Current issues and corresponding optimizing strategies of layered oxide cathodes for sodium-ion batteries

Xiang Tan , Jun Zeng , Luyi Sun , Chenxi Peng , Zheng Li , Shuhao Zou , Qian Shi , Hui Wang , Jun Liu

InfoMat ›› 2025, Vol. 7 ›› Issue (6) : e12636

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (6) : e12636 DOI: 10.1002/inf2.12636
REVIEW ARTICLE

Current issues and corresponding optimizing strategies of layered oxide cathodes for sodium-ion batteries

Author information +
History +
PDF

Abstract

Lithium-ion batteries (LIBs) have dominated the market for a long time. However, the scarcity of lithium resources has sparked concerns about future energy storage devices, leading many researchers to turn their attention to other energy storage devices, such as sodium-ion batteries (SIBs), potassium-ion batteries (KIBs), zinc-ion batteries (ZIBs), and so on. Among them, SIBs have attracted widespread attention from researchers due to their abundant sodium resources, high safety, and excellent low-temperature performance. Because the cathode of the battery determines the energy density, cycle life, charge/discharge rate, and cost, the research on the cathodes for SIBs is particularly important. Layered oxide cathodes, with their periodic layered structure, good electrical conductivity, and two-dimensional ion transport channels, are regarded as the most promising cathode materials for SIBs. Currently, the main issues facing layered oxide cathodes include irreversible phase transitions, high air sensitivity, insufficient energy density, surface residual alkali, and the migration and dissolution of transition metals. The key to solving these problems lies in the development of a new generation of high-performance layered oxide cathodes. Hence, we review the current research progress of layered oxide cathode materials for SIBs and various optimizing strategies, and finally summarize and provide an outlook on the future development trends of SIBs.

Keywords

current issues / layered oxides / optimizing strategies / sodium-ion batteries / transition metals

Cite this article

Download citation ▾
Xiang Tan, Jun Zeng, Luyi Sun, Chenxi Peng, Zheng Li, Shuhao Zou, Qian Shi, Hui Wang, Jun Liu. Current issues and corresponding optimizing strategies of layered oxide cathodes for sodium-ion batteries. InfoMat, 2025, 7(6): e12636 DOI:10.1002/inf2.12636

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ang TZ, Salem M, Kamarol M, Das HS, Nazari MA, Prabaharan N. A comprehensive study of renewable energy sources: classifications, challenges and suggestions. Energy Strategy Rev. 2022; 43: 100939.

[2]

Osman AI, Chen L, Yang M, et al. Cost, environmental impact, and resilience of renewable energy under a changing climate: a review. Environ Chem Lett. 2022; 21(2): 741-764.

[3]

Amin M, Shah HH, Fareed AG, et al. Hydrogen production through renewable and non-renewable energy processes and their impact on climate change. Int J Hydrogen Energy. 2022; 47(77): 33112-33134.

[4]

Zhang LF, Wang YF, Ding BY, Gu JM, Ukrainczyk N, Cai JM. Development of geopolymer-based composites for geothermal energy applications. J Clean Prod. 2023; 419: 138202.

[5]

Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012; 488(7411): 294-303.

[6]

Rahman A, Farrok O, Haque MM. Environmental impact of renewable energy source based electrical power plants: solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew Sustain Energy Rev. 2022; 161: 112279.

[7]

Detka K, Górecki K. Selected technologies of electrochemical energy storage—a review. Energies. 2023; 16(13): 5034.

[8]

Yang H, Feng ZX, Teng XL, Guan L, Hu H, Wu MB. Three-dimensional printing of high-mass loading electrodes for energy storage applications. InfoMat. 2021; 3(6): 631-647.

[9]

Dong LB, Yang W, Yang W, Li Y, Wu WJ, Wang GX. Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. J Mater Chem A. 2019; 7(23): 13810-13832.

[10]

Wang ZC, Chen YH, Zhou YY, Ouyang J, Xu S, Wei L. Miniaturized lithium-ion batteries for on-chip energy storage. Nanoscale Adv. 2022; 4(20): 4237-4257.

[11]

Cho J, Jeong S, Kim Y. Commercial and research battery technologies for electrical energy storage applications. Prog Energy Combust. 2015; 48: 84-101.

[12]

Xie J, Zhang QC. Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes. Small. 2019; 15(15): e1805061.

[13]

Wang YC, Chu FL, Zeng J, et al. Single atom catalysts for fuel cells and rechargeable batteries: principles, advances, and opportunities. ACS Nano. 2021; 15(1): 210-239.

[14]

Duan J, Tang X, Dai HF, et al. Building safe lithium-ion batteries for electric vehicles: a review. Electrochem Energy Rev. 2020; 3(1): 1-42.

[15]

Tong B, Song ZY, Wan HH, et al. Sulfur-containing compounds as electrolyte additives for lithium-ion batteries. InfoMat. 2021; 3(12): 1364-1392.

[16]

Wu YJ, Wang S, Li H, Chen LQ, Wu F. Progress in thermal stability of all-solid-state-Li-ion-batteries. InfoMat. 2021; 3(8): 827-853.

[17]

Mossali E, Picone N, Gentilini L, Rodriguez O, Perez JM, Colledani M. Lithium-ion batteries towards circular economy: a literature review of opportunities and issues of recycling treatments. J Environ Manage. 2020; 264: 110500.

[18]

Park M, Zhang XC, Chung MD, Less GB, Sastry AM. A review of conduction phenomena in Li-ion batteries. J Power Sources. 2010; 195(24): 7904-7929.

[19]

Scrosati B, Garche J. Lithium batteries: status, prospects and future. J Power Sources. 2010; 195(9): 2419-2430.

[20]

Wang CH, Kaneti YV, Bando Y, et al. Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater Horiz. 2018; 5(3): 394-407.

[21]

Li X, Sun XH, Hu XD, et al. Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy. 2020; 77: 105143.

[22]

Armand M, Tarascon JM. Building better batteries. Nature. 2008; 451(7179): 652-657.

[23]

Diouf B, Pode R. Potential of lithium-ion batteries in renewable energy. Renew Energy. 2015; 76: 375-380.

