Recent advances and future perspectives of Ruddlesden–Popper perovskite oxides electrolytes for all-solid-state batteries

Chongyang Zhou , Weibin Guo , Jiayao Fan , Naien Shi , Yi Zhao , Xu Yang , Zhen Ding , Min Han , Wei Huang

InfoMat ›› 2024, Vol. 6 ›› Issue (8) : e12563

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (8) : e12563 DOI: 10.1002/inf2.12563
REVIEW ARTICLE

Recent advances and future perspectives of Ruddlesden–Popper perovskite oxides electrolytes for all-solid-state batteries

Author information +
History +
PDF

Abstract

All-solid-state batteries equipped with solid-state electrolytes (SSEs) have gained significant interest due to their enhanced safety, energy density, and longevity in comparison to traditional liquid organic electrolyte-based batteries. However, many SSEs, such as sulfides and hydrides, are highly sensitive to water, limiting their practical use. As one class of important perovskites, the Ruddlesden–Popper perovskite oxides (RPPOs), show great promise as SSEs due to their exceptional stability, particularly in terms of water resistance. In this review, the crystal structure and synthesis methods of RPPOs SSEs are first introduced in brief. Subsequently, the mechanisms of ion transportation, including oxygen anions and lithium-ions, and the relevant strategies for enhancing their ionic conductivity are described in detail. Additionally, the progress made in developing flexible RPPOs SSEs, which are critical for flexible and wearable electronic devices, has also been summarized. Furthermore, the key challenges and prospects for exploring and developing RPPOs SSEs in all-solid-state batteries are suggested. This review presents in detail the synthesis methods, the ion transportation mechanism, and strategies to enhance the room temperature ionic conductivity of RPPOs SSEs, providing valuable insights on enhancing their ionic conductivity and thus for their practical application in solid-state batteries.

Keywords

all-solid-state batteries / ionic conductivity improvement strategies / Ruddlesden–Popper perovskite oxides / solid-state electrolytes

Cite this article

Download citation ▾
Chongyang Zhou, Weibin Guo, Jiayao Fan, Naien Shi, Yi Zhao, Xu Yang, Zhen Ding, Min Han, Wei Huang. Recent advances and future perspectives of Ruddlesden–Popper perovskite oxides electrolytes for all-solid-state batteries. InfoMat, 2024, 6(8): e12563 DOI:10.1002/inf2.12563

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Janek J, Zeier WG. Challenges in speeding up solid-state battery development. Nat Energy. 2023; 8(3): 230-240.

[2]

Lee Y-G, Fujiki S, Jung C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat Energy. 2020; 5(4): 299-308.

[3]

Kalnaus S, Dudney NJ, Westover AS, Herbert E, Hackney S. Solid-state batteries: the critical role of mechanics. Science. 2023; 381(6664): 1300.

[4]

Fan LZ, He H, Nan CW. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat Rev Mater. 2021; 6(11): 1003-1019.

[5]

Zhao Q, Stalin S, Zhao CZ, Archer LA. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater. 2020; 5(3): 229-252.

[6]

Fan L, Wei SY, Li SY, Li Q, Lu Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv Energy Mater. 2018; 8(11): 1702657.

[7]

Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater. 2019; 18(12): 1278-1291.

[8]

Randau S, Weber DA, Kotz O, et al. Benchmarking the performance of all-solid-state lithium batteries. Nat Energy. 2020; 5(3): 259-270.

[9]

Zhang H, Li CM, Piszcz M, et al. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem Soc Rev. 2017; 46(3): 797-815.

[10]

Han X, Gong Y, Fu K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater. 2017; 16(5): 572-579.

[11]

Fu K, Gong Y, Liu B, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-stat. electrolyte/metallic Li interface. Sci Adv. 2017; 3(4): e1601659.

[12]

Wang C, Fu K, Kammampata SP, et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem Rev. 2020; 120(10): 4257-4300.

[13]

Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int ed. 2007; 46(41): 7778-7781.

[14]

Zhao N, Khokhar W, Bi ZJ, et al. Solid garnet batteries. Joule. 2019; 3(5): 1190-1199.

[15]

Liang J, Chen N, Li X, et al. Li10Ge(P1–xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability. Chem Mater. 2020; 32(6): 2664-2672.

[16]

Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater. 2011; 10(9): 682-686.

[17]

Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy. 2016; 1(4): 16030.

[18]

Deiseroth HJ, Kong ST, Eckert H, et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed. 2008; 47(4): 755-758.

[19]

Zhou L, Minafra N, Zeier WG, Nazar LF. Innovative approaches to Li-argyrodite solid electrolytes for all-solid-state lithium batteries. Acc Chem Res. 2021; 54(12): 2717-2728.

[20]

Yan Y, Kuhnel RS, Remhof A, et al. A lithium amide-borohydride solid-state electrolyte with lithium-ion conductivities comparable to liquid electrolytes. Adv Energy Mater. 2017; 7(19): 1700294.

