Zhong L, Jiang L, Huang R, De Groot CH. Nonpolar resistive switching in Cu/SiC/Au non-volatile resistive memory devices. Appl Phys Lett. 2014; 104(9): 093507.

[197]

Yu Q, Liu Y, Chen T, et al. Flexible write-once-read-many-times memory device based on a nickel oxide thin film. IEEE Trans Electron Devices. 2012; 59(3): 858-862.

[198]

Chen PH, Chang KC, Chang TC, et al. Bulk oxygen-ion storage in indium-tin-oxide electrode for improved performance of HfO2-based resistive random access memory. IEEE Electron Device Lett. 2016; 37(3): 280-283.

[199]

Sahu DP, Jammalamadaka SN. Remote control of resistive switching in TiO2 based resistive random access memory device. Sci Rep. 2017; 7(1): 1-8.

[200]

Isyaku UB, Khir MHBM, Nawi IM, Zakariya M, Zahoor F. ZnO based resistive random access memory device: a prospective multifunctional next-generation memory. IEEE Access. 2021; 9: 105012-105047.

[201]

Kim W, Yoo C, Park E-S, et al. Electroforming-free bipolar resistive switching in GeSe thin films with a Ti-containing electrode. ACS Appl Mater Interfaces. 2019; 11(42): 38910-38920.

[202]

Jaafar AH, Meng L, Noori YJ, et al. Electrodeposition of GeSbTe-based resistive switching memory in crossbar arrays. J Phys Chem C. 2021; 125(47): 26247-26255.

[203]

Schindler C, Valov I, Waser R. Faradaic currents during electroforming of resistively switching Ag-Ge-Se type electrochemical metallization memory cells. Phys Chem Chem Phys. 2009; 11(28): 5974-5979.

[204]

Chen Z, Zhang Y, Yu Y, et al. Write once read many times resistance switching memory based on all-inorganic perovskite CsPbBr3 quantum dot. Opt Mater. 2019; 90: 123-126.

[205]

Lv F, Gao C, Zhang P, Dong C, Zhang C, Xue D. Bipolar resistive switching behavior of CaTiO3 films grown by hydrothermal epitaxy. RSC Adv. 2015; 5(51): 40714-40718.

[206]

Ge S, Huang Y, Chen X, et al. Silver iodide induced resistive switching in CsPbI3 perovskite-based memory device. Adv Mater Interfaces. 2019; 6(7): 1802071.

[207]

Kim SH, Yook KS, Jang J, Lee JY. Correlation of memory characteristics of polymer bistable memory devices with metal deposition process. Synth Met. 2008; 158(21-24): 861-864.

[208]

Liu Y, Li N, Xia X, Xu Q, Ge J, Lu J. WORM memory devices based on conformation change of a PVK derivative with a rigid spacer in side chain. Mater Chem Phys. 2010; 123(2-3): 685-689.

[209]

Mangalam J, Agarwal S, Resmi A, Sundararajan M, Jinesh K. Resistive switching in polymethyl methacrylate thin films. Org Electron. 2016; 29: 33-38.

[210]

Lee S, Lee Y, Kim SM, Song EB. Fully-transparent graphene charge-trap memory device with large memory window and long-term retention. Carbon. 2018; 127: 70-76.

[211]

He C, Zhuge F, Zhou X, et al. Nonvolatile resistive switching in graphene oxide thin films. Appl Phys Lett. 2009; 95(23): 232101.

[212]

Jeong HY, Kim JY, Kim JW, et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 2010; 10(11): 4381-4386.

[213]

Pradhan SK, Xiao B, Mishra S, Killam A, Pradhan AK. Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application. Sci Rep. 2016; 6(1): 1-9.

[214]

Khurana G, Misra P, Kumar N, Katiyar RS. Tunable power switching in nonvolatile flexible memory devices based on graphene oxide embedded with ZnO nanorods. J Phys Chem C. 2014; 118(37): 21357-21364.

[215]

Onlaor K, Thiwawong T, Tunhoo B. Flexible and fully transparent WORM memory devices based on Ag nanoparticles blended with poly (ethylene-co-vinyl acetate). Synth Met. 2019; 258: 116200.

[216]

Zhang H, Zhao X, Huang J, et al. Bistable non-volatile resistive memory devices based on ZnO nanoparticles embedded in polyvinylpyrrolidone. RSC Adv. 2020; 10(25): 14662-14669.

[217]

Ramana CV, Moodley M, Kumar A, Kannan V. Charge carrier transport mechanism based on stable low voltage organic bistable memory device. J Nanosci Nanotechnol. 2015; 15(5): 3934-3938.