[24]

Wang J, Zhu YF, Su Y, et al. Routes to high-performance layered oxide cathodes for sodium-ion batteries. Chem Soc Rev. 2024; 53(8): 4230-4301.

[25]

Wu JX, Lin C, Liang QH, et al. Sodium-rich NASICON-structured cathodes for boosting the energy density and lifespan of sodium-free-anode sodium metal batteries. InfoMat. 2022; 4(4): e12288.

[26]

Zhang LP, Li XL, Yang MR, Chen WH. High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Mater. 2021; 41: 522-545.

[27]

He HN, Sun D, Tang YG, Wang HY, Shao MH. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater. 2019; 23: 233-251.

[28]

Zou SH, Yang Y, Wang JR, et al. In-situ polymerization of solid-state polymer electrolytes for lithium metal batteries: a review. Energy Environ Sci. 2024; 17(13): 4426-4460.

[29]

Liang WZ, Zhou XY, Zhang B, et al. The versatile establishment of charge storage in polymer solid electrolyte with enhanced charge transfer for LiF-rich SEI generation in lithium metal batteries. Angew Chem Int Ed. 2024; 63(18): e202320149.

[30]

Peng CX, Xu XJ, Li FK, et al. Recent progress of promising cathode candidates for sodium-ion batteries: current issues, strategy, challenge, and prospects. Small Struct. 2023; 4(10): 2300150.

[31]

Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev. 2014; 114(23): 11636-11682.

[32]

Peng B, Wan GL, Ahmad N, Yu L, Ma XY, Zhang GQ. Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries. Adv Energy Mater. 2023; 13(27): 2300334.

[33]

Guo SH, Yi J, Sun Y, Zhou HS. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy Environ Sci. 2016; 9(10): 2978-3006.

[34]

Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater. 2018; 3(4): 18013.

[35]

Balogun MS, Luo Y, Qiu WT, Liu P, Tong YX. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon. 2016; 98: 162-178.

[36]

Huang JW, Huang ZY, Zheng XY, et al. 3D sodiophilic mixed-ion electron-conducting framework of hierarchical nanowire arrays for ultra-stable sodium-metal batteries. Energy Storage Mater. 2024; 70: 103420.

[37]

Huang JW, Wu K, Xu G, Wu MH, Dou SX, Wu C. Recent progress and strategic perspectives of inorganic solid electrolytes: fundamentals, modifications, and applications in sodium metal batteries. Chem Soc Rev. 2023; 52(15): 4933-4995.

[38]

Zhan JJ, Huang JW, Li Z, et al. Air-stable high-entropy layered oxide cathode with enhanced cycling stability for sodium-ion batteries. Nano Latt. 2024; 24(32): 9793-9800.

[39]

Rudola A, Sayers R, Wright CJ, Barker J. Opportunities for moderate-range electric vehicles using sustainable sodium-ion batteries. Nat Energy. 2023; 8(3): 215-218.

[40]

Sun LY, Zeng J, Wan XH, et al. Recent progress of interface modification of layered oxide cathode material for sodium-ion batteries. Electron. 2024; 2(2): e31.

[41]

Jiang Y, Wang YC, Ni JF, Li L. Molybdenum-based materials for sodium-ion batteries. InfoMat. 2021; 3(4): 339-352.

[42]

Lin ZH, Xia QB, Wang WL, Li WS, Chou SL. Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries. InfoMat. 2019; 1(3): 376-389.

[43]

Deng JQ, Luo WB, Chou SL, Liu HK, Dou SX. Sodium-ion batteries: from academic research to practical commercialization. Adv Energy Mater. 2018; 8(4): 1701428.

[44]

Abraham KM. How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett. 2020; 5(11): 3544-3547.

[45]

Zhang TF, Li C, Wang F, et al. Recent advances in carbon anodes for sodium-ion batteries. Chem Rec. 2022; 22(10): e202200083.

[46]

Yang C, Xin S, Mai LQ, You Y. Materials design for high-safety sodium-ion battery. Adv Energy Mater. 2020; 11(2): 2000974.

[47]

Wang TY, Su DW, Shanmukaraj D, Rojo T, Armand M, Wang GX. Electrode materials for sodium-ion batteries: considerations on crystal structures and sodium storage mechanisms. Electrochem Energy Rev. 2018; 1(2): 200-237.

[48]

Goikolea E, Palomares V, Wang SJ, et al. Na-ion batteries-approaching old and new challenges. Adv Energy Mater. 2020; 10(44): 2002055.

[49]

Rudola A, Rennie AJR, Heap R, et al. Commercialisation of high energy density sodium-ion batteries: Faradion's journey and outlook. J Mater Chem A. 2021; 9(13): 8279-8302.

[50]

Bauer A, Song J, Vail S, Pan W, Barker J, Lu YH. The scale-up and commercialization of nonaqueous Na-ion battery technologies. Adv Energy Mater. 2018; 8(17): 1702869.

[51]

Chayambuka K, Mulder G, Danilov DL, Notten PHL. From Li-ion batteries toward na-ion chemistries: challenges and opportunities. Adv Energy Mater. 2020; 10(38): 2001310.

[52]

Liang X, Hwang JY, Sun YK. Practical cathodes for sodium-ion batteries: who will take the crown? Adv Energy Mater. 2023; 13(37): 231975.

[53]

Wu K, Dou XW, Zhang XX, Ouyang CY. The sodium-ion battery: an energy-storage technology for a carbon-neutral world. Engineering. 2023; 21: 36-38.

[54]

Nayak PK, Yang L, Brehm W, Adelhelm P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed. 2018; 57(1): 102-120.

[55]

Zhao CL, Liu LL, Qi XG, et al. Solid-state sodium batteries. Adv Energy Mater. 2018; 8(17): 1703012.

[56]

Xiao Y, Abbasi NM, Zhu YF, et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries. Adv Funct Mater. 2020; 30(30): 2001334.

[57]

Kumakura S, Tahara Y, Kubota K, Chihara K, Komaba S. Sodium and manganese stoichiometry of P2-type Na2/3MnO2. Angew Chem Int Ed. 2016; 55(41): 12760-12763.