[21]

Matsuo M. Orimo S-i, lithium fast-ioni. conduction in complex hydrides: review and prospects. Adv Energy Mater. 2011; 1(2): 161-172.

[22]

Tang WS, Unemoto A, Zhou W, et al. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions. Energy Environ Sci. 2015; 8(12): 3637-3645.

[23]

Takahashi K, Hattori K, Yamazaki T, et al. All-solid-state lithium battery with LiBH4 solid electrolyte. J Power Sources. 2013; 226: 61-64.

[24]

Duchêne L, Remhof A, Hagemann H, Battaglia C. Status and prospects of hydroborate electrolytes for all-solid-state batteries. Energy Storage Mater. 2020; 25: 782-794.

[25]

Kim S, Oguchi H, Toyama N, et al. A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries. Nat Commun. 2019; 10(1): 1081.

[26]

Liang JW, Li XN, Adair KR, Sun XL. Metal halide superionic conductors for all-solid-state batteries. Acc Chem Res. 2021; 54(4): 1023-1033.

[27]

Li X, Liang JW, Yang XF, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energ Environ Sci. 2020; 13(5): 1429-1461.

[28]

Zhou L, Zuo TT, Kwok CY, et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat Energy. 2022; 7(1): 83-93.

[29]

Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv Mater. 2018; 30(44): 1803075.

[30]

Inaguma Y, Chen LQ, Mitsuru I, Nakamura T. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 1993; 86(10): 689-693.

[31]

Kawai H, Kuwano J. Lithium ion conductivity of A-site deficient perovskite solid solution La0.67–xLi3xTiO3. J Electrochem Soc. 1994; 141(7): L78-L79.

[32]

Inaguma Y, Chen LQ, Itoh M, Nakamura T. Candidate compounds with perovskite structure for high lithium ionic conductivity. Solid State Ion. 1994; 70-71: 196-202.

[33]

Itoh M, Inaguma Y, Jung WH, et al. High lithium ion conductivity in the perovskite-type compounds Ln1/2Li1/2TiO3 (Ln = La, Pr, Nd, Sm). Solid State Ion. 1994; 70-71: 203-207.

[34]

Bohnke O, Bohnke C, Fourquet JL. Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ion. 1996; 91(1-2): 21-31.

[35]

Watanabe H, Kuwano J. Formation of perovskite solid solutions and lithium-ion conductivity in the compositions, Li2xSr1–2xMIII0.5–xTa0.5+xO3 (M = Cr, Fe, Co, Al, Ga, In, Y). J Power Sources. 1997; 68(2): 421-426.

[36]

Mizumoto K, Hayashi S. Crystal structure and lithium ion conductivity of A-site deficient perovskites La1/3–xLi3xTaO3. J Ceram Soc Jpn. 1997; 105(1224): 713-715.

[37]

Bhuvanesh NSP, Crosnier-Lopez MP. Bohnke O, Emery J, Fourquet JL. Synthesis, crystal structure, and ionic conductivity of novel Ruddlesden–Popper related phases, Li4Sr3Nb5.77Fe0.23O19.77 and Li4Sr3Nb6O20. Chem Mater. 1999; 11(3): 634-641.

[38]

Fukushima T, Suzuki S, Miyayama M. Defect control and lithium-ion conducting properties of layered perovskite oxides Li2SrTa2O7. Key Eng Mater. 2009; 388: 69-72.

[39]

Prakash R, Kwak H, Cho YH, Kim JH. Ionic conductivity studies of Ruddlesden–Popper layered perovskite (Li2SrTa2O7, Li2SrNb2O7, and Li2CaTa2O7) with PEO as a composite solid electrolyte. ChemElectroChem. 2018; 5(9): 1265-1271.

[40]

Fanah SJ, Yu M, Huq A, Ramezanipour F. Insight into lithium-ion mobility in Li2La(TaTi)O7. J Mater Chem A. 2018; 6(44): 22152-22160.

[41]

Fanah SJ, Ramezanipour F. Lithium-ion mobility in layered oxide Li2(La0.75Li0.25)(Ta1.5Ti0.5)O7 containing lithium on both intra and inter-stack positions. Eur J Inorg Chem. 2022; 2022(7): e202100950.

[42]

McColl K, Cora F. Fast lithium-ion conductivity in the ‘empty-perovskite’ n = 2 Ruddlesden–Popper-type oxysulphide Y2Ti2S2O5. J Mater Chem A. 2021; 9(11): 7068-7084.

[43]

Jalem R, Tateyama Y, Takada K, Nakayama M. First-principles DFT study on inverse Ruddlesden–Popper tetragonal compounds as solid electrolytes for all-solid-state Li+ ion batteries. Chem Mater. 2021; 33(15): 5859-5871.

