Neural morphology perception system based on antiferroelectric AgNbO3 neurons

Jianhui Zhao , Jiacheng Wang , Jiameng Sun , Yiduo Shao , Yibo Fan , Yifei Pei , Zhenyu Zhou , Linxia Wang , Zhongrong Wang , Yong Sun , Shukai Zheng , Jianxin Guo , Lei Zhao , Xiaobing Yan

InfoMat ›› 2025, Vol. 7 ›› Issue (3) : e12637

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (3) : e12637 DOI: 10.1002/inf2.12637
RESEARCH ARTICLE

Neural morphology perception system based on antiferroelectric AgNbO3 neurons

Author information +
History +
PDF

Abstract

Biologically inspired neuromorphic perceptual systems have great potential for efficient processing of multisensory signals from the physical world. Recently, artificial neurons constructed by memristor have been developed with good biological plausibility and density, but the filament-type memristor is limited by undesirable temporal and spatial variations, high electroforming voltage and limited reproducibility and the Mott insulator type memristor suffer from large driving current. Here, we propose a novel antiferroelectric artificial neuron (AFEAN) based on the intrinsic polarization and depolarization of AgNbO3 (ANO) antiferroelectric (AFE) films to address these challenges. The antiferroelectric memristor exhibits low power consumption (8.99 nW), excellent durability (~105) and high stability. Using such an AFEAN, a spike-based antiferroelectric neuromorphic perception system (AFENPS) has been designed, which can encode light level and temperature signals into spikes, and further construct a spiking neural network (SNN) (784 × 196 × 10) for optical image classification and thermal imaging classification, achieving 95.34% and 95.76% recognition accuracy on the MNIST dataset, respectively. This work paves the way for the simulation of spiking neurons using antiferroelectric materials and promising a promising method for the development of highly efficient hardware for neuromorphic perception systems.

Keywords

antiferroelectric memristor / antiferroelectric neuron / neuromorphic perception system / spiking neural networks

Cite this article

Download citation ▾
Jianhui Zhao, Jiacheng Wang, Jiameng Sun, Yiduo Shao, Yibo Fan, Yifei Pei, Zhenyu Zhou, Linxia Wang, Zhongrong Wang, Yong Sun, Shukai Zheng, Jianxin Guo, Lei Zhao, Xiaobing Yan. Neural morphology perception system based on antiferroelectric AgNbO3 neurons. InfoMat, 2025, 7(3): e12637 DOI:10.1002/inf2.12637

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yuan R, Tiw PJ, Cai L, et al. A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface. Nat Commun. 2023; 14(1): 3695.

[2]

Teng C, Yu Q, Sun Y, et al. Homologous gradient heterostructure-based artificial synapses for neuromorphic computation. InfoMat. 2022; 5(1): e12351.

[3]

He J, Wei R, Ge S, et al. Artificial visual-tactile perception array for enhanced memory and neuromorphic computations. InfoMat. 2023; 6(3): e12493.

[4]

Niu H, Li N, Kim ES, et al. Advances in advanced solution-synthesis-based structural materials for tactile sensors and their intelligent applications. InfoMat. 2023; 6(1): e12500.

[5]

Yan X, Zhang Y, Fang Z, et al. A multimode-fused sensory memory system based on a robust self-assembly nanoscaffolded BaTiO3:Eu2O3 memristor. InfoMat. 2023; 5(9): e12429.

[6]

Wang J, He D, Chen R, et al. Low operating voltage memtransistors based on ion bombarded p-type GeSe nanosheets for artificial synapse applications. InfoMat. 2023; 5(12): e12476.

[7]

Sebastian A, Le Gallo M, Khaddam-Aljameh R, Eleftheriou E. Publisher correction: memory devices and applications for in-memory computing. Nat Nanotechnol. 2020; 15(9): 812.

[8]

Ielmini D, Wong HSP. In-memory computing with resistive switching devices. Nat Electron. 2018; 1(6): 333-343.

[9]

Wang T, Meng J, Zhou X, et al. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat Commun. 2022; 13(1): 7432.

[10]

Lin KL, Hou TH, Shieh J, Lin JH, Chou CT, Lee YJ. Electrode dependence of filament formation in HfO2 resistive-switching memory. J Appl Phys. 2011; 109(8): 084104.