[58]

Gao HC, Xin S, Xue LG, Goodenough JB. Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte. Chem. 2018; 4(4): 833-844.

[59]

Lei KX, Zhu Z, Yin ZX, Yan PF, Li FJ, Chen J. Dual interphase layers formed on a manganese-based oxide cathode enable stable potassium storage. Chem. 2019; 5(12): 3220-3231.

[60]

Zheng LT, Li JR, Obrovac MN. Crystal structures and electrochemical performance of air-stable Na2/3Ni1/3-xCuxMn2/3O2 in sodium cells. Chem Mater. 2017; 29(4): 1623-1631.

[61]

Sun SQ, Liu SB, Chen YJ, et al. Quantum physics and deep learning to reveal multiple dimensional modified regulation by ternary substitution of iron, manganese, and cobalt on Na3V2(PO4)3 for superior sodium storage. Adv Funct Mater. 2023; 33(21): 2213711.

[62]

Yu F, Tang W, Wang SC, et al. Organic-carbon core-shell structure promotes cathode performance for na-ion batteries. Adv Funct Mater. 2023; 33(29): 2300740.

[63]

Huang Y, Zhang X, Ji L, et al. Boosting the sodium storage performance of Prussian blue analogs by single-crystal and high-entropy approach. Energy Storage Mater. 2023; 58: 1-8.

[64]

Yan SX, Luo SH, Yang L, et al. Novel P2-type layered medium-entropy ceramics oxide as cathode material for sodium-ion batteries. J Adv Ceram. 2021; 11(1): 158-171.

[65]

Liu NB, Zhao XY, Qin B, et al. A high-performance Na-storage cathode enabled by layered P2-type KxMnO2 with enlarged interlayer spacing and fast diffusion channels for sodium-ion batteries. J Mater Chem A. 2022; 10(47): 25168-25177.

[66]

Wang X, Li HX, Zhang W, et al. Unlocking fast and highly reversible sodium storage in Fe-based mixed polyanion cathodes for low-cost and high-performance sodium-ion batteries. J Mater Chem A. 2023; 11(13): 6978-6985.

[67]

Jia YH, Wu Y, Li LS, Song LM, Gao JH. Monoclinic Na2VOP2O7: a 4V-class cost-effective cathode for sodium-ion batteries. Mater Today Phys. 2023; 33: 101038.

[68]

Gu ZY, Heng YL, Guo JZ, et al. Nano self-assembly of fluorophosphate cathode induced by surface energy evolution towards high-rate and stable sodium-ion batteries. Nano Res. 2022; 16(1): 439-448.

[69]

Zhao A, Ji FJ, Liu CY, et al. Revealing the structural chemistry in Na6-2xFex(SO4)3 (1.5 ≤ x ≤ 2.0) for low-cost and high-performance sodium-ion batteries. Sci Bull. 2023; 68(17): 1894-1903.

[70]

Chayambuka K, Mulder G, Danilov DL, Notten PHL. Sodium-ion battery materials and electrochemical properties reviewed. Adv Energy Mater. 2018; 8(16): 1800079.

[71]

Wang PF, You Y, Yin YX, Guo YG. Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv Energy Mater. 2018; 8(8): 1701912.

[72]

Zuo WH, Innocenti A, Zarrabeitia M, Bresser D, Yang Y, Passerini S. Layered oxide cathodes for sodium-ion batteries: storage mechanism, electrochemistry, and techno-economics. Acc Chem Res. 2023; 56(3): 284-296.

[73]

Zuo WH, Yang Y. Synthesis, structure, electrochemical mechanisms, and atmospheric stability of Mn-based layered oxide cathodes for sodium ion batteries. Acc Mater Res. 2022; 3(7): 709-720.

[74]

Shadike Z, Zhao EY, Zhou YN, et al. Advanced characterization techniques for sodium-ion battery studies. Adv Energy Mater. 2018; 8(17): 1702588.

[75]

Niu YB, Yin YX, Wang WP, et al. In situ copolymerizated gel polymer electrolyte with cross-linked network for sodium-ion batteries. CCS Chem. 2020; 2(1): 589-597.

[76]

Han MH, Gonzalo E, Singh G, Rojo T. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ Sci. 2015; 8(1): 81-102.

[77]

Ortiz-Vitoriano N, Drewett NE, Gonzalo E, Rojo T. High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energy Environ Sci. 2017; 10(5): 1051-1074.

[78]

Ramesh A, Tripathi A, Balaya P. A mini review on cathode materials for sodium-ion batteries. Int J Appl Ceram Technol. 2021; 19(2): 913-923.

[79]

Yang ZG, Wu ZG, Liu J, et al. Platelet-like CuS impregnated with twin crystal structures for high performance sodium-ion storage. J Mater Chem A. 2020; 8(16): 8049-8057.

[80]

Zhao QQ, Wang RR, Gao M, et al. Interfacial engineering of the layered oxide cathode materials for sodium-ion battery. Nano Res. 2023; 17(3): 1441-1464.

[81]

Usiskin R, Lu YX, Popovic J, et al. Fundamentals, status and promise of sodium-based batteries. Nat Rev Mater. 2021; 6(11): 1020-1035.

[82]

Wang PF, Yao HR, Liu XY, et al. Na+/vacancy disordering promises high-rate Na-ion batteries. Sci Adv. 2018; 4(3): eaar6018.

[83]

Barpanda P, Lander L, Nishimura S, Yamada A. Polyanionic insertion materials for sodium-ion batteries. Adv Energy Mater. 2018; 8(17): 1703055.

[84]

Delmas C, Braconnier J, Fouassier C, Hagenmuller P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion. 1981; 3-4: 165-169.

[85]

Wang QD, Zhou D, Zhao CL, et al. Fast-charge high-voltage layered cathodes for sodium-ion batteries. Nat Sustain. 2024; 7(3): 338-347.

[86]

Zhao CL, Wang QD, Yao ZP, et al. Rational design of layered oxide materials for sodium-ion batteries. Science. 2020; 370(6517): 708-711.