[44]

Fanah SJ, Ramezanipour F. Symmetry effect on the enhancement of lithium-ion mobility in layered oxides Li2A2B2TiO10 (A = La, Sr, Ca; B = Ti, Ta). J Phys Chem C. 2021; 125(7): 3689-3697.

[45]

Fanah SJ, Ramezanipour F. Strategies for enhancing lithium-ion conductivity of triple-layered Ruddlesden–Popper oxides: case study of Li2–xLa2–yTi3–zNbzO10. Inorg Chem. 2020; 59(14): 9718-9727.

[46]

Makani NH, Sahoo A, Pal P, et al. Onset of vacancy-mediated high activation energy leads to large ionic conductivity in two-dimensional layered Cs2PbI2Cl2 Ruddlesden–Popper halide perovskite. Phys Rev Mater. 2022; 6(11): 115002.

[47]

Jiang PF, Du GY, Cao JQ, et al. Solid-state Li ion batteries with oxide solid electrolytes: progress and perspective. Energy Technol. 2023; 11(3): 220128.

[48]

Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M. Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ion. 2011; 182(1): 116-119.

[49]

Ding PP, Li WL, Zhao HW, et al. Review on Ruddlesden–Popper perovskites as cathode for solid oxide fuel cells. J Phys Mater. 2021; 4(2): 022002.

[50]

Ouyang YZ, Zhu DC, Zhu CJ, et al. Composite electrolyte with Ruddlesden–Popper structure Sm1.2Sr0.8Ni0.6Fe0.4O4+δ for high performance low temperature solid oxide fuel cells. Int J Hydrogen Energy. 2023; 48(1): 268-279.

[51]

Ling YH, Guo TM, Guo YY, et al. New two-layer Ruddlesden–Popper cathode materials for protonic ceramics fuel cells. J Adv Ceram. 2021; 10(5): 1052-1060.

[52]

Shi HG, Su C, Xu XM, et al. Building Ruddlesden–Popper and single perovskite nanocomposites: a new strategy to develop high-performance cathode for protonic ceramic fuel cells. Small. 2021; 17(35): 2101872.

[53]

Ricciardulli AG, Yang S, Smet JH, Saliba M. Emerging perovskite monolayers. Nat Mater. 2021; 20(10): 1325-1336.

[54]

Xu XM, Pan YL, Zhong YJ, et al. Ruddlesden–Popper perovskites in electrocatalysis. Mater Horiz. 2020; 7: 2519-2565.

[55]

Parameswaran AK, Pazhaniswamy S, Dekanovsky L, et al. An integrated study on the ionic migration across the nano lithium lanthanum titanate (LLTO) and lithium iron phosphate-carbon (LFP-C) interface in all-solid-state Li-ion batteries. J Power Sources. 2023; 565: 232907.

[56]

Siddiqui S, Singh D, Singh P, Singh B. Structural, optical, microstructure, and giant dielectric behavior of parent, Cu and Sr doped La0.55Li0.35TiO3–δ. J Am Ceram Soc. 2023; 106(11): 6732-6742.

[57]

Ruddlesden SN, Popper P. New compounds of the K2NiF4 type. Acta Crystallogr. 1957; 10(8): 538-539.

[58]

Armstrong AR, Anderson PA. Synthesis and structure of a new layered niobium blue bronze: Rb2LaNb2O7. Inorg Chem. 1994; 33(19): 4366-4369.

[59]

Wright AJ, Greaves CJ. A neutron diffraction study of structural distortions in the Ruddlesden–Popper phase Na2La2Ti3O10. J Mater Chem. 1996; 6(11): 1823-1825.

[60]

Dion M, Ganne M, Tournoux M. Nouvelles familles de phases MIM2IINb3O10 a feuillets “perovskites”. Mater Res Bull. 1981; 16(11): 1429-1435.

[61]

Dion M, Ganne M, Tournoux M. Les perovskites feuilletées ferroélastiques MI(An–1NbnO3n+1) termes n = 2, 3 et 4/the layered ferroelastic perovskite MI(An–1NbnO3n+1) terms n = 2, 3 and 4. Rev Chim Minér. 1986; 23: 61-69.

[62]

Jacobson AJ, Johnson JW, Lewandowski JT. Interlayer chemistry between thick transition-metal oxide layers: synthesis and intercalation reactions of K[Ca2Nan–3NbnO3n+1] (3≤ n ≤ 7). Inorg Chem. 1985; 24(23): 3727-3729.

[63]

Gopalakrishnan J, Bhat V, Raveau B. AILaNb2O7: a new series of layered perovskites exhibiting ion exchange and intercalation behavior. Mater Res Bull. 1987; 22(3): 413-417.

[64]

Subramanian MA, Gopalakrishnan J, Sleight AW. New layered perovskites: ABiNb2O7 and APb2Nb3O10 (A = Rb or Cs). Mater Res Bull. 1988; 23(6): 837-842.