[218]

Lin C, Pan T, Chen M, Yang Y, Tai Y, Chen Y. Organic bistable memory based on Au nanoparticle/ZnO nanorods composite embedded in poly (vinylpyrrolidone) layer. Appl Phys Lett. 2011; 99(2): 132.

[219]

Zhang T, Guérin D, Alibart F, et al. Physical mechanisms involved in the formation and operation of memory devices based on a monolayer of gold nanoparticle-polythiophene hybrid materials. Nanoscale Adv. 2019; 1(7): 2718-2726.

[220]

Lee TS, Lee NJ, Abbas H, Lee HH, Yoon T-S, Kang CJ. Compliance current-controlled conducting filament formation in tantalum oxide-based RRAM devices with different top electrodes. ACS Appl Electron Mater. 2020; 2(4): 1154-1161.

[221]

Bejtka K, Milano G, Ricciardi C, Pirri CF, Porro S. TEM nanostructural investigation of Ag-conductive filaments in polycrystalline ZnO-based resistive switching devices. ACS Appl Mater Interfaces. 2020; 12(26): 29451-29460.

[222]

Won Seo J, Baik SJ, Kang SJ, et al. Evidence of Al induced conducting filament formation in Al/amorphous silicon/Al resistive switching memory device. Appl Phys Lett. 2010; 96(5): 053504.

[223]

Dias C, Leitao DC, Freire CSR, Gomes HL, Cardoso S, Ventura J. Resistive switching of silicon-silver thin film devices in flexible substrates. Nanotechnology. 2020; 31(13): 135702.

[224]

Nam K-H, Kim J-H, Cho W-J, Kim C-H, Chung H-B. Resistive switching in amorphous GeSe-based resistive random access memory. J Nanosci Nanotechnol. 2016; 16(10): 10393-10396.

[225]

Sahu VK, Misra P, Ajimsha RS, Das AK, Joshi MP, Kukreja LM, eds. Resistive Memory Switching in Ultrathin TiO2 Films Grown by Atomic Layer Deposition. AIP Publishing LLC; 2016.

[226]

Patil VL, Patil AA, Patil SV, et al. Bipolar resistive switching, synaptic plasticity and non-volatile memory effects in the solution-processed zinc oxide thin film. Mater Sci Semicond Process. 2020; 106: 104769.

[227]

DeSalvo B. In: Vianello E, Thomas O, Clermidy F, Bichler O, Gamrat C, et al., eds. Emerging Resistive Memories for Low Power Embedded Applications and Neuromorphic Systems. IEEE; 2015.

[228]

Wang A, Dong J, Li Y, Cao K, Jie W. Zn vacancy complex-determined filamentary resistive switching characteristics in Au/ZnSe/ITO chalcogenide-based memory cells. AIP Adv. 2019; 9(9): 095058.

[229]

Liu C, Yuan Y, Cheng L, et al. A study on optical properties of Sb2Se3 thin films and resistive switching behavior in Ag/Sb2Se3/W heterojunctions. Results Phys. 2019; 13: 102228.

[230]

Kim S, Park J, Jung S, et al. Excellent resistive switching in nitrogen-doped Ge2Sb2Te5 devices for field-programmable gate array configurations. Appl Phys Lett. 2011; 99(19): 192110.

[231]

Ke W, Yang X, Liu T. Resistance switching effect of memory device based on all-inorganic CsPbBrI2 perovskite. Materials. 2021; 14(21): 6629.

[232]

Siddik A, Haldar PK, Paul T, et al. Nonvolatile resistive switching and synaptic characteristics of lead-free all-inorganic perovskite-based flexible memristive devices for neuromorphic systems. Nanoscale. 2021; 13(19): 8864-8874.

[233]

Onlaor K, Thiwawong T, Tunhoo B. Electrical switching and conduction mechanisms of nonvolatile write-once-read-many-times memory devices with ZnO nanoparticles embedded in polyvinylpyrrolidone. Org Electron. 2014; 15(6): 1254-1262.

[234]

Shindome A, Doioka Y, Beppu N, Oda S, Uchida K. Experimental study of two-terminal resistive random access memory realized in mono-and multilayer exfoliated graphene nanoribbons. Jpn J Appl Phys. 2013; 52(4S): 04CN5.

[235]

Ooi PC, Haniff MASM, Wee MFMR, et al. Reduced graphene oxide preparation and its applications in solution-processed write-once-read-many-times graphene-based memory device. Carbon. 2017; 124: 547-554.