[87]

Li X, Wang Y, Wu D, Liu L, Bo SH, Ceder G. Jahn-Teller assisted Na diffusion for high performance Na ion batteries. Chem Mater. 2016; 28(18): 6575-6583.

[88]

Hou PY, Lin ZZ, Dong MH, et al. A thermodynamically stable O2-type cathode with reversible O2-P2 phase transition for advanced sodium-ion batteries. J Colloid Interf Sci. 2023; 649: 1006-1013.

[89]

Shi YS, Zhang ZZ, Jiang PF, et al. Unlocking the potential of P3 structure for practical sodium-ion batteries by fabricating zero strain framework for Na+ intercalation. Energy Storage Mater. 2021; 37: 354-362.

[90]

Sawicki M, Shaw LL. Advances and challenges of sodium ion batteries as post lithium ion batteries. RSC Adv. 2015; 5(65): 53129-53154.

[91]

Xie XQ, Makaryan T, Zhao MQ, Van Aken KL, Gogotsi Y, Wang GX. MoS nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries. Adv Energy Mater. 2016; 6(5): 1502161.

[92]

Lee HW, Wang RY, Pasta M, Woo Lee S, Liu N, Cui Y. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat Commun. 2014; 5(1): 5280.

[93]

Chao DL, Zhu CR, Yang PH, et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun. 2016; 7(1): 12122.

[94]

Innocenti A, Beringer S, Passerini S. Cost and performance analysis as a valuable tool for battery material research. Nat Rev Mater. 2024; 9(5): 347-357.

[95]

Kubota K, Komaba S. Review—practical issues and future perspective for Na-ion batteries. J Electrochem Soc. 2015; 162(14): A2538-A2550.

[96]

Li YJ, Gao YR, Wang XF, et al. Iron migration and oxygen oxidation during sodium extraction from NaFeO2. Nano Energy. 2018; 47: 519-526.

[97]

Zhang RW, Yang SJ, Li HB, Zhai TY, Li HQ. Air sensitivity of electrode materials in Li/Na ion batteries: issues and strategies. InfoMat. 2022; 4(6): e12305.

[98]

You Y, Dolocan A, Li WD, Manthiram A. Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries. Nano Lett. 2019; 19(1): 182-188.

[99]

Zuo WH, Qiu JM, Liu XS, et al. The stability of P2-layered sodium transition metal oxides in ambient atmospheres. Nat Commun. 2020; 11(1): 3544.

[100]

Yao HR, Zheng LT, Xin S, Guo YG. Air-stability of sodium-based layered-oxide cathode materials. Sci China Chem. 2022; 65(6): 1076-1087.

[101]

Liu YF, Han K, Peng DN, et al. Layered oxide cathodes for sodium-ion batteries: from air stability, interface chemistry to phase transition. InfoMat. 2023; 5(6): e12422.

[102]

Zhang T, Kong J, Shen C, et al. Converting residual alkali into sodium compensation additive for high-energy Na-ion batteries. ACS Energy Lett. 2023; 8(11): 4753-4761.

[103]

Xu WL, Dang RB, Zhou L, et al. Conversion of surface residual alkali to solid electrolyte to enable Na-ion full cells with robust interfaces. Adv Mater. 2023; 35(42): e2301314.

[104]

Gao X, Wang HJ, Liu HQ, et al. Post-substitution modulated robust sodium layered oxides. Small Methods. 2023; 7(11): e2300635.

[105]

Wang HB, Ding FX, Wang YQ, et al. Plastic-crystal-coated cathode toward high-performance Na-ion batteries. ACS Energy Lett. 2023; 8(3): 1434-1444.

[106]

Chu S, Kim D, Choi G, et al. Revealing the origin of transition-metal migration in layered sodium-ion battery cathodes: random Na extraction and na-free layer formation. Angew Chem Int Ed. 2023; 62(12): e202216174.

[107]

Chen ZG, Deng YY, Kong J, et al. Toward the high-voltage stability of layered oxide cathodes for sodium-ion batteries: challenges, progress, and perspectives. Adv Mater. 2024; 36(26): e2402008.

[108]

Rahman MM, McGuigan S, Li SF, et al. Chemical modulation of local transition metal environment enables reversible oxygen redox in Mn-based layered cathodes. ACS Energy Lett. 2021; 6(8): 2882-2890.

[109]

Voronina N, Shin MY, Kim HJ, et al. Hysteresis-suppressed reversible oxygen-redox cathodes for sodium-ion batteries. Adv Energy Mater. 2022; 12(21): 2103939.

[110]

Sato T, Yoshikawa K, Zhao WW, et al. Efficient stabilization of Na storage reversibility by Ti integration into O′3-type NaMnO2. Energy Mater Adv. 2021; 2021: 9857563.

[111]

Li X, Xu JL, Li HY, Zhu H, Guo SH, Zhou HS. Synergetic anion-cation redox ensures a highly stable layered cathode for sodium-ion batteries. Adv Sci. 2022; 9(16): e2105280.

[112]

Wang JR, Xi L, Peng CX, et al. Recent progress in hard carbon anodes for sodium-ion batteries. Adv Eng Mater. 2024; 26(8): 2302063.

[113]

Zhou X, Ding ML, Cheng C, et al. Covalency modulation enables stable Na-rich layered oxide cathodes for Na-ion batteries. Electron Struct. 2023; 5(1): 014004.

[114]

Hu Y, Liu TF, Cheng C, et al. Quantification of anionic redox chemistry in a prototype Na-rich layered oxide. ACS Appl Mater Interfaces. 2020; 12(3): 3617-3623.

[115]

Song SF, Kotobuki M, Zheng F, et al. Y-doped Na2ZrO3: a Na-rich layered oxide as a high-capacity cathode material for sodium-ion batteries. ACS Sustain Chem Eng. 2017; 5(6): 4785-4792.

[116]

Ganesan BK, Moorthy M, Thangavel R, Nam KW, Aravindan V, Lee YS. Fluorine substitution enabled superior performance of NaxMn2−xO1.5F0.5 (x = 1.05-1.3) type Na-rich cathode. Chem Eng J. 2023; 454: 139876.