[11]

Kim KM, Kim GH, Song SJ, et al. Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures. Nanotechnology. 2010; 21(30): 305203.

[12]

Li X, Li C, Xu Z, et al. Ferroelectric properties and polarization fatigue of La:HfO2 thin-film capacitors. Phys Status Solidi Rapid Res Lett. 2021; 15(4): 2000481.

[13]

Jeon YR, Choi J, Kwon JD, Park MH, Kim Y, Choi C. Suppressed stochastic switching behavior and improved synaptic functions in an atomic switch embedded with a 2D NbSe2 material. ACS Appl Mater Interfaces. 2021; 13(8): 10161-10170.

[14]

Kim HD, An HM, Lee EB, Kim TG. Stable bipolar resistive switching characteristics and resistive switching mechanisms observed in aluminum nitride-based ReRAM devices. IEEE Trans Electron Devices. 2011; 58(10): 3566-3573.

[15]

Allouche B, Gagu Y, Le Marrec F, Fremy MA, El Marssi M. Bipolar resistive switching and substrate effect in GdK2Nb5O15 epitaxial thin films with tetragonal tungsten bronze type structure. Mater Des. 2016; 112: 80-87.

[16]

Wang C, He W, Tong Y, et al. Memristive devices with highly repeatable analog states boosted by graphene quantum dots. Small. 2017; 13(20): 1603435.

[17]

Qian WH, Cheng XF, Zhao YY, et al. Independent memcapacitive switching triggered by bromide ion migration for quaternary information storage. Adv Mater. 2019; 31(37): 1806424.

[18]

Park Y, Kim SH, Lee D, Lee JS. Designing zero-dimensional dimer-type all-inorganic perovskites for ultra-fast switching memory. Nat Commun. 2021; 12(1): 3527.

[19]

Choi J, Park S, Lee J, et al. Organolead halide perovskites for low operating voltage multilevel resistive switching. Adv Mater. 2016; 28(31): 6562-6567.

[20]

Yang Y, Wu M, Li X, et al. The role of ferroelectric polarization in resistive memory properties of metal/insulator/semiconductor tunnel junctions: a comparative study. ACS Appl Mater Interfaces. 2020; 12(29): 32935-32942.

[21]

Bai Y, Wang ZJ, Chen YN, Cui JZ. Resistive switching and modulation of Pb(Zr0.4Ti0.6)O3/Nb:SrTiO3 heterostructures. ACS Appl Mater Interfaces. 2016; 8(48): 32948-32955.

[22]

Hu ZQ, Li Q, Li MY, et al. Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure. Appl Phys Lett. 2013; 102(10): 102901.

[23]

Lv Z, Wang H, Cao J, et al. Tunable volatile to non-volatile resistive switching in PbZrO3 antiferroelectric thin film for neuromorphic computing. Adv Mater Interfaces. 2022; 9(21): 2201005.

[24]

Li Y, Loh L, Li S, et al. Anomalous resistive switching in memristors based on two-dimensional palladium diselenide using heterophase grain boundaries. Nat Electron. 2021; 4(5): 348-356.

[25]

Lanza M, Sebastian A, Lu WD, et al. Memristive technologies for data storage computation encryption and radio-frequency communication. Science. 2022; 376(6597): eabj9979.

[26]

Yuan R, Duan Q, Tiw PJ, et al. A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system. Nat Commun. 2022; 13(1): 3973.

[27]

Kittel C. Theory of antiferroelectric crystals. Phys Rev. 1951; 82(5): 729-732.

[28]

Cao R, Zhang X, Liu S, et al. Compact artificial neuron based on anti-ferroelectric transistor. Nat Commun. 2022; 13(1): 7018.

[29]

Hao X, Zhai J, Kong LB, Xu Z. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog Mater Sci. 2014; 63: 1-57.

[30]

Park MH, Lee YH, Kim HJ, et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv Mater. 2015; 27(11): 1811-1831.

[31]

Sawaguchi E, Maniwa H, Hoshino S. Antiferroelectric structure of lead zirconate. Phys Rev. 1951; 83(5): 1078.

[32]

Luo N, Han K, Cabral MJ, et al. Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency. Nat Commun. 2020; 11(1): 4824.

[33]

Tian Y, Song P, Viola G, et al. Silver niobate perovskites: structure properties and multifunctional applications. J Mater Chem A. 2022; 10(28): 14747-14787.

