All-in-one perovskite memristor with tunable photoresponsivity

Guan-Hua Dun , Yuan-Yuan Li , Hai-Nan Zhang , Fan Wu , Xi-Chao Tan , Ken Qin , Yi-Chu He , Ze-Shu Wang , Yu-Hao Wang , Tian Lu , Shi-Wei Tian , Dan Xie , Jia-Li Peng , Xiang-Shun Geng , Xiao-Tong Zhao , Jia-He Zhang , Yu-Han Zhao , Xiaoyu Wu , Ning-Qin Deng , Zheng-Qiang Zhu , Yan Li , Xian-Zhu Liu , Xing Wu , Weida Hu , Peng Zhou , Yang Chai , Mario Lanza , He Tian , Yi Yang , Tian-Ling Ren

InfoMat ›› 2025, Vol. 7 ›› Issue (3) : e12619

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (3) : e12619 DOI: 10.1002/inf2.12619
RESEARCH ARTICLE

All-in-one perovskite memristor with tunable photoresponsivity

Author information +
History +
PDF

Abstract

Photoelectric memristors have shown great potential for future machine visions, via integrating sensing, memory, and computing (namely “all-in-one”) functions in a single device. However, their hard-to-tune photoresponse behavior necessitates extra function modules for signal encoding and modality conversion, impeding such integration. Here, we report an all-in-one memristor with Cs2AgBiBr6 perovskite, where the Br vacancy doping-endowed tunable energy band enables tunable photoresponsivity (TPR) behavior. As a result, the memristor showed a large tunable ratio of 35.9 dB, while its photoresponsivity presented a maximum of 2.7 × 103 mA W–1 and a long-term memory behavior with over 104 s, making it suitable for realizing all-in-one processing tasks. By mapping the algorithm parameters onto the photoresponsivity, we successfully performed both recognition and processing tasks based on the TPR memristor array. Remarkably, compared with conventional complementary metal–oxide–semiconductor counterparts, our demonstrations provided comparable performance but had ~133-fold and ~299-fold reductions in energy consumption, respectively. Our work could facilitate the development of all-in-one smart devices for next-generation machine visions.

Cite this article

Download citation ▾
Guan-Hua Dun, Yuan-Yuan Li, Hai-Nan Zhang, Fan Wu, Xi-Chao Tan, Ken Qin, Yi-Chu He, Ze-Shu Wang, Yu-Hao Wang, Tian Lu, Shi-Wei Tian, Dan Xie, Jia-Li Peng, Xiang-Shun Geng, Xiao-Tong Zhao, Jia-He Zhang, Yu-Han Zhao, Xiaoyu Wu, Ning-Qin Deng, Zheng-Qiang Zhu, Yan Li, Xian-Zhu Liu, Xing Wu, Weida Hu, Peng Zhou, Yang Chai, Mario Lanza, He Tian, Yi Yang, Tian-Ling Ren. All-in-one perovskite memristor with tunable photoresponsivity. InfoMat, 2025, 7(3): e12619 DOI:10.1002/inf2.12619

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Golnabi H, Asadpour A. Design and application of industrial machine vision systems. Robot Comput Integr Manuf. 2007; 23(6): 630-637.

[2]

Wang G, Ye JC, De Man B. Deep learning for tomographic image reconstruction. Nat Mach Intell. 2020; 2(12): 737-748.

[3]

Morteza Najarian A, Vafaie M, Johnston A, et al. Sub-millimetre light detection and ranging using perovskites. Nat Electron. 2022; 5(8): 511-518.

[4]

Zhou F, Chai Y. Near-sensor and in-sensor computing. Nat Electron. 2020; 3(11): 664-671.

[5]

Chai Y. In-sensor computing for machine vision. Nature. 2020; 579(7797): 32-33.

[6]

Mennel L, Symonowicz J, Wachter S, Polyushkin DK, Molina-Mendoza AJ, Mueller T. Ultrafast machine vision with 2D material neural network image sensors. Nature. 2020; 579(7797): 62-66.

[7]

Horowitz M. Computing's energy problem (and what we can do about it). In 2014 IEEE Int Solid-State Circuits Conference Digest of Technical Papers (ISSCC) IEEE, 2014; 10-14.

[8]

Prezioso M, Merrikh-Bayat F, Hoskins BD, Adam GC, Likharev KK, Strukov DB. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature. 2015; 521(7550): 61-64.

[9]

Liu Z, Tang J, Gao B, et al. Neural signal analysis with memristor arrays towards high-efficiency brain-machine interfaces. Nat Commun. 2020; 11(1): 4234.

[10]

Yao P, Wu H, Gao B, et al. Fully hardware-implemented memristor convolutional neural network. Nature. 2020; 577(7792): 641-646.