[236]

Lin C-L, Tang C-C, Wu S-C, Juan P-C, Kang T-K. Impact of oxygen composition of ZnO metal-oxide on unipolar resistive switching characteristics of Al/ZnO/Al resistive RAM (RRAM). Microelectron Eng. 2015; 136: 15-21.

[237]

Kathalingam A, Kim H-S, Kim S-D, Park H-M, Park H-C. Unipolar resistive switching of solution synthesized ZnO nanorod with self-rectifying and negative differential resistance effects. Mater Lett. 2015; 142: 238-241.

[238]

Kim J, Jung K, Kim Y, et al. Switching power universality in unipolar resistive switching memories. Sci Rep. 2016; 6(1): 1-10.

[239]

Wang J, Wang F, Yin L, et al. A unipolar nonvolatile resistive switching behavior in a layered transition metal oxide. Nanoscale. 2019; 11(43): 20497-20506.

[240]

Thakre A, Kaswan J, Shukla AK, Kumar A. Unipolar resistive switching behavior in sol-gel synthesized FeSrTiO3 thin films. RSC Adv. 2017; 7(85): 54111-54116.

[241]

Lee W, Kim Y, Song Y, et al. Investigation of time-dependent resistive switching behaviors of unipolar nonvolatile organic memory devices. Adv Funct Mater. 2018; 28(35): 1801162.

[242]

Vasileiadis N, Karakolis P, Mandylas P, et al. Understanding the role of defects in silicon nitride-based resistive switching memories through oxygen doping. IEEE Trans Nanotechnol. 2021; 20: 356-364.

[243]

Yang MK, Park J-W, Ko TK, Lee J-K. Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices. Appl Phys Lett. 2009; 95(4): 042105.

[244]

Wang Y, He Z, Lai X, et al. Optical erasable bipolar resistive switching on TiO2 film in nanoscale. J Alloys Compd. 2021; 873: 159809.

[245]

Yan XB, Yin J, Guo HX, et al. Bipolar resistive switching performance of the nonvolatile memory cells based on (AgI)0.2 (Ag2 MoO4)0.8 solid electrolyte films. J Appl Phys. 2009; 106(5): 054501.

[246]

Singh R, Kumar R, Kumar A, Kashyap R, Kumar M, Kumar D, eds. Bipolar Resistive Switching in Graphene Oxide Based Metal Insulator Metal Structure for Non-Volatile Memory Applications. AIP Publishing LLC; 2018.

[247]

Singh R, Kumar R, Kumar A, Kumar D, Kumar M. Low power and stable resistive switching in graphene oxide-based RRAM embedded with ZnO nanoparticles for nonvolatile memory applications. J Mater Sci Mater Electron. 2021; 32(13): 17545-17557.

[248]

Kim H, Choi M-J, Suh JM, et al. Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109. NPG Asia Mater. 2020; 12(1): 1-11.

[249]

Kim S-Y, Yang J-M, Lee S-H, Park N-G. A layered (n-C4H9NH3)2 CsAgBiBr7 perovskite for bipolar resistive switching memory with a high ON/OFF ratio. Nanoscale. 2021; 13(29): 12475-12483.

[250]

Anwarhussaini SD, Battula H, Boppidi PKR, Kundu S, Chakraborty C, Jayanty S. Photophysical, electrochemical and flexible organic resistive switching memory device application of a small molecule: 7,7-bis (hydroxyethylpiperazino) dicyanoquinodimethane. Org Electron. 2020; 76: 105457.

[251]

Zhao E, Liu X, Liu G, Zhou B. Bipolar resistive switching characteristics and nonvolatile flash memory behavior in polyvinylcarbazole films. J Electron Mater. 2020; 49(3): 1801-1807.

[252]

Patil KT, Nirmal KA, Jadhav SA, et al. Bipolar resistive switching and non-volatile memory properties of MnO2-polyaniline (PANI) nanocomposite. Materialia. 2021; 15: 101026.

[253]

Zhang J, Yang H, Zhang Q-l, Dong S, Luo JK. Bipolar resistive switching characteristics of low temperature grown ZnO thin films by plasma-enhanced atomic layer deposition. Appl Phys Lett. 2013; 102(1): 012113.

[254]

Hsu C-C, Tsai J-E, Lin Y-S. A write-once-read-many-times memory based on a sol-gel derived copper oxide semiconductor. Phys B Condens Matter. 2019; 562: 20-25.