[117]

Jian ZL, Yu HJ, Zhou HS. Designing high-capacity cathode materials for sodium-ion batteries. Electrochem Commun. 2013; 34: 215-218.

[118]

Su BZ, Zhang JL, Fujita M, Zhou WC, Sit PHL, Yu DYW. Na2SeO3: a Na-ion battery positive electrode material with high capacity. J Electrochem Soc. 2018; 166(3): A5075-A5080.

[119]

Liu YF, Hu HY, Li JY, et al. An air-stable single-crystal layered oxide cathode based on multifunctional structural modulation for high-energy-density sodium-ion batteries. Sci China Chem. 2024; 67.

[120]

Jin T, Wang PF, Wang QC, et al. Realizing complete solid-solution reaction in high sodium content P2-type cathode for high-performance sodium-ion batteries. Angew Chem Int Ed. 2020; 59(34): 14511-14516.

[121]

Li LJ, Su GQ, Lu C, et al. Effect of lithium doping in P2-type layered oxide cathodes on the electrochemical performances of sodium-ion batteries. Chem Eng J. 2022; 446: 136923.

[122]

Cheng C, Ding ML, Yan TR, et al. Anionic redox activities boosted by aluminum doping in layered sodium-ion battery electrode. Small Methods. 2022; 6(3): e2101524.

[123]

Wang PF, Xiao Y, Piao N, et al. Both cationic and anionic redox chemistry in a P2-type sodium layered oxide. Nano Energy. 2020; 69: 104474.

[124]

Kong WJ, Gao R, Li QY, et al. Simultaneously tuning cationic and anionic redox in a P2-Na0.67Mn0.75Ni0.25O2 cathode material through synergic Cu/Mg co-doping. J Mater Chem A. 2019; 7(15): 9099-9109.

[125]

Wang Q, Liao YX, Jin X, et al. Dual honeycomb-superlattice enables double-high activity and reversibility of anion redox for sodium-ion battery layered cathodes. Angew Chem Int Ed. 2022; 61(33): e202206625.

[126]

Yu Y, Ning D, Li QY, et al. Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries. Energy Storage Mater. 2021; 38: 130-140.

[127]

Seo DH, Lee J, Urban A, Malik R, Kang SY, Ceder G. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat Chem. 2016; 8(7): 692-697.

[128]

Luo K, Roberts MR, Guerrini N, et al. Anion redox chemistry in the cobalt free 3d transition metal oxide intercalation electrode Li[Li0.2Ni0.2Mn0.6]O2. J Am Chem Soc. 2016; 138(35): 11211-11218.

[129]

Saubanère M, McCalla E, Tarascon JM, Doublet ML. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ Sci. 2016; 9(3): 984-991.

[130]

Xie Y, Saubanère M, Doublet ML. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ Sci. 2017; 10(1): 266-274.

[131]

Zhang XY, Qiao Y, Guo SH, et al. Manganese-based Na-rich materials boost anionic redox in high-performance layered cathodes for sodium-ion batteries. Adv Mater. 2019; 31(27): e1807770.

[132]

Qiao Y, Guo SH, Zhu K, et al. Reversible anionic redox activity in Na3RuO4 cathodes: a prototype Na-rich layered oxide. Energy Environ Sci. 2018; 11(2): 299-305.

[133]

Chen ZW, Yang ML, Huang ZY, et al. Facilitating both anionic and cationic redox processes in Na-rich layered cathode materials by heteroatomic doping. Chem Eng J. 2023; 454: 140396.

[134]

Do J, Kim I, Kim H, Jung Y. Towards stable Na-rich layered transition metal oxides for high energy density sodium-ion batteries. Energy Storage Mater. 2020; 25: 62-69.

[135]

Boivin E, House RA, Marie JJ, Bruce PG. Controlling iron versus oxygen redox in the layered cathode Na0.67Fe0.5Mn0.5O2: mitigating voltage and capacity fade by Mg substitution. Adv Energy Mater. 2022; 12(30): 2200702.

[136]

Cui XL, Wang SM, Ye XS, et al. Insights into the improved cycle and rate performance by F and Mg dual doping of layered oxide cathodes for sodium-ion batteries. Energy Storage Mater. 2022; 45: 1153-1164.

[137]

Zhang GH, Li JY, Fan YX, et al. Suppressed P2-P2′ phase transition of Fe/Mn-based layered oxide cathode for high-performance sodium-ion batteries. Energy Storage Mater. 2022; 51: 559-567.

[138]

Yang LT, Kuo LY, del Amo JML, et al. Structural aspects of P2-type Na0.67Mn0.6Ni0.2Li0.2O2 (MNL) stabilization by lithium defects as a cathode material for sodium-ion batteries. Adv Funct Mater. 2021; 31(38): 2102939.

[139]

Song TF, Chen L, Gastol D, et al. High-voltage stabilization of O3-type layered oxide for sodium-ion batteries by simultaneous tin dual modification. Chem Mater. 2022; 34(9): 4153-4165.

[140]

Gao XD, Zhang XY, Liu XY, et al. Recent advances for high-entropy based layered cathodes for sodium ion batteries. Small Methods. 2023; 7(9): e2300152.

[141]

Deng CJ, Gabriel E, Skinner P, et al. Origins of irreversibility in layered NaNixFeyMnzO2 cathode materials for sodium ion batteries. ACS Appl Mater Interfaces. 2020; 12(46): 51397-51408.

[142]

Wang K, Zhuo HX, Wang JT, Poon F, Sun XL, Xiao BW. Recent advances in Mn-rich layered materials for sodium-ion batteries. Adv Funct Mater. 2023; 33(13): 2212607.

[143]

Li YM, Yang ZZ, Xu SY, et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv Sci. 2015; 2(6): 1500031.

[144]

Lin RQ, Bak SM, Shin Y, et al. Hierarchical nickel valence gradient stabilizes high-nickel content layered cathode materials. Nat Commun. 2021; 12(1): 2350.

[145]

Yu HJ, Qian YM, Otani MR, et al. Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: experimental and first-principles calculations. Energy Environ Sci. 2014; 7(3): 1068-1078.