[65]

Aurivillius B. Mixed bismuth oxides with layer lattices. I. Structure type of CaCb2Bi2O9. Ark Kemi. 1949; 1: 463-480.

[66]

Ram R, Clearfield A. Synthesis and intercalation chemistry of K[Ca2(Ca, Sr)n–3Nb3Tin–3O3n+l] (n = 4, 5). J Solid State Chem. 1991; 94(1): 45-51.

[67]

Aurivillius B. Mixed oxides with layer lattices. III. Structure of BaBi4Ti4O15. Ark Kemi. 1950; 2: 519-527.

[68]

Battle PD, Cox DE, Green MA, et al. Antiferromagnetism, ferromagnetism, and phase separation in the GMR system Sr2-xLa1+xMn2O. Chem Mater. 1997; 9(4): 1042-1049.

[69]

Yoshida S, Fujita K, Akamatsu H, et al. Ferroelectric Sr3Zr2O7: competition between hybrid improper ferroelectric and antiferroelectric mechanisms. Adv Funct Mater. 2018; 28(30): 801856.

[70]

Crosnier-Lopez MP, Le Berre F, Fourquet JL. Synthesis and crystal structure of two new layered perovskite phases K2La2/3Ta2O7 and Li2La2/3Ta2O7. Z Anorg Allg Chem. 2002; 628(9-10): 2049-2056.

[71]

Glazer AM. The classification of tilted octahedra in perovskites. Acta Crystallogr. 1972; B28(11): 3384-3392.

[72]

Glazer AM. Simple ways of determining perovskite structures. Acta Crystallogr. 1975; A31(6): 756-762.

[73]

Gopalakrishnan J, Bhat V. A2Ln2Ti3O10 (A = K or Rb; Ln = La or rare earth): a new series of layered perovskites exhibiting ion exchange. Inorg Chem. 1987; 26(26): 4299-4301.

[74]

Jacobson AJ, Johnson JW, Lewandowski JT. Intercalation of the layered solid acid HCa2Nb3O10 by organic amines. Mater Res Bull. 1987; 22(1): 45-51.

[75]

Byeon SH, Park K, Itoh M. Structure and ionic conductivity of NaLnTiO4; comparison with those of Na2Ln2Ti3O10 (Ln = La, Nd, Sm, and Gd). J Solid State Chem. 1996; 121(2): 430-436.

[76]

Park K, Byeon SH. Correlation between structures and ionic conductivities of Na2Ln2Ti3O10 (Ln = La, Nd, Sm, and Gd). Bull Korean Chem Soc. 1996; 17: 168-172.

[77]

Domen K, Yoshimura J, Sekine T, Tanaka A, Onishi T. A novel series of photocatalysts with an ion-exchangeable layered structure of niobate. Catal Lett. 1990; 4(4-6): 339-344.

[78]

Ikeda S, Tanaka A, Kondo MJN, et al. Effect of the particle size for photocatalytic decomposition of water on Ni-loaded K4Nb6O17. Microporous Mater. 1997; 9(5-6): 253-258.

[79]

Ikeda S, Hara M, Kondo JN, et al. Preparation of K2La2Ti3O10 by polymerized complex method and photocatalytic decomposition of water. Chem Mater. 1998; 10(1): 72-77.

[80]

Oshima T, Yokoi T, Eguchi M, Maeda K. Synthesis and photocatalytic activity of K2CaNaNb3O10, a new Ruddlesden–Popper phase layered perovskite. Dalton Trans. 2017; 46(32): 10594-10601.

[81]

Wells HL. ART. XVI. On the cesium-and the potassium-lead halides. Am J Sci. 1893; 45(266): 121-134.

[82]

Parravano G. Catalytic activity of lanthanum and strontium manganite. J Am Chem Soc. 1953; 75(6): 1497-1498.

[83]

Hisashi K. Magnetic properties of manganite, (La, Ca)MnO3, and cobaltite, (La, Sr)CoO3. II heat capacity. Busseiron Kenkyu. 1954; 79: 1-9.

[84]

Sauer HA, Flaschen S. Positive temperature coefficient of resistance thermistor materials for electronic applications. In: Proceedings on Electronic Components Symposium, 7th, Washington, DC; 1956:41-46.

[85]

Møller CK. A phase transition in Cæsium Plumbochloride. Nature. 1957; 180(4593): 981-982.

[86]

Voorhoeve RJH, Remeika JP, Trimble LE, et al. Perovskite-like La1–xKxMnO3 and related compounds: solid state chemistry and the catalysis of the reduction of NO by CO and H2. J Solid State Chem. 1975; 14(4): 395-406.

[87]

Weber D. CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur/CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Z Naturforsch B. 1978; 33(12): 1443-1445.

[88]

Weber D. CH3NH3SnBrxI3–x (x = 0–3), ein Sn(II)-system mit kubischer perowskitstruktur/CH3NH3SnBrxI3–x (x = 0–3), a Sn(II)-system with cubic perovskite structure. Z Naturforsch B. 1978; 33(8): 862-865.