[34]

Yang D, Gao J, Shu L, et al. Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications. J Mater Chem A. 2020; 8(45): 23724-23737.

[35]

Levin I, Krayzman V, Woicik JC, et al. Structural changes underlying the diffuse dielectric response in AgNbO3. Phys Rev B. 2009; 79(10): 104113.

[36]

Tan X, Ma C, Frederick J, Beckman S, Webber KG. The antiferroelectric ↔ ferroelectric phase transition in lead-containing and lead-free perovskite ceramics. J Am Ceram Soc. 2011; 94(12): 4091-4107.

[37]

Lu Z, Bao W, Wang G, et al. Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics. Nano Energy. 2021; 79: 105423.

[38]

Shu L, Zhang X, Li W, et al. Phase-pure antiferroelectric AgNbO3 films on Si substrates: chemical solution deposition and phase transitions. J Mater Chem A. 2022; 10(23): 12632-12642.

[39]

Zhang Y, Luo N, Zeng D, et al. Ferroelectricity and Schottky heterojunction engineering in AgNbO3: a simultaneous way of boosting piezo-photocatalytic activity. ACS Appl Mater Interfaces. 2022; 14(19): 22313-22323.

[40]

Yashima M, Matsuyama S, Sano R, Itoh M, Tsuda K, Fu D. Structure of ferroelectric silver niobate AgNbO3. Chem Mater. 2011; 23(7): 1643-1645.

[41]

Sakurai H, Yamazoe S, Wada T. Ferroelectric and antiferroelectric properties of AgNbO3 films fabricated on (001) (110) and (111) SrTiO3 substrates by pulsed laser deposition. Appl Phys Lett. 2010; 97(4): 042901.

[42]

Zhang Y, Li X, Song J, et al. AgNbO3 antiferroelectric film with high energy storage performance. J Materiomics. 2021; 7(6): 1294-1300.

[43]

Gao J, Li Q, Zhang S, Li JF. Lead-free antiferroelectric AgNbO3: phase transitions and structure engineering for dielectric energy storage applications. J Appl Phys. 2020; 128(7): 070903.

[44]

Tian Y, Jin L, Zhang H, et al. High energy density in silver niobate ceramics. J Mater Chem A. 2016; 4(44): 17279-17287.

[45]

Li G, Liu H, Zhao L, et al. Atomic-scale structure characteristics of antiferroelectric silver niobate. Appl Phys Lett. 2018; 113(24): 242901.

[46]

Zhang X, Wang W, Liu Q, et al. An artificial neuron based on a threshold switching memristor. IEEE Electron Device Lett. 2017; 39(2): 308-311.

[47]

Burkitt AN. A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol Cybern. 2006; 95(1): 1-19.

[48]

Lombardo S, Nelson C, Chae K, et al. In atomic-scale imaging of polarization switching in an (anti-) ferroelectric memory material: zirconia (ZrO2). 2020 IEEE Symposium on VLSI Technology IEEE. IEEE (Institute of Electrical and Electronics Engineers); 2020: 1-2.

[49]

Bai H, Wu J, Su X, et al. Electroresistance in multipolar antiferroelectric Cu2Se semiconductor. Nat Commun. 2021; 12(1): 7207.

[50]

Li X, Tang J, Zhang Q, et al. Power-efficient neural network with artificial dendrites. Nat Nanotechnol. 2020; 15(9): 776-782.

[51]

Chen C, He Y, Mao H, et al. A photoelectric spiking neuron for visual depth perception. Adv Mater. 2022; 34(20): e2201895.

[52]

Zhu J, Zhang T, Yang Y, Huang R. A comprehensive review on emerging artificial neuromorphic devices. Appl Phys Rev. 2020; 7(1): 011312.

[53]

Deng X, Liu YX, Yang ZZ, et al. Spatial evolution of the proton-coupled Mott transition in correlated oxides for neuromorphic computing. Sci Adv. 2024; 10(22): eadk9928.

[54]

Citri A, Malenka RC. Synaptic plasticity: multiple forms functions and mechanisms. Neuropsychopharmacology. 2008; 33(1): 18-41.

[55]

Wang Y, Gong Y, Huang S, et al. Memristor-based biomimetic compound eye for real-time collision detection. Nat Commun. 2021; 12(1): 5979.

RIGHTS & PERMISSIONS

2024 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

3

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/