[146]

Wang YY, Wang YY, Liu S, et al. Building the stable oxygen framework in high-Ni layered oxide cathode for high-energy-density Li-ion batteries. Energy Environ Mater. 2021; 5(4): 1260-1269.

[147]

Deng SZ, Tie ZW, Yue F, Cao HM, Yao MJ, Niu ZQ. Rational design of ZnMn2O4 quantum dots in a carbon framework for durable aqueous zinc-ion batteries. Angew Chem Int Ed. 2022; 61(12): e202115877.

[148]

Ling Y, He B, Han LJ, Gong WB, Zhang QC, Chang CF. Two-electron redox chemistry enables potassium-free copper hexacyanoferrate as high-capacity cathode for aqueous Mg-ion battery. InfoMat. 2024; 6(6): e12549.

[149]

Xiao Y, Liu YF, Li HW, et al. Insights into layered-tunnel dynamic structural evolution based on local coordination chemistry regulation for high-energy-density and long-cycle-life sodium-ion oxide cathodes. InfoMat. 2023; 5(10): e12475.

[150]

Li YQ, Li ZY, Sun K, et al. Layered Co/Ni-free Mn-rich oxide P2-Na2/3Mn0.8Fe0.1Mg0.1O2 as high-performance cathode material for sodium-ion batteries. Ionics. 2019; 26(2): 735-743.

[151]

Jung SK, Gwon H, Hong J, et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater. 2014; 4(1): 1300787.

[152]

Wang L, Sun MY, Deng L, et al. Ti4+ substitution suppressing P2-O2 phase transition to construct stable P2-Na0.67Ni0.33Mn0.67O2 cathode for long-term durable sodium-ion batteries. J Energy Storage. 2024; 81: 110299.

[153]

Liu ZB, Wu J, Zeng J, et al. Co-free layered oxide cathode material with stable anionic redox reaction for sodium-ion batteries. Adv Energy Mater. 2023; 13(29): 2301471.

[154]

Tan L, Wu QF, Liu ZS, et al. Ti-substituted O3-type layered oxide cathode material with high-voltage stability for sodium-ion batteries. J Colloid Interf Sci. 2022; 622: 1037-1044.

[155]

Wang YX, Wang LG, Zhu H, et al. Ultralow-strain Zn-substituted layered oxide cathode with suppressed P2-O2 transition for stable sodium ion storage. Adv Funct Mater. 2020; 30(13): 1910327.

[156]

Zhu YF, Xiao Y, Hua WB, et al. Manipulating layered P2@P3 integrated spinel structure evolution for high-performance sodium-ion batteries. Angew Chem Int Ed. 2020; 59(24): 9299-9304.

[157]

Xu GL, Amine R, Xu YF, et al. Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries. Energy Environ Sci. 2017; 10(7): 1677-1693.

[158]

Zhou PF, Che ZN, Liu J, et al. High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Storage Mater. 2023; 57: 618-627.

[159]

Zhang SY, Guo YJ, Zhou YN, et al. P3/O3 integrated layered oxide as high-power and long-life cathode toward Na-ion batteries. Small. 2021; 17(10): e2007236.

[160]

Jiang N, Liu QN, Wang JW, et al. Tailoring P2/P3 biphases of layered NaxMnO2 by Co substitution for high-performance sodium-ion battery. Small. 2021; 17(7): e2007103.

[161]

Cheng ZW, Fan XY, Yu LZ, et al. A rational biphasic tailoring strategy enabling high-performance layered cathodes for sodium-ion batteries. Angew Chem Int Ed. 2022; 61(19): e202117728.

[162]

Lin CG, Dai P, Wang XL, et al. P2/O3 biphase integration promoting the enhancement of structural stability for sodium layered oxide cathode. Chem Eng J. 2024; 480: 147964.

[163]

Ma YJ, Ma Y, Dreyer SL, et al. High-entropy metal-organic frameworks for highly reversible sodium storage. Adv Mater. 2021; 33(34): e2101342.

[164]

Chen YW, Fu HY, Huang YY, et al. Opportunities for high-entropy materials in rechargeable batteries. ACS Mater Lett. 2021; 3(2): 160-170.

[165]

Sarkar A, Wang Q, Schiele A, et al. High-entropy oxides: fundamental aspects and electrochemical properties. Adv Mater. 2019; 31(26): e1806236.

[166]

Yeh JW. Alloy design strategies and future trends in high-entropy alloys. Jom. 2013; 65(12): 1759-1771.

[167]

Rost CM, Sachet E, Borman T, et al. Entropy-stabilized oxides. Nat Commun. 2015; 6(1): 8485.

[168]

Lin L, Wang K, Sarkar A, et al. High-entropy sulfides as electrode materials for Li-ion batteries. Adv Energy Mater. 2022; 12(8): 2103090.

[169]

Zhao CL, Ding FX, Lu YX, Chen LQ, Hu YS. High-entropy layered oxide cathodes for sodium-ion batteries. Angew Chem Int Ed. 2020; 59(1): 264-269.

[170]

Joshi A, Chakrabarty S, Akella SH, et al. High-entropy Co-free O3-type layered oxyfluoride: a promising air-stable cathode for sodium-ion batteries. Adv Mater. 2023; 35(51): e2304440.

[171]

Wang XZ, Zuo YT, Qin YB, et al. Fast Na+ kinetics and suppressed voltage hysteresis enabled by a high-entropy strategy for sodium oxide cathodes. Adv Mater. 2024; 36(24): 2312300.

[172]

Llave EDL, Talaie E, Levi E, et al. Improving energy density and structural stability of manganese oxide cathodes for Na-ion batteries by structural lithium substitution. Chem Mater. 2016; 28(24): 9064-9076.

[173]

Xu J, Lee DH, Clément RJ, et al. Identifying the critical role of Li substitution in P2-Nax[LiyNizMn1-y-z]O2 (0 < x, y, z < 1) intercalation cathode materials for high-energy Na-ion batteries. Chem Mater. 2014; 26(2): 1260-1269.

[174]

Yuan XG, Guo YJ, Gan L, et al. A universal strategy toward air-stable and high-rate O3 layered oxide cathodes for Na-ion batteries. Adv Funct Mater. 2022; 32(17): 2111466.