[89]

Dietrich G, Hermeking H, Koch A, et al. Development and operation of thin-layer cells for high-temperature electrolysis. Int J Hydrogen Energy. 1984; 9(9): 947.

[90]

Era M, Morimoto S, Tsutsui T, Saito S. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl Phys Lett. 1994; 65(6): 676-678.

[91]

Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009; 131(17): 6050-6051.

[92]

Im JH, Lee CR, Lee JW, Park SW, Park NG. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. 2011; 3(10): 4088-4093.

[93]

Zhao YS, Daemen LL. Superionic conductivity in lithium-rich anti-perovskites. J Am Chem Soc. 2012; 134(36): 15042-15047.

[94]

Li JW, Yu Q, He YH, et al. Cs2PbI2Cl2, all-inorganic two-dimensional Ruddlesden–Popper mixed halide perovskite with optoelectronic response. J Am Chem Soc. 2018; 140(35): 11085-11090.

[95]

Degani M, An QA, Albaladejo-Siguan M. et al. The 23.7% efficient inverted perovskite solar cells by dual interfacial modification. Sci Adv. 2021; 7(49): eabj7930.

[96]

Li H, Zhou JJ, Tan LG, et al. Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci Adv. 2022; 8(28): eabo7422.

[97]

Chin XY, Turkay D, Steele JA, et al. Interface passivation for 31.25% efficient perovskite/silicon tandem solar cells. Science. 2023; 381(6653): 59-63.

[98]

Lv X, Howard JW, Chen A, et al. Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries. Adv Sci. 2016; 3: 500359.

[99]

Lv X, Wu G, Howard JW, et al. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity. Chem Commun. 2014; 50(78): 11520-11522.

[100]

Zhang Y, Zhao Y, Chen C. Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites. Phys Rev B. 2013; 87(13): 134303.

[101]

Heenen HH, Voss J, Scheurer C, Reuter K, Luntz AC. Multi-ion conduction in Li3OCl glass electrolytes. J Phys Chem Lett. 2019; 10(9): 2264-2269.

[102]

Deng Z, Radhakrishnan B, Ong SP. Rational composition optimization of the lithium-rich Li3OCl1–xBrx anti-perovskite superionic conductors. Chem Mater. 2015; 27(10): 3749-3755.

[103]

Effat MB, Liu J, Lu Z, Wan TH, Curcio A, Ciucci F. Stability, elastic properties, and the Li transport mechanism of the protonated and fluorinated antiperovskite lithium conductors. ACS Appl Mater Interfaces. 2020; 12(49): 55011-55022.

[104]

Dawson JA, Chen H, Islam MS. Composition screening of lithium-and sodium-rich anti-perovskites for fast-conducting solid electrolytes. J Phys Chem C. 2018; 122(42): 23978-23984.

[105]

Wang Z, Xu H, Xuan M, Shao G. From anti-perovskite to double anti-perovskite: tuning lattice chemistry to achieve super-fast Li+ transport in cubic solid lithium halogen-chalcogenides. J Mater Chem A. 2018; 6(1): 73-83.

[106]

Sun YL, Wang YC, Liang XM, et al. Rotational cluster anion enabling superionic conductivity in sodium-rich antiperovskite Na3OBH4. J Am Chem Soc. 2019; 141(14): 5640-5644.

[107]

Fang H, Jena P. Li-rich antiperovskite superionic conductors based on cluster ions. Proc Natl Acad Sci U S A. 2017; 114(42): 11046-11051.

[108]

Fang H, Jena P. Sodium superionic conductors based on clusters. ACS Appl Mater Interfaces. 2019; 11(1): 963-972.

[109]

Fang H, Wang S, Liu J, Sun Q, Jena P. Superhalogen-based lithium superionic conductors. J Mater Chem A. 2017; 5(26): 13373-13381.

[110]

Yu Y, Wang Z, Shao G. Theoretical tuning of Ruddlesden–Popper type anti-perovskite phases as superb ion conductors and cathodes for solid sodium ion batteries. J Mater Chem A. 2019; 7(17): 10483-10493.

[111]

Markov M, Alaerts L, Miranda HPC, et al. Ferroelectricity and multiferroicity in anti–Ruddlesden–Popper structures. Proc Natl Acad Sci U S A. 2021; 118(17): e2026020118.

[112]

Han D, Du MH, Huang ML, et al. Ground-state structures, electronic structure, transport properties and optical properties of Ca-based anti-Ruddlesden–Popper phase oxide perovskites. Phys Rev Mater. 2022; 6(11): 114601.

[113]

Schaak RE, Mallouk TE. Perovskites by design: a toolbox of solid-state reactions. Chem Mater. 2002; 14(4): 1455-1471.

