Stabilization of halide perovskites with silicon compounds for optoelectronic, catalytic, and bioimaging applications

Atanu Jana , Sangeun Cho , Abhishek Meena , Abu Talha Aqueel Ahmed , Vijaya Gopalan Sree , Youngsin Park , Hyungsang Kim , Hyunsik Im , Robert A. Taylor

InfoMat ›› 2024, Vol. 6 ›› Issue (12) : e12559

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (12) : e12559 DOI: 10.1002/inf2.12559
REVIEW ARTICLE

Stabilization of halide perovskites with silicon compounds for optoelectronic, catalytic, and bioimaging applications

Author information +
History +
PDF

Abstract

Silicon belongs to group 14 elements along with carbon, germanium, tin, and lead in the periodic table. Similar to carbon, silicon is capable of forming a wide range of stable compounds, including silicon hydrides, organosilicons, silicic acids, silicon oxides, and silicone polymers. These materials have been used extensively in optoelectronic devices, sensing, catalysis, and biomedical applications. In recent years, silicon compounds have also been shown to be suitable for stabilizing delicate halide perovskite structures. These composite materials are now receiving a lot of interest for their potential use in various real-world applications. Despite exhibiting outstanding performance in various optoelectronic devices, halide perovskites are susceptible to breakdown in the presence of moisture, oxygen, heat, and UV light. Silicon compounds are thought to be excellent materials for improving both halide perovskite stability and the performance of perovskite-based optoelectronic devices. In this work, a wide range of silicon compounds that have been used in halide perovskite research and their applications in various fields are discussed. The interfacial stability, structure–property correlations, and various application aspects of perovskite and silicon compounds are also analyzed at the molecular level. This study also explores the developments, difficulties, and potential future directions associated with the synthesis and application of perovskite-silicon compounds.

Keywords

biomedical / halide perovskite / optoelectronics / photocatalysis / silicon compounds / water stability

Cite this article

Download citation ▾
Atanu Jana, Sangeun Cho, Abhishek Meena, Abu Talha Aqueel Ahmed, Vijaya Gopalan Sree, Youngsin Park, Hyungsang Kim, Hyunsik Im, Robert A. Taylor. Stabilization of halide perovskites with silicon compounds for optoelectronic, catalytic, and bioimaging applications. InfoMat, 2024, 6(12): e12559 DOI:10.1002/inf2.12559

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cui X, Chen Y, Zhang M, et al. Tailoring carrier dynamics in perovskite solar cells via precise dimension and architecture control and interfacial positioning of plasmonic nanoparticles. Energy Environ Sci. 2020; 13(6): 1743-1752.

[2]

Bai Y, Lin Y, Ren L, et al. Oligomeric silica-wrapped perovskites enable synchronous defect passivation and grain stabilization for efficient and stable perovskite photovoltaics. ACS Energy Lett. 2019; 4(6): 1231-1240.

[3]

Hwang SH, Roh J, Lee J, Ryu J, Yun J, Jang J. Size-controlled SiO2 nanoparticles as scaffold layers in thin-film perovskite solar cells. J Mater Chem A. 2014; 2(39): 16429-16433.

[4]

Ahangharnejhad RH, Song Z, Mariam T, et al. Protecting perovskite solar cells against moisture-induced degradation with sputtered inorganic barrier layers. ACS Appl Energy Mater. 2021; 4(8): 7571-7578.

[5]

Yoo GY, Azmi R, Kim C, et al. Stable and colorful perovskite solar cells using a nonperiodic SiO2/TiO2 multi-nanolayer filter. ACS Nano. 2019; 13(9): 10129-10139.

[6]

Lee S, Kim CU, Bae S, et al. Improving light absorption in a perovskite/Si tandem solar cell via light scattering and UV-down shifting by a mixture of SiO2 nanoparticles and phosphors. Adv Funct Mater. 2022; 32(35): 2204328.

[7]

Wang X, Wang W, Liu J, et al. Reducing optical reflection loss for perovskite solar cells via printable mesoporous SiO2 antireflection coatings. Adv Funct Mater. 2022; 32(44): 2203872.

[8]

Wang Y, Zhou X, Liang C, et al. Enhanced efficiency of perovskite solar cells by using core-ultrathin shell structure Ag@SiO2 nanowires as plasmonic antennas. Adv Electron Mater. 2017; 3(11): 1700169.

[9]

Lee K, Yoon CM, Noh J, Jang J. Morphology-controlled mesoporous SiO2 nanorods for efficient scaffolds in organo-metal halide perovskite solar cells. Chem Commun. 2016; 52(22): 4231-4234.

