High-performance 110 kVp hard x-ray detector based on all-crystalline-surface passivated perovskite single crystals

Juyoung Ko , Beomjun Park , Jangwon Byun , Sandeep Pandey , Ajin Jo , Joo-Hong Lee , Wonho Lee , Jin-Wook Lee , Nam-Gyu Park , Man-Jong Lee

InfoMat ›› 2024, Vol. 6 ›› Issue (8) : e12560

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (8) : e12560 DOI: 10.1002/inf2.12560
RESEARCH ARTICLE

High-performance 110 kVp hard x-ray detector based on all-crystalline-surface passivated perovskite single crystals

Author information +
History +
PDF

Abstract

Halide perovskite single crystals (SCs) have attracted much attention for their application in high-performance x-ray detectors owing to their desirable properties, including low defect density, high mobility–lifetime product (µτ), and long carrier diffusion length. However, suppressing the inherent defects in perovskites and overcoming the ion migration primarily caused by these defects remains a challenge. This study proposes a facile process for dipping Cs0.05FA0.9MA0.05PbI3 SCs synthesized by a solution-based inverse temperature crystallization method into a 2-phenylethylammonium iodide (PEAI) solution to reduce the number of defects, inhibit ion migration, and increase x-ray sensitivity. Compared to conventional spin coating, this simple dipping process forms a two-dimensional PEA2PbI4 layer on all SC surfaces without further treatment, effectively passivating all surfaces of the inherently defective SCs and minimizing ion migration. As a result, the PEAI-treated perovskite SC-based x-ray detector achieves a record x-ray sensitivity of 1.3 × 105 µC Gyair–1 cm–2 with a bias voltage of 30 V at realistic clinical dose rates of 1–5 mGy s–1 (peak potential of 110 kVp), which is 6 times more sensitive than an untreated SC-based detector and 3 orders of magnitude more sensitive than a commercial α-Se-based detector. Furthermore, the PEAI-treated-perovskite SC-based x-ray detector exhibits a low detection limit (73 nGy s–1), improved x-ray response, and clear x-ray images by a scanning method, highlighting the effectiveness of the PEAI dipping approach for fabricating next-generation x-ray detectors.

Keywords

2D PEA 2PbI 4 layers / clinical dose rates / perovskite single crystals / phenethylammonium iodide (PEAI) / surface passivation / x-ray sensitivity

Cite this article

Download citation ▾
Juyoung Ko, Beomjun Park, Jangwon Byun, Sandeep Pandey, Ajin Jo, Joo-Hong Lee, Wonho Lee, Jin-Wook Lee, Nam-Gyu Park, Man-Jong Lee. High-performance 110 kVp hard x-ray detector based on all-crystalline-surface passivated perovskite single crystals. InfoMat, 2024, 6(8): e12560 DOI:10.1002/inf2.12560

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sakdinawat A, Attwood D. Nanoscale x-ray imaging. Nat Photonics. 2010; 4(12): 840-848.

[2]

Kraushaar WL, Clark GW, Garmire GP, et al. High-energy cosmic gamma-ray observations from the OSO-3 satellite. Astrophys J. 1972; 177: 341.

[3]

Wei H, Huang J. Halide lead perovskites for ionizing radiation detection. Nat Commun. 2019; 10(1): 1066.

[4]

He X, Deng Y, Ouyang D, et al. Recent development of halide perovskite materials and devices for ionizing radiation detection. Chem Rev. 2023; 123(4): 1207-1261.

[5]

Granfors PR, Aufrichtig R. Performance of a 41×41-cm amorphous silicon flat panel x-ray detector for radiographic imaging applications. Med Phys. 2000; 27(6): 1324-1331.

[6]

Sultana A, Wronski MM, Karim KS, Rowlands JA. Digital x-ray imaging using avalanche a-Se photoconductor. IEEE Sens J. 2009; 10(2): 347-352.

[7]

Sordo SD, Abbene L, Caroli E, et al. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors. 2009; 9(5): 3491-3526.

[8]

X-ray mass attenuation coefficients. https://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html

[9]

Derby JJ, Brown RA. On the dynamics of Czochralski crystal growth. J Cryst Growth. 1987; 83(1): 137-151.