[11]

Liu F, Deswal S, Christou A, Sandamirskaya Y, Kaboli M, Dahiya R. Neuro-inspired electronic skin for robots. Sci Robot. 2022; 7(67): eabl7344.

[12]

Cheng G, Dean-Leon E, Bergner F, Rogelio Guadarrama Olvera J, Leboutet Q, Mittendorfer P. A comprehensive realization of robot skin: sensors, sensing, control, and applications. Proc IEEE. 2019; 107(10): 2034-2051.

[13]

John RA, Tiwari N, Patdillah MIB, et al. Self healable neuromorphic memtransistor elements for decentralized sensory signal processing in robotics. Nat Commun. 2020; 11(1): 4030.

[14]

Zhang Z, Wang S, Liu C, Xie R, Hu W, Zhou P. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat Nanotechnol. 2022; 17(1): 27-32.

[15]

Zhang Z, Zhao X, Zhang X, et al. In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat Commun. 2022; 13(1): 6590.

[16]

Zhou F, Zhou Z, Chen J, et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat Nanotechnol. 2019; 14(8): 776-782.

[17]

Pradhan B, Das S, Li J, et al. Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci Adv. 2020; 6(7): eaay5225.

[18]

John RA, Acharya J, Zhu C, et al. Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks. Nat Commun. 2020; 11(1): 3211.

[19]

Wang CY, Liang SJ, Wang S, et al. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci Adv. 2020; 6(26): eaba6173.

[20]

Pi LJ, Wang PF, Liang SJ, et al. Broadband convolutional processing using band-alignment-tunable heterostructures. Nat Electron. 2022; 5(4): 248-254.

[21]

Chen K, Hu H, Song IH, et al. Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat Photonics. 2023; 17: 629-637.

[22]

Calado P, Telford AM, Bryant D, et al. Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat Commun. 2016; 7(1): 13831.

[23]

Wu G, Zhang X, Feng G, et al. Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing. Nat Mater. 2023; 22(12): 1499-1506.

[24]

Jang H, Hinton H, Jung WB, et al. In-sensor optoelectronic computing using electrostatically doped silicon. Nat Electron. 2022; 5(8): 519-525.

[25]

Wang Y, Cai Y, Wang F, et al. A three-dimensional neuromorphic photosensor array for nonvolatile in-sensor computing. Nano Lett. 2023; 23(10): 4524-4532.

[26]

Zhu Y, Cheng P, Shi J, et al. Bromine vacancy redistribution and metallic-ion-migration-induced air-stable resistive switching behavior in all-inorganic perovskite CsPbBr3 film-based memory device. Adv Electron Mater. 2019; 6(2): 1900754.

[27]

Lei H, Hardy D, Gao F. Lead-free double perovskite Cs2AgBiBr6: fundamentals, applications, and perspectives. Adv Funct Mater. 2021; 31(49): 2105898.

[28]

Xiao X, Hu J, Tang S, et al. Recent advances in halide perovskite memristors: materials, structures, mechanisms, and applications. Adv Mater Technol. 2020; 5(6): 1900914.

[29]

Robertson J, Gillen R. Defect densities inside the conductive filament of RRAMs. Microelectron Eng. 2013; 109: 208-210.

[30]

Dinno MA, Schwartz M, Giammara B. Structural dependence of electrical conductivity of thin tellurium films. J Appl Phys. 1974; 45(8): 3328-3331.

[31]

Peng H, Kioussis N, Snyder GJ. Elemental tellurium as a chiralp-type thermoelectric material. Phys Rev B. 2014; 89(19): 195206.

[32]

Michaelson HB. The work function of the elements and its periodicity. J Appl Phys. 1977; 48(11): 1977-4733.

[33]

Yang Y, Xu M, Jia S, et al. A new opportunity for the emerging tellurium semiconductor: making resistive switching devices. Nat Commun. 2021; 12(1): 6081.

[34]

Dun G-H, Qin K, Zhang H-N, et al. Cs2AgBiBr6-tellurium heterojunction-based high-performance x-ray detectors. 2022 6th IEEE Electron Devices Technology & Manufacturing Conference (EDTM); 2022; 53-55.

[35]

Dang Y, Tong G, Song W, et al. Interface engineering strategies towards Cs2AgBiBr6 single-crystalline photodetectors with good ohmic contact behaviours. J Mater Chem C. 2019; 8(1): 276-284.

[36]

Liu Z, Chen Q, Hong Z, et al. Low-temperature TiOx compact layer for planar heterojunction perovskite solar cells. ACS Appl Mater Interfaces. 2016; 8(17): 11076-11083.

[37]

Young-Fisher KG, Bersuker G, Butcher B, et al. Leakage current-forming voltage relation and oxygen gettering in HfOx RRAM devices. IEEE Electron Device Lett. 2013; 34(6): 750-752.