[10]

Chandrasekhar PS, Dubey A, Reza KM, et al. Higher efficiency perovskite solar cells using Au@SiO2 core–shell nanoparticles. Sustain Energy Fuels. 2018; 2(10): 2260-2267.

[11]

Trinh CK, Lee H, So MG, Lee CL. Synthesis of chemically stable ultrathin SiO2-coated core–shell perovskite QDs via modulation of ligand binding energy for all-solution-processed light-emitting diodes. ACS Appl Mater Interfaces. 2021; 13(25): 29798-29808.

[12]

Ding J, Jing L, Cheng X, et al. Design growth of MAPbI3 single crystal with (220) facets exposed and its superior optoelectronic properties. J Phys Chem Lett. 2018; 9(1): 216-221.

[13]

Ding N, Zhou D, Sun X, et al. Highly stable and water-soluble monodisperse CsPbX3/SiO2 nanocomposites for white-LED and cells imaging. Nanotechnology. 2018; 29(34): 345703.

[14]

Di X, Shen L, Jiang J, et al. Efficient white LEDs with bright green-emitting CsPbBr3 perovskite nanocrystal in mesoporous silica nanoparticles. J Alloys Compd. 2017; 729: 526-532.

[15]

Sun C, Zhang Y, Ruan C, et al. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv Mater. 2016; 28(45): 10088-10094.

[16]

Xu Y, Hu X, Tang H, et al. Highly efficient silica coated perovskite nanocrystals with the assistance of ionic liquids for warm white LEDs. Nanoscale. 2023; 15(2): 631-643.

[17]

Li X, Ma W, Liang D, Cai W, Zhao S, Zang Z. High-performance CsPbBr3@Cs4PbBr6/SiO2 nanocrystals via double coating layers for white light emission and visible light communication. eeScience. 2022; 2(6): 646-654.

[18]

Liu A, Zhu H, Bai S, et al. High-performance inorganic metal halide perovskite transistors. Nat Electron. 2022; 5(2): 78-83.

[19]

Liu J, Haroldson R, Verkhogliadov G, et al. Ultrasensitive perovskite photodetector achieved when configured with a Si metal oxide semiconductor field-effect transistor. Adv Photonics Res. 2023; 4(1): 2200034.

[20]

Jana A, Cho S, Patil SA, et al. Perovskite: scintillators, direct detectors, and x-ra. imagers. Mater Today. 2022; 55: 110-136.

[21]

Getachew G, Wibrianto A, Rasal AS, Dirersa WB, Chang JY. Metal halide perovskite nanocrystals for biomedical engineering: recent advances, challenges, and future perspectives. Coord Chem Rev. 2023; 482: 215073.

[22]

Kumar P, Patel M, Park C, et al. Highly luminescent biocompatible CsPbBr3@SiO2 core–shell nanoprobes for bioimaging and drug delivery. J Mater Chem B. 2020; 8(45): 10337-10345.

[23]

Song W, Wang Y, Wang B, et al. Super stable CsPbBr3@SiO2 tumor imaging reagent by stress-response encapsulation. Nano Res. 2020; 13(3): 795-801.

[24]

Wu H, Chen Y, Zhang W, Khan MS, Chi Y. Water-dispersed perovskite nanocube@SiO2-C18-PC core–shell nanoparticles for cell imaging. ACS Appl Nano Mater. 2021; 4(11): 11791-11800.

[25]

Avugadda SK, Castelli A, Dhanabalan B, et al. Highly emitting perovskite nanocrystals with 2-year stability in water through an automated polymer encapsulation for bioimaging. ACS Nano. 2022; 16(9): 13657-13666.

[26]

Pramanik A, Patibandla S, Gao Y, Gates K, Ray PC. Water triggered synthesis of highly stable and biocompatible 1D nanowire, 2D nanoplatelet, and 3D nanocube CsPbBr3 perovskites for multicolor two-photon cell imaging. JACS Au. 2021; 1(1): 53-65.

[27]

Zhang H, Wang X, Liao Q, et al. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging. Adv Funct Mater. 2017; 27(7): 1604382.

[28]

Yang Z, Xu J, Zong S, et al. Lead halide perovskite nanocrystals–phospholipid micelles and their biological applications: multiplex cellular imaging and in vitro tumor targeting. ACS Appl Mater Interfaces. 2019; 11(51): 47671-47679.

[29]

Lian H, Li Y, Saravanakumar S, et al. Metal halide perovskite quantum dots for amphiprotic bio-imaging. Coord Chem Rev. 2022; 452: 214313.

[30]

Talianov PM, Peltek OO, Masharin M, et al. Halide perovskite nanocrystals with enhanced water stability for upconversion imaging in a living cell. J Phys Chem Lett. 2021; 12(37): 8991-8998.