[10]

Park B, Kim Y, Seo J, et al. Bandgap engineering of Cd1– xZnxTe1– ySey (0< x< 0.27, 0< y< 0.026). Nucl Instrum Methods Phys Res A. 2022; 1036: 166836.

[11]

Roy UN, Burger A, James RB. Growth of CdZnTe crystals by the traveling heater method. J Cryst Growth. 2013; 379: 57-62.

[12]

Yakunin S, Sytnyk M, Kriegner D, et al. Detection of x-ray photons by solution-processed lead halide perovskites. Nat Photonics. 2015; 9(7): 444-449.

[13]

Zhou Y, Chen J, Bakr OM, Mohammed OF. Metal halide perovskites for x-ray imaging scintillators and detectors. ACS Energy Lett. 2021; 6(2): 739-768.

[14]

Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths>175 µm in solution-grown CH3NH3PbI3 single crystals. Science. 2015; 347(6225): 967-970.

[15]

Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science. 2015; 347(6221): 519-522.

[16]

Liu Y, Zhang Y, Zhu X, et al. Triple-cation and mixed-halide perovskite single crystal for high-performance x-ray imaging. Adv Mater. 2021; 33(8): 2006010.

[17]

Li WG, Wang XD, Huang YH, Kuang DB. Ultrasound-assisted crystallization enables large-area perovskite quasi-monocrystalline film for high-sensitive x-ray detection and imaging. Adv Mater. 2023; 35(31): 2210878.

[18]

Liu Y, Zheng Y, Fang Y, et al. Ligand assisted growth of perovskite single crystals with low defect density. Nat Commun. 2021; 12(1): 1686.

[19]

Chung M, Lee KY, Lee BY, et al. Diagnostic reference level of patient dose during a plain chest radiography examination. J Korean Radiol Soc. 2010; 62(6): 523-528.

[20]

Bacher K, Smeets P, Bonnarens K, de Hauwere A, Verstraete K, Thierens H. Dose reduction in patients undergoing chest imaging: digital amorphous silicon flat-panel detector radiography versus conventional film-screen radiography and phosphor-based computed radiography. AJR Am J Roentgenol. 2003; 181(4): 923-929.

[21]

Basiricò L, Ciavatti A, Cramer T, Cosseddu P, Bonfiglio A, Fraboni B. Direct x-ray photoconversion in flexible organic thin film devices operated below 1 V. Nat Commun. 2016; 7(1): 13063.

[22]

Zhang P, Hua Y, Xu Y, et al. Ultrasensitive and robust 120 keV hard x-ray imaging detector based on mixed-halide perovskite CsPbBr3–nIn single crystals. Adv Mater. 2022; 34(12): 2106562.

[23]

Hua Y, Zhang G, Sun X, et al. Suppressed ion migration for high-performance x-ray detectors based on atmosphere-controlled EFG-grown CsPbBr3 single crystals.

[24]

Abate A, Saliba M, Hollman DJ, et al. Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells. Nano Lett. 2014; 14(6): 3247-3254.

[25]

Zheng X, Chen B, Dai J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat Energy. 2017; 2(7): 1-9.

[26]

Zhao T, Chueh CC, Chen Q, Rajagopal A, Jen AKY. Defect passivation of organic–inorganic hybrid perovskites by diammonium iodide toward high-performance photovoltaic devices. ACS Energy Lett. 2016; 1(4): 757-763.

[27]

Abdi-Jalebi M, Andaji-Garmaroudi Z. Cacovich S, et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature. 2018; 555(7697): 497-501.

[28]

Wu Y, Feng J, Yang Z, Liu Y, Liu S(F). Halide perovskite: a promising candidate for next-generation x-ray detectors. Adv Sci. 2023; 10(1): 2205536.

[29]

Park B, Kim Y, Seo J, Kim K. Effectiveness of parylene coating on CdZnTe surface after optimal passivation. Nucl Eng Technol. 2022; 54(12): 4693-4697.

[30]

He Y, Pan W, Guo C, Zhang H, Wei H, Yang B. 3D/2D perovskite single crystals heterojunction for suppressed ions migration in hard x-ray detection. Adv Funct Mater. 2021; 31(49): 2104880.

[31]

Zhou Y, Zhao L, Ni Z, et al. Heterojunction structures for reduced noise in large-area and sensitive perovskite x-ray detectors. Sci Adv. 2021; 7(36): eabg6716.