[38]

Pistor P, Meyns M, Guc M, et al. Advanced Raman spectroscopy of Cs2AgBiBr6 double perovskites and identification of Cs3Bi2Br9 secondary phases. Scr Mater. 2020; 184: 24-29.

[39]

Slavney AH, Hu T, Lindenberg AM, Karunadasa HI. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J Am Chem Soc. 2016; 138(7): 2138-2141.

[40]

Xiao Q, Li XY, Zhang ZQ, et al. Facile fabrication of highly uniform tellurium nanorods for self-powered flexible optoelectronics. Adv Electron Mater. 2020; 6(7): 2000240.

[41]

Parveen S, Manamel LT, Mukherjee A, Sagar S, Das BC. Analog memristor of lead-free Cs4CuSb2Cl12 layered double perovskite nanocrystals as solid-state electronic synapse for neuromorphic computing. Adv Mater Interfaces. 2022; 9(30): 2200562.

[42]

Kim S, Chen J, Chen YC, et al. Neuronal dynamics in HfOx/AlOy-based homeothermic synaptic memristors with low-power and homogeneous resistive switching. Nanoscale. 2018; 11(1): 237-245.

[43]

Greczynski G, Hultman L. A step-by-step guide to perform x-ray photoelectron spectroscopy. J Appl Phys. 2022; 132(1): 011101.

[44]

Moulder JF, Stickle WF, E.'Sobol P, Bomben KD. Handbook of X-Ray Photoelectron Spectroscopy. Vol 40. Perkin-Elmer Corporation; 1992: 221.

[45]

Sun L, Hao X, Meng Q, Wang L, Liu F, Zhou M. Polaronic resistive switching in ceria-based memory devices. Adv Electron Mater. 2019; 5(10): 1900271.

[46]

Lee S, Peng R, Wu C, Li M. Programmable black phosphorus image sensor for broadband optoelectronic edge computing. Nat Commun. 2022; 13(1): 1485.

[47]

Viezbicke BD, Patel S, Davis BE, Birnie DP. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys Status Solidi (B). 2015; 252(8): 1700-1710.

[48]

Sze SM, Li Y, Ng KK. Physics of Semiconductor Devices. John Wiley & Sons; 2021.

[49]

Hoskins BD, Adam GC, Strelcov E, et al. Stateful characterization of resistive switching TiO2 with electron beam induced currents. Nat Commun. 2017; 8(1): 1972.

[50]

Xue KH, Miao XS. Oxygen vacancy chain and conductive filament formation in hafnia. J Appl Phys. 2018; 123(16): 161505.

[51]

Huang LK, Zhu YJ. p-n heterojunction perovskite solar cell with bilateral ohmic contacts. Appl Phys Lett. 2021; 118(5): 052105.

[52]

Chen PH, Lin CY, Chang TC, et al. Investigating selectorless property within niobium devices for storage applications. ACS Appl Mater Interfaces. 2022; 14(1): 2343-2350.

[53]

Huang CY, Lee WC, Lin A. A flatter gallium profile for high-efficiency Cu(In,Ga)(Se,S)2 solar cell and improved robustness against sulfur-gradient variation. J Appl Phys. 2016; 120(9): 094502.

[54]

Lian WT, Lv HB, Liu Q, et al. Improved resistive switching uniformity in Cu/HfO2/Pt devices by using current sweeping mode. IEEE Electron Device Lett. 2011; 32(8): 1053-1055.

[55]

Zhang X, Xu L, Zhang H, et al. Effect of joule heating on resistive switching characteristic in AlOx cells made by thermal oxidation formation. Nanoscale Res Lett. 2020; 15(1): 11.

[56]

Sagar S, Udaya Mohanan K, Cho S, Majewski LA, Das BC. Emulation of synaptic functions with low voltage organic memtransistor for hardware oriented neuromorphic computing. Sci Rep. 2022; 12(1): 3808.

[57]

Fischer J, Whitney D. Serial dependence in visual perception. Nat Neurosci. 2014; 17(5): 738-743.

[58]

Li J, Jin K, Zhou D, Kubota N, Ju Z. Attention mechanism-based CNN for facial expression recognition. Neurocomputing. 2020; 411: 340-350.

[59]

Niu Z, Zhong G, Yu H. A review on the attention mechanism of deep learning. Neurocomputing. 2021; 452: 48-62.

[60]

Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett. 1985; 55(22): 2471-2474.

[61]

Kresse GJ, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999; 59(3): 1758-1775.

[62]

Henkelman G, Uberuaga BP, Jonsson H. A climbing ́ image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000; 113(22): 9901-9904.

[63]

Vei Wang NX, Liu J-C, Tang G, Geng W-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun. 2021; 267: 108033.

RIGHTS & PERMISSIONS

2024 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

3

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/