[175]

Jo JH, Choi JU, Konarov A, et al. Sodium-ion batteries: building effective layered cathode materials with long-term cycling by modifying the surface via sodium phosphate. Adv Funct Mater. 2018; 28(14): 1705968.

[176]

Li W, Yao ZJ, Zhang SZ, et al. Building superior layered oxide cathode via rational surface engineering for both liquid & solid-state sodium ion batteries. Chem Eng J. 2021; 421: 127788.

[177]

Kim M, Choi M, Choi W. Boosting the electrochemical performance and moisture stability of O3-type NaNi1/3Fe1/3Mn1/3O2 cathodes using novel Na2MoO4 coatings prepared via a polyvinylpyrrolidone-anchored complex coating process. J Mater Chem A. 2024; 12(5): 3133-3141.

[178]

Kaliyappan K, Or T, Deng YP, Hu YF, Bai ZY, Chen ZW. Constructing safe and durable high-voltage P2 layered cathodes for sodium ion batteries enabled by molecular layer deposition of Alucone. Adv Funct Mater. 2020; 30(17): 1910251.

[179]

Gu XX, Gao XW, Yang DR, et al. Two positive effects with one arrow: modulating crystal and interfacial decoration towards high-potential cathode material. J Energy Chem. 2024; 92: 216-223.

[180]

Wang Y, Tang K, Li XL, et al. Improved cycle and air stability of P3-Na0.65Mn0.75Ni0.25O2 electrode for sodium-ion batteries coated with metal phosphates. Chem Eng J. 2019; 372: 1066-1076.

[181]

Sun Y, Wang H, Meng DC, et al. Degradation mechanism of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials during ambient storage and their in situ regeneration. ACS Appl Energy Mater. 2021; 4(3): 2061-2067.

[182]

Xu CL, Cai HR, Chen QL, Kong XQ, Pan HL, Hu YS. Origin of air-stability for transition metal oxide cathodes in sodium-ion batteries. ACS Appl Mater Interfaces. 2022; 14(4): 5338-5345.

[183]

Zheng LT, Li LJ, Shunmugasundaram R, Obrovac MN. Effect of controlled-atmosphere storage and ethanol rinsing on NaNi0.5Mn0.5O2 for sodium-ion batteries. ACS Appl Mater Interfaces. 2018; 10(44): 38246-38254.

[184]

Hu HL, He HC, Xie RK, et al. Achieving reversible Mn2+/Mn4+ double redox couple through anionic substitution in a P2-type layered oxide cathode. Nano Energy. 2022; 99: 107390.

[185]

Chae MS, Kim HJ, Lyoo J, et al. Anomalous sodium storage behavior in Al/F dual-doped P2-type sodium manganese oxide cathode for sodium-ion batteries. Adv Energy Mater. 2020; 10(43): 2002205.

[186]

Chen XL, Guo WY, Li R, Du P, Zhan XW, Gao S. Structure, electrochemical, and transport properties of Li- and F-modified P2-Na2/3Ni1/3Mn2/3O2 cathode materials for Na-ion batteries. Coatings. 2023; 13(3): 133030626.

[187]

Chen H, Wu ZG, Zhong YJ, et al. Boosting the reactivity of Ni2+/Ni3+ redox couple via fluorine doping of high performance Na0.6Mn0.95Ni0.05O2−xFx cathode. Electrochim Acta. 2019; 308: 64-73.

[188]

Liu K, Tan SS, Moon J, et al. Insights into the enhanced cycle and rate performances of the F-substituted P2-type oxide cathodes for sodium-ion batteries. Adv Energy Mater. 2020; 10(19): 2000135.

[189]

Liu ZB, Zhou CJ, Liu J, Yang LC, Liu JW, Zhu M. Phase tuning of P2/O3-type layered oxide cathode for sodium ion batteries via a simple Li/F co-doping route. Chem Eng J. 2022; 431: 134273.

[190]

Liu YC, Shen QY, Zhao XD, et al. Hierarchical engineering of porous P2-Na2/3Ni1/3Mn2/3O2 nanofibers assembled by nanoparticles enables superior sodium-ion storage cathodes. Adv Funct Mater. 2019; 30(6): 1907837.

[191]

Ma C, Alvarado J, Xu J, et al. Exploring oxygen activity in the high energy P2-type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries. J Am Chem Soc. 2017; 139(13): 4835-4845.

[192]

Kim HJ, Konarov A, Jo JH, et al. Controlled oxygen redox for excellent power capability in layered sodium-based compounds. Adv Energy Mater. 2019; 9(32): 1901181.

[193]

Liu SZ, Lu F, Li HD, et al. Na2Ru0.8Mn0.2O3: a novel cathode material for ultrafast sodium ion battery with large capacity and superlong cycle life. J Power Sources. 2019; 421: 14-22.

[194]

Siriwardena DP, Fernando JFS, Wang T, et al. Effect of Fe3+ for Ru4+ substitution in disordered Na1.33Ru0.67O2 cathode for sodium-ion batteries: structural and electrochemical characterizations. Electrochim Acta. 2019; 325: 134926.

[195]

Perez AJ, Batuk D, Saubanere M, et al. Strong oxygen participation in the redox governing the structural and electrochemical properties of Na-rich layered oxide Na2IrO3. Chem Mater. 2016; 28(22): 8278-8288.

[196]

Adamczyk E, Pralong V. Na2Mn3O7: a suitable electrode material for Na-ion batteries? Chem Mater. 2017; 29(11): 4645-4648.

[197]

Sato K, Nakayama M, Glushenkov AM, et al. Na-excess cation-disordered rocksalt oxide: Na1.3Nb0.3Mn0.4O2. Chem Mater. 2017; 29(12): 5043-5047.

[198]

Song S, Kotobuki M, Chen Y, et al. Na-rich layered Na2Ti1−xCrxO3−x/2 (x = 0, 0.06): Na-ion battery cathode materials with high capacity and long cycle life. Sci Rep. 2017; 7(1): 373.