[32]

Yan J, Gao F, Tian Y, et al. Controllable perovskite single crystal heterojunction for stable self-powered photo-imaging and x-ray detection. Adv Opt Mater. 2022; 10(17): 2200449.

[33]

Jiang Q, Zhao Y, Zhang X, et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics. 2019; 13(7): 460-466.

[34]

Han M, Xiao Y, Zhou C, et al. Suppression of ionic and electronic conductivity by multilayer heterojunctions passivation toward sensitive and stable perovskite x-ray detectors. Adv Funct Mater. 2023; 33(35): 2303376.

[35]

Xu Y, Li Y, Peng G, et al. Asymmetric metal halide film with suppressed leakage current for high sensitive x-ray detection and imaging. IEEE Electron Device Lett. 2022; 43(10): 1709-1712.

[36]

Li Y, Lei Y, Wang H, Jin Z. Two-dimensional metal halides for x-ray detection applications. Nano-Micro Lett. 2023; 15(1): 128.

[37]

Basiricò L, Senanayak SP, Ciavatti A, Abdi-Jalebi M. Fraboni B, Sirringhaus H. Detection of x-rays by solution-processed cesium-containing mixed triple cation perovskite thin films. Adv Funct Mater. 2019; 29(34): 1902346.

[38]

Yoo JJ, Wieghold S, Sponseller MC, et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energ Environ Sci. 2019; 12(7): 2192-2199.

[39]

Suo J, Yang B, Jeong J, et al. Interfacial engineering from material to solvent: a mechanistic understanding on stabilizing α-formamidinium lead triiodide perovskite photovoltaics. Nano Energy. 2022; 94: 106924.

[40]

Tan S, Huang T, Yavuz I, et al. Surface reconstruction of halide perovskites during post-treatment. J Am Chem Soc. 2021; 143(18): 6781-6786.

[41]

Wang D, Wright M, Elumalai NK, Uddin A. Stability of perovskite solar cells. Sol Energy Mater Sol Cells. 2016; 147: 255-275.

[42]

Shan X, Wang S, Fu M, et al. Precisely preparing lead iodide passivation layer for enhancing the performance of triple cation perovskite solar cells using krypton fluoride excimer laser. J Power Sources. 2023; 555: 232368.

[43]

Dimitrievska M, Fairbrother A, Gunder R, et al. Role of S and Se atoms on the microstructural properties of kesterite Cu2ZnSn(SxSe1– x)4 thin film solar cells. Phys Chem Chem Phys. 2016; 18(12): 8692-8700.

[44]

Naikaew A, Kumnorkaew P, Wattanathana W, et al. Investigation of double-layered Pb-Sn perovskite absorbers: formation, structure, band alignment, and stability. J Phys Chem C. 2022; 126(3): 1623-1634.

[45]

Zhang H, Wang S, Hou Y, et al. Comparison of surface-passivation ability of the BAI salt and its induced 2D perovskite for high-performance inverted perovskite solar cells. RSC Adv. 2021; 11(38): 23249-23258.

[46]

Chen L, Wang H, Zhang W, et al. Surface passivation of MAPbBr3 perovskite single crystals to suppress ion migration and enhance photoelectronic performance. ACS Appl Mater Interfaces. 2022; 14(8): 10917-10926.

[47]

Zheng Q, Dierre F, Crocco J, et al. Influence of surface preparation on CdZnTe nuclear radiation detectors. Appl Surf Sci. 2011; 257(20): 8742-8746.

[48]

Park B, Ko J, Byun J, et al. Solution-grown MAPbBr3 single crystals for self-powered detection of x-rays with high energies above one megaelectron volt. Nanomaterials. 2023; 13(15): 2157.

[49]

Tumen-Ulzii G, Qin C, Klotz D, et al. Detrimental effect of unreacted PbI2 on the long-term stability of perovskite solar cells. Adv Mater. 2020; 32(16): 1905035.

[50]

Gujar TP, Unger T, Schönleber A, et al. The role of PbI2 in CH3NH3PbI3 perovskite stability, solar cell parameters and device degradation. Phys Chem Chem Phys. 2018; 20(1): 605-614.