[114]

Schaak RE, Mallouk TE. KLnTiO4 (Ln=La, Nd, Sm, Eu, Gd, Dy): a new series of Ruddlesden–Popper phases synthesized by ion-exchange of HLnTiO4. J Solid State Chem. 2001; 161(2): 225-232.

[115]

Toda K, Kurita S, Sato M. New layered perovskite compounds, LiLaTiO4 and LiEuTiO4. J Ceram Soc Jpn. 1996; 104(1206): 140-142.

[116]

Toda K, Watanabe J, Sato M. Synthesis and ionic conductivity of new layered perovskite compound, Ag2La2Ti3O10. Solid State Ion. 1996; 90(1-4): 15-19.

[117]

Schaak RE, Mallouk TE. Topochemical synthesis of three-dimensional perovskites from lamellar precursors. J Am Chem Soc. 2000; 122(12): 2798-2803.

[118]

Schaak RE, Guidry EN, Mallouk TE. Converting a layer perovskite into a non-defective higher-order homologue: topochemical synthesis of Eu2CaTi2O7. Chem Commun. 2001; 8(9): 853-854.

[119]

Neiner D, Spinu L, Golub V, Wiley JB. Ferromagnetism in topochemically prepared layered perovskite Li0.3Ni0.85La2Ti3O10. Chem Mater. 2006; 18(2): 518-524.

[120]

Rodgers JA, Williams AJ, Attfield JP. High-pressure/high-temperature synthesis of transition metal oxide perovskites. Z Naturforsch B. 2006; 61(12): 1515-1526.

[121]

Cordes N, Nentwig M, Eisenburger L, et al. Ammonothermal synthesis of the mixed-valence nitrogen-rich europium tantalum Ruddlesden–Popper phase EuIIEuIII2Ta2N4O3. Eur J Inorg Chem. 2019; 17: 2304-2311.

[122]

Ranmohotti KGS, Josepha E, Choi J, et al. Topochemical manipulation of perovskites: low-temperature reaction strategies for directing structure and properties. Adv Mater. 2011; 23(4): 442-460.

[123]

Hayward MA, Rosseinsky MJ. Anion vacancy distribution and magnetism in the new reduced layered Co(II)/Co(I) phase LaSrCoO3.5-x. Chem Mater. 2000; 12(8): 2182-2195.

[124]

El Shinawi H, Greaves C. Synthesis and characterization of the K2NiF4 phases La1+xSr1–xCo0.5Fe0.5O4–δ (x =0, 0.2). J Solid State Chem. 2008; 181(10): 2705-2712.

[125]

Grenier JC, Bassat JM, Doumerc JP, et al. Relevant examples of intercalation-deintercalation processes in solid state chemistry: application to oxides. J Mater Chem. 1999; 9(1): 25-33.

[126]

Rao CNR, Gopalakrishnan J. New Directions in Solid State Chemistry. 2nd ed. Cambridge University Press; 1997.

[127]

Stein A, Keller SW, Mallouk TE. Turning down the heat: design and mechanism in solid-state synthesis. Science. 1993; 259(5101): 1558-1564.

[128]

Rouxel J, Tournoux M. Chimie douce with solid precursors, past and present. Solid State Ion. 1996; 84(3-4): 141-149.

[129]

Fourquet JL, Duroy H, Crosnier-Lopez MP. Structural and microstructural studies of the series La2/3–xLi3x1/3–2xTiO3. J Solid State Chem. 1996; 127(2): 283-294.

[130]

Toda K, Watanabe J, Sato M. Crystal structure determination of ion-exchangeable layered perovskite compounds, K2La2Ti3O10 and Li2La2Ti3O10. Mater Res Bull. 1996; 31(11): 1427-1435.

[131]

Schaak RE, Afzal D, Mallouk TE. Na2Ln2Ti3–xMnxO10 (ln = Sm, Eu, Gd, and Dy; 0 ≤ x ≤ 1): a new series of ion-exchangeable layered perovskites containing B-site manganese. Chem Mater. 2002; 14(1): 442-448.

[132]

Hyeon K, Byeon S. Synthesis and structure of new layered oxides, MIILa2Ti3O10 (M = Co, Cu, and Zn). Chem Mater. 1999; 11(2): 352-357.

[133]

Ollivier PJ, Mallouk TE. A “chimie douce” synthesis of perovskite-type SrTa2O6 and SrTa2–xNbxO61. Chem Mater. 1998; 10(10): 2585-2587.

[134]

Bhuvanesh NSP, Crosnier-Lopez MP. Duroy H, Fourquet JLJ. Synthesis, characterization and dehydration study of H2A0.5nBnO3n+1·xH2O (n = 2 and 3, A = Ca, Sr and B = Nb, Ta) compounds obtained by ion-exchange from the layered Li2A0.5nBnO3n+1 perovskite materials. J Mater Chem. 2000; 10(7): 1685-1692.

[135]

Jacobson AJ, Nazar LF. Intercalation chemistry. In: King RB, Crabtree RH, Lukehart CM, Atwood DA, Scott RA, eds. Encyclopedia of Inorganic Chemistry. John Wiley & Sons; 2006.