[255]

Yun DY, Kwak JK, Jung JH, Kim TW, Son DI. Electrical bistabilities and carrier transport mechanisms of write-once-read-many-times memory devices fabricated utilizing ZnO nanoparticles embedded in a polystyrene layer. Appl Phys Lett. 2009; 95(14): 267.

[256]

Thanh Dao T, Viet Tran T, Higashimine K, et al. High-performance nonvolatile write-once-read-many-times memory devices with ZnO nanoparticles embedded in polymethylmethacrylate. Appl Phys Lett. 2011; 99(23): 265.

[257]

Wang C, Chen Y, Zhang B, et al. High-efficiency bulk heterojunction memory devices fabricated using organometallic halide perovskite: poly (N-vinylcarbazole) blend active layers. Dalton Trans. 2016; 45(2): 484-488.

[258]

Sun Y, Wen D, Bai X. Nonvolatile ternary resistive switching memory devices based on the polymer composites containing zinc oxide nanoparticles. Phys Chem Chem Phys. 2018; 20(8): 5771-5779.

[259]

Lee J-W, Cho W-J. Fabrication of resistive switching memory based on solution processed PMMA-HfOx blended thin films. Semicond Sci Technol. 2017; 32(2): 025009.

[260]

Doan UTT, Pham ATT, Phan TB, et al. Abnormal volatile and normal stable bipolar resistive switching characteristics of hybrid nanocomposites: morphology-defects-property relationship. J Alloys Compd. 2021; 857: 157602.

[261]

Lodhi A, Saini S, Dwivedi A, Khandelwal A, Tiwari SP. Bipolar resistive switching properties of TiOx/graphene oxide doped PVP based bilayer ReRAM. J Micromech Microeng. 2022; 32(4): 044001.

[262]

Awasthi S, Pramanik S, Singh KK, Mohan A, Pal BN. Highly flexible non-volatile resistive memory devices based on ZnO nanoparticle/graphene heterostructures embedded in poly (methyl methacrylate). ACS Appl Nano Mater. 2024; 7(6): 6392-6400.

[263]

Varun I, Bharti D, Mahato AK, Raghuwanshi V, Tiwari SP. High-performance flexible resistive RAM with PVP:GO composite and ultrathin HfO hybrid bilayer. IEEE Trans Electron Devices. 2020; 67(3): 949-954.

[264]

Zhang C, Yu P-L, Li Y, Li J-C. Polymer/TiO2 nanoparticles interfacial effects on resistive switching under mechanical strain. Org Electron. 2020; 77: 105528.

[265]

Li J-C, Sui W, Li Y. Interfacial effects on resistive switching of polymer films embedded with different nanomaterials. J Phys Chem C. 2017; 121(25): 13723-13728.

[266]

Yu P-L, Sui W, Li J-C. Temperature-dependent fatigue failure of flexible poly (9,9-dioctylfluorene-alt-benzothiadiazole) (PFBT)-ZnO nanoparticle hybrid resistive switching memory devices. J Phys Chem C. 2020; 124(50): 27722-27731.

[267]

Kumar R, Pathak DK, Chaudhary A. Current status of some electrochromic materials and devices: a brief review. J Phys D Appl Phys. 2021; 54(50): 503002.

[268]

Zunger A. Inverse design in search of materials with target functionalities. Nat Rev Chem. 2018; 2(4): 0121.

[269]

Verbakel F, Meskers SCJ, Janssen RAJ. Electronic memory effects in diodes from a zinc oxide nanoparticle-polystyrene hybrid material. Appl Phys Lett. 2006; 89(10): 102103.

[270]

Choi DJ, Kim J-K, Seong H, Jang M-S, Kim Y-H. The formation of Cu2O nanoparticles in polyimide using Cu electrodes via chemical curing, and their application in flexible polymer memory devices. Org Electron. 2015; 27: 65-71.

[271]

Zhang Y, Dou F, Zhou Y, et al. Ternary electrical memory devices based on polycarbazole: SnO2 nanoparticles composite material. Polymers (Basel). 2022; 14(7): 1494.

[272]

Cho B, Kim T-W, Choe M, Wang G, Song S, Lee T. Unipolar nonvolatile memory devices with composites of poly (9-vinylcarbazole) and titanium dioxide nanoparticles. Org Electron. 2009; 10(3): 473-477.

[273]

Son D-I, Park D-H, Choi WK, Cho S-H, Kim W-T, Kim TW. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly (methyl methacrylate) polymer layer. Nanotechnology. 2009; 20(19): 195203.