[51]

Kasap SO. X-ray sensitivity of photoconductors: application to stabilized a-Se. J Phys D. 2000; 33(21): 2853-2865.

[52]

Zhu M, Du X, Niu G, et al. Template directed perovskite x-ray detectors towards low ionic migration and low interpixel cross talking. Fund Res. 2022; 2(1): 108-113.

[53]

Kim YC, Kim KH, Son DY, et al. Printable organometallic perovskite enables large-area, low-dose x-ray imaging. Nature. 2017; 550(7674): 87-91.

[54]

Shrestha S, Fischer R, Mat GJ, et al. High-performance direct conversion x-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat Photonics. 2017; 11(7): 436-440.

[55]

Ciavatti A, Sorrentino R, Basiricò L, et al. High-sensitivity flexible x-ray detectors based on printed perovskite inks. Adv Funct Mater. 2021; 31(11): 2009072.

[56]

Pan W, Yang B, Niu G, et al. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct x-ray detection. Adv Mater. 2019; 31(44): 1904405.

[57]

Zhang Y, Liu Z, Xu H, et al. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance x-ray detection. Nat Commun. 2020; 11(1): 2304.

[58]

Wu H, Chen X, Song Z, et al. Mechanochemical synthesis of high-entropy perovskite toward highly sensitive and stable x-ray flat panel detector. Adv Mater. 2023; 35(29): 2301406.

[59]

He X, Xia M, Wu H, et al. Quasi-2D perovskite thick film for x-ray detection with low detection limit. Adv Funct Mater. 2022; 32(7): 2109458.

[60]

Yang B, Pan W, Wu H, et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for x-ray imaging. Nat Commun. 2019; 10(1): 1989.

[61]

Wei H, Fang Y, Mulligan P, et al. Sensitive x-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photonics. 2015; 10(5): 333-339.

[62]

Kim T, Jeong S, Kim K-H, Shim H, Kim D, Kim HJ. Engineered surface halide defects by two-dimensional perovskite passivation for deformable intelligent photodetectors. ACS Appl Mater Interfaces. 2022; 14(22): 26004-26013.

[63]

Mahapatra A, Parikh N, Kumari H, et al. Reducing ion migration in methylammonium lead tri-bromide single crystal via lead sulfate passivation. J Appl Phys. 2020; 127(18): 185501.

[64]

Wang K, Chen F, Yao Q, et al. Synergistic enhancement of the optoelectronic performance and stability of MA and Cs in FAxMAyCs1–x–yPbIzBr3–z single crystals. J Mater Chem C. 2023; 11(38): 12959-12967.

[65]

Pang J, Zhao S, Du X, Wu H, Niu G, Tang J. Vertical matrix perovskite x-ray detector for effective multi-energy discrimination. Light Sci Appl. 2022; 11(1): 105.

[66]

Song Z, Du X, He X, et al. Rheological engineering of perovskite suspension toward high-resolution x-ray flat-panel detector. Nat Commun. 2023; 14(1): 6865.

[67]

Pan L, Shrestha S, Taylor N, Nie W, Cao LR. Determination of x-ray detection limit and applications in perovskite x-ray detectors. Nat Commun. 2021; 12(1): 5258.

[68]

Chen L, Tan YY, Chen ZX, et al. Toward long-term stability: single-crystal alloys of cesium-containing mixed cation and mixed halide perovskite. J Am Chem Soc. 2019; 141(4): 1665-1671.

[69]

Lee JW, Kim SG, Yang JM, Yang Y, Park NG. Verification and mitigation of ion migration in perovskite solar cells. APL Mater. 2019; 7(4): 041111.

[70]

Zhao Y, Yavuz I, Wang M, et al. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat Mater. 2022; 21(12): 1396-1402.

[71]

Khan FM, Gibbons JP. Khan’s the Physics of Radiation Therapy. Lippincott Williams & Wilkins; 2014.

[72]

Ma L, Yang Z, Zhou X, et al. A polymer controlled nucleation route towards the generalized growth of organic-inorganic perovskite single crystals. Nat Commun. 2021; 12(1): 2023.

[73]

Meyer P, Meyer E, Mertz L, et al Evaluation of the use of six diagnostic X-ray spectra computer codes. Br J Radiol. 2004; 77(915): 224-230.

RIGHTS & PERMISSIONS

2024 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

191

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/