[136]

Schaak RE, Mallouk TE. Synthesis, proton exchange, and topochemical dehydration of new Ruddlesden–Popper tantalates and titanotantalates. J Solid State Chem. 2000; 155(1): 46-54.

[137]

Sugimoto W, Shirata M, Sugahara Y, Kuroda K. New conversion reaction of an aurivillius phase into the protonated form of the layered perovskite by the selective leaching of the bismuth oxide sheet. J Am Chem Soc. 1999; 121(49): 11601-11602.

[138]

Schaak RE, Mallouk TE. Prying apart Ruddlesden–Popper phases: exfoliation into sheets and nanotubes for assembly of perovskite thin films. Chem Mater. 2000; 12(11): 3427-3434.

[139]

Toda K, Kameo Y, Kurita S, Sato M. Intercalation of water in a layered perovskite compound, NaEuTiO4. Bull Chem Soc Jpn. 1996; 69(2): 349-352.

[140]

Byeon S, Kim H, Yoon J, et al. Transformation of the defective layered structure into the three-dimensional perovskite structure under high pressure. Chem Mater. 1998; 10(9): 2317-2319.

[141]

Vander Griend DA, Boudin S, Poeppelmeier KR, Azuma M, Toganoh H, Takano M. High pressure transformation of La4Cu3MoO12 to a layered perovskite. J Am Chem Soc. 1998; 120(44): 11518-11519.

[142]

Gopalakrishnan J, Uma S, Vasanthacharya NY, Subbanna GN. Slicing the perovskite structure into layers: synthesis of novel three-dimensional and layered perovskite oxides, ALaSrNb2MIIO9 (A = Na, Cs). J Am Chem Soc. 1995; 117(8): 2353-2354.

[143]

Chen YB, Zhou W, Ding D, et al. Advances in cathode materials for solid oxide fuel cells: complex oxides without alkaline earth metal elements. Adv Energy Mater. 2015; 5(18): 1500537.

[144]

Boulahya K, Muñoz-Gil D, Gómez-Herrero A, Azcondo MT, Amador U. Eu2SrCo1.5Fe0.5O7 a new promising Ruddlesden–Popper member as a cathode component for intermediate temperature solid oxide fuel cells. J Mater Chem A. 2019; 7(10): 5601-5611.

[145]

Chaianansutcharit S, Hosoi K, Hyodo J. Ruddlesden–Popper oxides of LnSr3Fe3O10–δ (Ln = La, Pr, Nd, Sm, Eu, and Gd) as active cathodes for low temperature solid oxide fuel cells. J Mater Chem A. 2015; 3(23): 12357-12366.

[146]

Druce J, Ishihara T, Kilner J. Surface composition of perovskite-type materials studied by low energy ion scattering (LEIS). Solid State Ion. 2014; 262: 893-896.

[147]

Gilev AR, Kiselev EA, Cherepanov VA. Oxygen transport phenomena in (La, Sr)2(Ni, Fe)O4 materials. J Mater Chem A. 2018; 6(13): 5304-5312.

[148]

Zhou XD, Templeton JW, Nie Z, Chen H, Stevenson JW, Pederson LR. Electrochemical performance and stability of the cathode for solid oxide fuel cells: V. High performance and stable Pr2NiO4 as the cathode for solid oxide fuel cells. Electrochim Acta. 2012; 71: 44-49.

[149]

Laguna-Bercero MA, Monzón H, Larrea A, Orera VM. Improved stability of reversible solid oxide cells with a nickelate-based oxygen electrode. J Mater Chem A. 2016; 4(4): 1446-1453.

[150]

Chroneos A, Yildiz B, Tarancón A, Parfitt D, Kilner JA. Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy Environ Sci. 2011; 4(8): 2774-2789.

[151]

Latie L, Villeneuve G, Conte D, Le Flem G. Ionic conductivity of oxides with general formula LixLn1/3Nbl–xTixO3 (ln = La, Nd). J Solid State Chem. 1984; 51(3): 293-299.

[152]

Belous AG, Novitsukaya GN, Polyanetsukaya SV, Gornikov YI. Study of complex oxides with the composition La2/3–xLi3–xTiO3. Inorg Mater. 1987; 23: 412-415.

[153]

Zhang BB, Tan R, Yang LY, et al. Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Mater. 2018; 10: 139-159.

[154]

Wang Y, Richards WD, Ong SP, et al. Design principles for solid-state lithium superionic conductors. Nat Mater. 2015; 14: 1026-1031.

[155]

Inaguma Y. Fast percolative diffusion in lithium ion-conducting perovskite-type oxides. J Ceram Soc Jpn. 2006; 114(1336): 1103-1110.

[156]

Inaguma Y, Itoh M. Influences of carrier concentration and site percolation on lithium ion conductivity in perovskite-type oxides. Solid State Ion. 1996; 86-88: 257-260.