[274]

Oliveira M, Machado AV. Preparation of polymer-based nanocomposites by different routes. Synth Charact Appl. 2013; 430: 1-22.

[275]

Bhattacharjee S, Sarkar PK, Roy N, Roy A. Improvement of reliability of polymer nanocomposite based transparent memory device by oxygen vacancy rich ZnO nanorods. Microelectron Eng. 2016; 164: 53-58.

[276]

Maeda S, Fujita M, Idota N, Matsukawa K, Sugahara Y. Preparation of transparent bulk TiO2/PMMA hybrids with improved refractive indices via an in situ polymerization process using TiO2 nanoparticles bearing PMMA chains grown by surface-initiated atom transfer radical polymerization. ACS Appl Mater Interfaces. 2016; 8(50): 34762-34769.

[277]

Zhang J, Maurer FHJ, Yang M. In situ formation of TiO2 in electrospun poly (methyl methacrylate) nanohybrids. J Phys Chem C. 2011; 115(21): 10431-10441.

[278]

Guo Q, Ghadiri R, Weigel T, et al. Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites. Polymers (Basel). 2014; 6(7): 2037-2050.

[279]

Fu S, Sun Z, Huang P, Li Y, Hu N. Some basic aspects of polymer nanocomposites: a critical review. Nano Mater Sci. 2019; 1(1): 2-30.

[280]

Darwish MSA, Mostafa MH, Al-Harbi LM. Polymeric nanocomposites for environmental and industrial applications. Int J Mol Sci. 2022; 23(3): 1023.

[281]

Haldorai Y, Shim J-J. Fabrication of metal oxide-polymer hybrid nanocomposites. In: Haldorai Y, Shim J-J, eds. Organic-Inorganic Hybrid Nanomaterials. Springer International Publishing; 2015: 249-281.

[282]

Kickelbick G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci. 2003; 28(1): 83-114.

[283]

Akpan EI, Shen X, Wetzel B, Friedrich K. Design and synthesis of polymer nanocomposites. In: Akpan EI, ed. Polymer Composites With Functionalized Nanoparticles. Elsevier; 2019: 47-83.

[284]

Karmakar R, Das AK, Dutta B, et al. Tunable, reversible resistive switching behavior of PVA-zirconia nanocomposite films and validation of the trap-assisted switching mechanism by the selective application of external bias voltages. Phys Chem Chem Phys. 2023; 25(23): 15953-15969.

[285]

Ramana CV, Moodley MK, Kannan V, Maity A. Solution based-spin cast processed organic bistable memory device. Solid State Electron. 2013; 81: 45-50.

[286]

Kim C, Johra FT, Kim J, Lee J, Jung W-G, Lee MJ. Improvement of on/off ratio in solution-processed graphene-zinc oxide resistive switching memory by blending with polystyrene. J Nanosci Nanotechnol. 2016; 16(12): 12918-12922.

[287]

Li Y, Sui W, Li J-C. Interfacial effects on resistive switching of flexible polymer thin films embedded with TiO2 nanoparticles. J Phys Chem C. 2017; 121(14): 7944-7950.

[288]

Zheng M-P, Jin Y-P, Jin G-L, Gu M-Y. Characterization of TiO2-PVP nanocomposites prepared by the sol-gel method. J Mater Sci Lett. 2000; 19(5): 433-436.

[289]

Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015; 44(41): 17883-17905.

[290]

Lu X, Niu M, Qiao R, Gao M. Superdispersible PVP-coated Fe3O4 nanocrystals prepared by a “one-pot” reaction. J Phys Chem B. 2008; 112(46): 14390-14394.

[291]

Zheng M-p, Gu M-y, Jin Y-p, et al. Effects of PVP on structure of TiO2 prepared by the sol-gel process. Mater Sci Eng B. 2001; 87(2): 197-201.

[292]

Livage J. Sol-gel synthesis of hybrid materials. Bull Mater Sci. 1999; 22(3): 201-205.

[293]

Wen J, Wilkes GL. Organic/inorganic hybrid network materials by the sol-gel approach. Chem Mater. 1996; 8(8): 1667-1681.

[294]

Pomogailo AD. Polymer sol-gel synthesis of hybrid nanocomposites. Colloid J. 2005; 67(6): 658-677.

[295]

Amiri S, Rahimi A. Hybrid nanocomposite coating by sol-gel method: a review. Iran Polym J. 2016; 25(6): 559-577.