[199]

Zhu H, Yao ZP, Zhu HK, et al. Unblocking oxygen charge compensation for stabilized high-voltage structure in P2-type sodium-ion cathode. Adv Sci. 2022; 9(16): e2200498.

[200]

Ouyang BX, Chen T, Liu XC, et al. Double sites doping local chemistry adjustment: a multiple-layer oriented P2-type cathode with long-life and water/air stability for sodium ion batteries. Chem Eng J. 2023; 458: 141384.

[201]

Guo SH, Li Q, Liu P, Chen MW, Zhou HS. Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. Nat Commun. 2017; 8(1): 135.

[202]

Zhang LY, Guan CH, Zheng JQ, et al. Rational design of intergrowth P2/O3 biphasic layered structure with reversible anionic redox chemistry and structural evolution for Na-ions batteries. Sci Bull. 2023; 68(2): 180-191.

[203]

Wang JE, Kim H, Jung YH, Kim DK, Kim DJ. Designing high energy sodium-ion battery cathodes by utilizing P2/O3 biphasic structure and lithium honeycomb ordering. Small. 2021; 17(30): e2100146.

[204]

Hong FF, Zhou X, Liu XH, et al. Phase engineering of Ni-Mn binary layered oxide cathodes for sodium-ion batteries. J Energy Chem. 2024; 91: 501-511.

[205]

Zhai JJ, Ji HC, Ji WH, et al. Suppressing the irreversible phase transition from P2 to O2 in sodium-layered cathode via integrating P2- and O3-type structures. Mater Today Energy. 2022; 29: 101106.

[206]

Xue L, Shi XQ, Lin BW, Guo QB, Zhao Y, Xia H. Self-standing P2/P3 heterostructured Na0.7CoO2 nanosheet arrays as 3D cathodes for flexible sodium-ion batteries. J Power Sources. 2020; 457: 228059.

[207]

Li L, Wu QB, Zhang SS, et al. P2/O3 biphasic layered oxide heterojunction: a cathode for high-capacity sodium-ion batteries. ACS Appl Energy Mater. 2023; 6(18): 9347-9355.

[208]

Yao LB, Zou PC, Wang CY, et al. High-entropy and superstructure-stabilized layered oxide cathodes for sodium-ion batteries. Adv Energy Mater. 2022; 12(41): 2201989.

[209]

Du XY, Meng Y, Yuan HY, Xiao D. High-entropy substitution: a strategy for advanced sodium-ion cathodes with high structural stability and superior mechanical properties. Energy Storage Mater. 2023; 56: 132-140.

[210]

Liu J, Huang WY, Liu RB, et al. Entropy tuning stabilizing P2-type layered cathodes for sodium-ion batteries. Adv Funct Mater. 2024; 34(24): 2315437.

[211]

Dang YZ, Xu Z, Yang HD, et al. Designing water/air-stable Co-free high-entropy oxide cathodes with suppressed irreversible phase transition for sodium-ion batteries. Appl Surf Sci. 2023; 636: 157856.

[212]

Feng S, Lu Y, Lu XY, et al. Surface engineering through in situ construction of CoxB-spinel dual coating layers for high-voltage stable sodium-ion batteries. Adv Energy Mater. 2024; 14(12): 2303773.

[213]

Li ZY, Yu Y, Zhang TR, et al. Tuning electronegativity-difference configuration to construct non-bonded O 2p orbitals for reversible anionic redox in O3-type cathode. Adv Funct Mater. 2024;2404797.

[214]

Li ZR, Kong WJ, Yu Y, et al. Tuning bulk O2 and nonbonding oxygen state for reversible anionic redox chemistry in P2-layered cathodes. Angew Chem Int Ed. 2022; 61(16): e202115552.

[215]

Zhang Y, Pei Y, Liu W, et al. AlPO4-coated P2-type hexagonal Na0.7MnO2.05 as high stability cathode for sodium ion battery. Chem Eng J. 2020; 382: 122697.

[216]

Dai LL, Guo ZY, Wang Z, et al. Defensive and ion conductive surface layer enables high rate and durable O3-type NaNi1/3Fe1/3Mn1/3O2 sodium-ion battery cathode. Small. 2024; 20(2): e2305019.

[217]

Hwang JY, Yu TY, Sun YK. Simultaneous MgO coating and Mg doping of Na[Ni0.5Mn0.5]O2 cathode: facile and customizable approach to high-voltage sodium-ion batteries. J Mater Chem A. 2018; 6(35): 16854-16862.

[218]

Kang WP, Ma P, Liu ZN, et al. Tunable electrochemical activity of P2-Na0.6Mn0.7Ni0.3O2−xFx microspheres as high-rate cathodes for high-performance sodium ion batteries. ACS Appl Mater Interfaces. 2021; 13(13): 15333-15343.

[219]

Shi WJ, Yan YW, Chi C, et al. Fluorine anion doped Na0.44MnO2 with layer-tunnel hybrid structure as advanced cathode for sodium ion batteries. J Power Sources. 2019; 427: 129-137.

[220]

Ganesan BK, Lee YS. Phase transition induced enhanced performance of sodium-rich Na1.2Mn0.8O2-yFy (y = 0-0.5) cathodes. ACS Appl Energy Mater.2023; 6(2): 960-968.

[221]

Zhou PF, Zhang J, Che ZN, et al. Insights into the enhanced structure stability and electrochemical performance of Ti4+/F co-doped P2-Na0.67Ni0.33Mn0.67O2 cathodes for sodium ion batteries at high voltage. J Energy Chem. 2022; 67: 655-662.

[222]

Fan Y, Ye XC, Yang XF, et al. Zn/Ti/F synergetic-doped Na0.67Ni0.33Mn0.67O2 for sodium-ion batteries with high energy density. J Mater Chem A. 2023; 11(7): 3608-3615.

[223]

Nie RH, Chen HX, Yang YT, Li C, Zhou HM. High-voltage layered manganese-based oxide cathode with excellent rate capability enabled by K/F co-doping. ACS Appl Energy Mater. 2023; 6(4): 2358-2369.

RIGHTS & PERMISSIONS

2024 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

3

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/