[157]

Fanah SJ, Ramezanipour F. Enhancing the lithium-ion conductivity in Li2SrTa2–xNbxO7 (x = 0-2). Solid State Sci. 2019; 97: 106014.

[158]

Inaguma Y, Matsui Y, Yu J, et al. Effect of substitution and pressure on lithium ion conductivity in perovskites Ln1/2Li1/2TiO3 (Ln= La, Pr, Nd and Sm). J Phys Chem Solid. 1997; 58(6): 843-852.

[159]

Inaguma Y, Yu J, Shan YJ, et al. The effect of the hydrostatic pressure on the ionic conductivity in a perovskite lanthanum lithium titanate. J Electrochem Soc. 1995; 142(1): L8-L11.

[160]

Katsumata T, Inaguma Y, Itoh M, Kawamura K. Molecular dynamics simulation of the high lithium ion conductor, La0.6Li0.2TiO3. J Ceram Soc Jpn. 1999; 107(1247): 615-621.

[161]

Altermatt D, Brown ID. The automatic searching for chemical bonds in inorganic crystal structures. Acta Cryst B. 1985; 41(4): 240-244.

[162]

Brese NE, O’Keeffe M. Bond-valence parameters for solids. Acta Cryst B. 1991; 47(2): 192-197.

[163]

Mazza D, Ronchetti S, Bohnke O, et al. Modeling Li-ion conductivity in fast ionic conductor La2/3–xLi3xTiO3. Solid State Ion. 2002; 149(1-2): 81-88.

[164]

Inaguma Y, Katsumata T, Itoh M, Morii Y, Tsurui T. Structural investigations of migration pathways in lithium ion-conducting La2/3–xLi3xTiO3 perovskites. Solid State Ion. 2006; 177(35-36): 3037-3044.

[165]

Lu QW, He YB, Yu QP, et al. Dendrite-free, high-rate, long-life lithiu. metal batteries with a 3D cross-linked network polymer electrolyte. Adv Mater. 2017; 29(13): 1604460.

[166]

Li SQ, Zhang D, Meng XY, Huang QA, Sun C, Wang ZL. A flexible lithium-ion battery with quasi-solid gel electrolyte for storing pulsed energy generated by triboelectric nanogenerator. Energy Storage Mater. 2018; 12: 17-22.

[167]

Fan W, Li NW, Zhang XL, et al. A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries. Adv Sci. 2018; 5(9): 1800559.

[168]

Balo L, Gupta H, Singh VK, Singh RK. Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application. Electrochim Acta. 2017; 230: 123-131.

[169]

Tan MJ, Li B, Chee P, et al. Acrylamide-derived freestanding polymer gel electrolyte for flexible metal-air batteries. J Power Sources. 2018; 400: 566-571.

[170]

Wang M, Xu NN, Fu J, Liu Y, Qiao J. High-performance binary cross-linked alkaline anion polymer electrolyte membranes for all-solid-state supercapacitors and flexible rechargeable zinc-air batteries. J Mater Chem A. 2019; 7(18): 11257-11264.

[171]

Zhu P, Yan CY, Zhu JD, et al. Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy Storage Mater. 2019; 17: 220-225.

[172]

Yang LY, Wang ZJ, Feng YC, et al. Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li electrolyte interface for solid state lithium-ion batteries. Adv Energy Mater. 2017; 7(22): 1701437.

[173]

Xiao YH, Wang Y, Bo SH, Kim JC, Miara LJ, Ceder G. Understanding interface stability in solid-state batteries. Nat Rev Mater. 2020; 5(2): 105-126.

[174]

Banerjee A, Wang XF, Fang CC, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev. 2020; 120(14): 6878-6933.

[175]

Zhu YT, Chon M, Thompson CV, Rupp JLM. Time-temperature-transformation (TTT) diagram of battery-grade Li-garnet electrolytes for low-temperature sustainable synthesis. Angew Chem Int Ed. 2023; 62(45): e202304581.

[176]

Wang H, An HW, Shan HM, Zhao L, Wang JJ. Research progress on interfaces of all-solid-state batteries. Acta Phys Chim Sin. 2021; 37: 2007070.

[177]

Lou SF, Zhang F, Fu CK, et al. Interface issues and challenges in all-solid-state batteries: lithium, sodium, and beyond. Adv Mater. 2021; 33(6): 2000721.

[178]

Chai SM, Zhang YP, Wang YJ, He Q, Zhou S, Pan A. Biodegradable composite polymer as advanced gel electrolyte for quasi-solid-state lithium-metal battery. eScience. 2022; 2(5): 494-508.

[179]

Wu YJ, Wang S, Li H, Chen L, Wu F. Progress in thermal stability of all-solid-state-Li-ion-batteries. InfoMat. 2021; 3(8): 827-853.

RIGHTS & PERMISSIONS

2024 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/