[296]

Bokov D, Turki Jalil A, Chupradit S, et al. Nanomaterial by sol-gel method: synthesis and application. Adv Mater Sci Eng. 2021; 2021(1): 1-21.

[297]

Zhang Y, Zhuang S, Xu X, Hu J. Transparent and UV-shielding ZnO@ PMMA nanocomposite films. Opt Mater. 2013; 36(2): 169-172.

[298]

Gogoi KK, Chowdhury A. Performance enhancement of solution-processed organic memories by exploiting synergistic organic-inorganic hybrid composites. J Phys Chem C. 2019; 124(1): 1108-1120.

[299]

Liu P, Su Z. Preparation and characterization of PMMA/ZnO nanocomposites via in-situ polymerization method. J Macromol Sci B Phys. 2006; 45(1): 131-138.

[300]

Anžlovar A, Orel ZC, Žigon M. Poly (methyl methacrylate) composites prepared by in situ polymerization using organophillic nano-to-submicrometer zinc oxide particles. Eur Polym J. 2010; 46(6): 1216-1224.

[301]

Gervasio M, Lu K. PMMA-ZnO hybrid arrays using in situ polymerization and imprint lithography. J Phys Chem C. 2017; 121(21): 11862-11871.

[302]

Doddapaneni V, Saleemi M, Ye F, Gati R, Toprak MS. Engineered PMMA-ZnO nanocomposites for improving the electric arc interruption capability in electrical switching applications: unprecedented experimental insights. Compos Sci Technol. 2017; 141: 113-119.

[303]

Velayutham TS, Abd Majid WH, Gan WC, Khorsand Zak A, Gan SN. Theoretical and experimental approach on dielectric properties of ZnO nanoparticles and polyurethane/ZnO nanocomposites. J Appl Phys. 2012; 112(5): 054106.

[304]

Zahoor F, Azni Zulkifli TZ, Khanday FA. Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res Lett. 2020; 15(1): 1-26.

[305]

Fadeev AV, Rudenko KV. To the issue of the memristor's HRS and LRS states degradation and data retention time. Russ Microelectron. 2021; 50(5): 311-325.

[306]

Kumari A, Shanbogh SM, Udachyan I, et al. Interface-driven multifunctionality in two-dimensional TiO2 nanosheet/poly (dimercaptothiadiazole-triazine) hybrid resistive random access memory device. ACS Appl Mater Interfaces. 2020; 12(50): 56568-56578.

[307]

Nguyen HH, Ta HKT, Park S, Phan TB, Pham NK. Resistive switching effect and magnetic properties of iron oxide nanoparticles embedded-polyvinyl alcohol film. RSC Adv. 2020; 10(22): 12900-12907.

[308]

Sun Y, Wen D. Conductance quantization in nonvolatile resistive switching memory based on the polymer composite of zinc oxide nanoparticles. J Phys Chem C. 2018; 122(19): 10582-10591.

[309]

Ghoneim MT, Hussain MM. Review on physically flexible nonvolatile memory for internet of everything electronics. Electronics. 2015; 4(3): 424-479.

[310]

Varun I, Mahato AK, Raghuwanshi V, Tiwari SP. Ultralow current switching in flexible hybrid PVP: MoS2/HfOx bilayer devices. IEEE Trans Electron Devices. 2020; 67(8): 3472-3477.

[311]

Saini S, Dwivedi A, Lodhi A, Khandelwal A, Tiwari SP. Resistive switching behavior of TiO2/(PVP: MoS2) nanocomposite hybrid bilayer in rigid and flexible RRAM devices. Memories - Mater Devices Circuits Syst. 2023; 4: 100029.

[312]

Li J-c, Zhang C, Shao S-J. Effect of bottom electrode materials on resistive switching of flexible poly (N-vinylcarbazole) film embedded with TiO2 nanoparticles. Thin Solid Films. 2018; 664: 136-142.

[313]

Lin Y, Xu HY, Wang ZQ, et al. Transferable and flexible resistive switching memory devices based on PMMA films with embedded Fe3O4 nanoparticles. Appl Phys Lett. 2017; 110(19): 193503.

[314]

Khan MU, Hassan G, Bae J. Non-volatile resistive switching based on zirconium dioxide: poly (4-vinylphenol) nano-composite. Appl Phys A Mater Sci Process. 2019; 125(6): 1-11.

[315]

Hmar JJL. Flexible resistive switching bistable memory devices using ZnO nanoparticles embedded in polyvinyl alcohol (PVA) matrix and poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS). RSC Adv. 2018; 8(36): 20423-20433.

[316]

Yun J, Jayababu N, Kim D. Self-powered transparent and flexible touchpad based on triboelectricity towards artificial intelligence. Nano Energy. 2020; 78: 105325.

[317]

Lee D, Park M, Baek Y, Bae B, Heo J, Lee K. In-sensor image memorization and encoding via optical neurons for bio-stimulus domain reduction toward visual cognitive processing. Nat Commun. 2022; 13(1): 5223.

[318]

Hsu T-H, Chen G-C, Chen Y-R, et al. A 0.8 V intelligent vision sensor with tiny convolutional neural network and programmable weights using mixed-mode processing-in-sensor technique for image classification. IEEE J Solid State Circuits. 2023; 58(11): 3266-3274.

[319]

Walia S. Light-operated on-chip autonomous vision using low-dimensional material systems. Adv Mater Technol. 2022; 7(10): 2101494.

[320]

Farahani B, Barzegari M, Aliee FS, Shaik KA. Towards collaborative intelligent IoT eHealth: from device to fog, and cloud. Microprocess Microsyst. 2020; 72: 102938.

[321]

Cho H, Lee I, Jang J, et al. Real-time finger motion recognition using skin-conformable electronics. Nat Electron. 2023; 6(8): 619-629.

[322]

Aguirre F, Sebastian A, Le Gallo M, et al. Hardware implementation of memristor-based artificial neural networks. Nat Commun. 2024; 15(1): 1974.

[323]

Yilmaz Y, Gül F. Neuro-inspired hardware solutions for high-performance computing: a TiO2-based nano-synaptic device approach with backpropagation. Dermatol Int. 2024; 97: 102206.

[324]

Sun B, Guo T, Zhou G, et al. Synaptic devices based neuromorphic computing applications in artificial intelligence. Mater Today Phys. 2021; 18: 100393.

[325]

Kennedy MB. Synaptic signaling in learning and memory. Cold Spring Harb Perspect Biol. 2016; 8(2): a016824.

[326]

Zhu X, Du C, Jeong Y, Lu WD. Emulation of synaptic metaplasticity in memristors. Nanoscale. 2017; 9(1): 45-51.

[327]

Abbott LF, Nelson SB. Synaptic plasticity: taming the beast. Nat Neurosci. 2000; 3(11): 1178-1183.

[328]

Kim IJ, Lee JS. Ferroelectric transistors for memory and neuromorphic device applications. Adv Mater. 2023; 35(22): 2206864.

[329]

Ng SE, Vishwanath SK, Yang J, et al. Advances in multi-terminal transistors as reconfigurable interconnections for neuromorphic sensing and processing. Adv Electron Mater. 2023; 10(2): 2300540.

[330]

Wang Y, Han B, Mayor M, Samorì P. Opto-electrochemical synaptic memory in supramolecularly engineered Janus 2D MoS2. Adv Mater. 2023; 36(8): 2307359.

[331]

Ismail M, Rasheed M, Mahata C, Kang M, Kim S. Mimicking biological synapses with a-HfSiOx-based memristor: implications for artificial intelligence and memory applications. Nano Convergence. 2023; 10(1): 33.

[332]

Cao Z, Sun B, Zhou G, et al. Memristor-based neural networks: a bridge from device to artificial intelligence. Nanoscale Horizons. 2023; 8(6): 716-745.

[333]

Pereira ME, de Piva Martins RF, Fortunato E, Barquinha P, Kiazadeh A. Recent progress in optoelectronic memristors for neuromorphic and in-memory computation. Neuromorphic Comput Eng. 2023; 3(2): 022002.

[334]

Kiani F, Yin J, Wang Z, Yang JJ, Xia Q. A fully hardware-based memristive multilayer neural network. Sci Adv. 2021; 7(48): eabj4801.

[335]

Kumari R, Gellanki J, Kundale SS, et al. Artificial synaptic characteristics of PVA: ZnO nanocomposite memristive devices. APL Mater. 2023; 11(10): 101124.

[336]

Lee D-H, Park H, Cho W-J. Implementation of highly stable memristive characteristics in an organic-inorganic hybrid resistive switching layer of chitosan-titanium oxide with microwave-assisted oxidation. Molecules. 2023; 28(13): 5174.

[337]

Goi E, Zhang Q, Chen X, Luan H, Gu M. Perspective on photonic memristive neuromorphic computing. PhotoniX. 2020; 1(1): 1-26.

[338]

Wang J, Ilyas N, Ren Y, et al. Technology and integration roadmap for optoelectronic memristor. Adv Mater. 2023; 36(9): 2307393.

[339]

Zhu R, Liang H, Liu S, et al. Non-volatile optoelectronic memory based on a photosensitive dielectric. Nat Commun. 2023; 14(1): 5396.

[340]

Wang Y, Gong Y, Huang S, et al. Memristor-based biomimetic compound eye for real-time collision detection. Nat Commun. 2021; 12(1): 5979.

[341]

Li C, Li Y, Luo H, Leng Y, Wang J, Li W, eds. Light-Modulated Synaptic Plasticity of SrTiO3: Ru/CuAlO2 Bilayer Based Memristors for Artificial Visual System. SPIE; 2022.

[342]

Pei Y, Yan L, Wu Z, et al. Artificial visual perception nervous system based on low-dimensional material photoelectric memristors. ACS Nano. 2021; 15(11): 17319-17326.

[343]

Mahata C, Park J, Ismail M, Kim S. Demonstration of electronic and optical synaptic properties modulation of reactively sputtered zinc-oxide-based artificial synapses. J Alloys Compd. 2023; 938: 168539.

[344]

Wang J, Leng Y, Zhao T, Li C, Gu D, Li W. SnO2-based optoelectronic synapses for artificial visual applications. J Phys Conf Ser. 2023; 2524(1): 012011.

[345]

Shrivastava S, Keong LB, Pratik S, Lin AS, Tseng TY. Fully photon controlled synaptic memristor for neuro-inspired computing. Adv Electron Mater. 2023; 9(3): 2201093.

[346]

Jiang Q, Ren Y, Cui Z, et al. CsPbBr3 perovskite quantum dots embedded in polystyrene-poly2-vinyl pyridine copolymer for robust and light-tunable memristors. ACS Appl Nano Mater. 2023; 6(10): 8655-8667.

[347]

Chen Q, Han T, Zeng J, et al. Perovskite-based memristor with 50-fold switchable photosensitivity for in-sensor computing neural network. Nanomaterials. 2022; 12(13): 2217.

[348]

Jaafar AH, Kemp NT. Wavelength dependent light tunable resistive switching graphene oxide nonvolatile memory devices. Carbon. 2019; 153: 81-88.

[349]

Panin GN. Optoelectronic dynamic memristor systems based on two-dimensional crystals. Chaos Solit Fractals. 2021; 142: 110523.

[350]

Zhou Y, Liu D, Wang J, et al. Black phosphorus based multicolor light-modulated transparent memristor with enhanced resistive switching performance. ACS Appl Mater Interfaces. 2020; 12(22): 25108-25114.

[351]

Chang K, Zhao X, Yu X, et al. Photoinduced nonvolatile resistive switching behavior in oxygen-doped MoS2 for a neuromorphic vision system. Nano Lett. 2023; 23(17): 8288-8294.

[352]

Sheykhifar Z, Mohseni SM. Highly light-tunable memristors in solution-processed 2D materials/metal composites. Sci Rep. 2022; 12(1): 18771.

[353]

Sun J, Chen Q, Fan F, et al. A dual-mode organic memristor for coordinated visual perceptive computing. Fundam Res. In Press.

[354]

Jaafar AH, Al Chawa MM, Cheng F, et al. Polymer/TiO2 nanorod nanocomposite optical memristor device. J Phys Chem C. 2021; 125(27): 14965-14973.

[355]

Betal A, Bera J, Sharma A, Rath AK, Sahu S. Composition and surface morphology invariant high on-off ratio from an organic memristor. ACS Appl Electron Mater. 2022; 4(3): 1109-1116.

[356]

Liu J, Li Z, Jia C, Zhang W. Artificial synapse based on 1,4-diphenylbutadiyne with femtojoule energy consumption. Phys Chem Chem Phys. 2023; 25(7): 5453-5458.

[357]

Guo Y-B, Zhu L-Q. Recent progress in optoelectronic neuromorphic devices. Chin Phys B. 2020; 29(7): 078502.

[358]

Jaafar AH, Gray RJ, Verrelli E, O'Neill M, Kelly SM, Kemp NT. Reversible optical switching memristors with tunable STDP synaptic plasticity: a route to hierarchical control in artificial intelligent systems. Nanoscale. 2017; 9(43): 17091-17098.

[359]

Cai S-Y, Tzou C-Y, Liou Y-R, et al. Hybrid optical/electric memristor for light-based logic and communication. ACS Appl Mater Interfaces. 2019; 11(4): 4649-4653.

RIGHTS & PERMISSIONS

2024 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

4

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/