[31]

Gao J, Qian X, Wei Q, et al. Construction of core-shell cesium lead bromide-silica by precipitation coating method with applications in aqueous photocatalysis. J Colloid Interface Sci. 2022; 623: 974-984.

[32]

Li S, Lei D, Ren W, et al. Water-resistant perovskite nanodots enable robust two-photon lasing in aqueous environment. Nat Commun. 2020; 11(1): 1192.

[33]

Cherevkov S, Azizov R, Sokolova A, et al. Interface chemical modification between all-inorganic perovskite nanocrystals and porous silica microspheres for composite materials with improved emission. Nanomaterials. 2021; 11(1): 119.

[34]

Singh AN, Kajal S, Kim J, Jana A, Kim JY, Kim KS. Interface engineering driven stabilization of halide perovskites against moisture, heat, and light for optoelectronic applications. Adv Energy Mater. 2020; 10(30): 2000768.

[35]

De Roo J, Ibáñez M, Geiregat P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano. 2016; 10(2): 2071-2081.

[36]

Dong X, Fang X, Lv M, et al. Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J Mater Chem A. 2015; 3(10): 5360-5367.

[37]

Yang S, Chen S, Mosconi E, et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science. 2019; 365(6452): 473-478.

[38]

Jana A, Kim KS. Water-stable, fluorescent organic–inorganic hybrid and fully inorganic perovskites. ACS Energy Lett. 2018; 3(9): 2120-2126.

[39]

Zhong Q, Liu J, Chen S, et al. Highly stable CsPbX3/PbSO4 core/shell nanocrystals synthesized by a simple post-treatment strategy. Adv Opt Mater. 2021; 9(5): 2001763.

[40]

Wang H, Wei Y, Li H, et al. Octylammonium sulfate decoration enhancing the moisture durability of quasi-2D perovskite film for light-emitting diodes. Adv Mater Interfaces. 2021; 8(13): 2100442.

[41]

Liu H, Worku M, Mondal A, et al. Efficient and stable blue light emitting diodes based on CsPbBr3 nanoplatelets with surface passivation by a multifunctional organic sulfate. Adv Energy Mater. 2023; 13(33): 2201605.

[42]

Sardar S, Maity P, Mittal M, et al. Synthesis and characterization of polypyrrole encapsulated formamidinium lead bromide crystals for fluorescence memory recovery. J Mol Liq. 2022; 349: 118485.

[43]

Liang S, Zhang M, Biesold GM, et al. Recent advances in synthesis, properties, and applications of metal halide perovskite nanocrystals/polymer nanocomposites. Adv Mater. 2021; 33(50): 2005888.

[44]

Zhao Y, He Z, Ren F, et al. One-step preparation of blue-emitting CsPbBr3 quantum dots loaded on natural mineral halloysite nanotube. Appl Clay Sci. 2021; 208: 106110.

[45]

Hao J, Qu X, Qiu L, et al. One-step loading on natural mineral halloysite nanotube: an effective way to enhance the stability of perovskite CsPbX3 (X = Cl, Br, I) quantum dots. Adv Opt Mater. 2019; 7(4): 1801323.

[46]

Wang Q, Zheng X, Deng Y, Zhao J, Chen Z, Huang J. Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule. 2017; 1(2): 371-382.

[47]

Chen Q, Yang X, Zhou Y, Song B. Zwitterions: promising interfacial/doping materials for organic/perovskite solar cells. New J Chem. 2021; 45(34): 15118-15130.

[48]

Krieg F, Ochsenbein ST, Yakunin S, et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 2018; 3(3): 641-646.

[49]

Mollick S, Mandal TN, Jana A, Fajal S, Desai AV, Ghosh SK. Ultrastable luminescent hybrid bromide perovskite@MOF nanocomposites for the degradation of organic pollutants in water. ACS Appl Nano Mater. 2019; 2(3): 1333-1340.

[50]

Zhang W, Saliba M, Stranks SD, et al. Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. Nano Lett. 2013; 13(9): 4505-4510.

[51]

Kulbak M, Gupta S, Kedem N, et al. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J Phys Chem Lett. 2016; 7(1): 167-172.

[52]

Zhang X, Lv J, Liu J, et al. Stable EMT type zeolite/CsPbBr3 perovskite quantum dot nanocomposites for highly sensitive humidity sensors. J Colloid Interface Sci. 2022; 616: 921-928.

[53]

Fulari AV, Jana A, Han J, et al. Precursor silanization assisted synthesis and optical tuning of dual-phase perovskite nanocrystals embedded in silica matrix with high environmental stability. J Colloid Interface Sci. 2023; 630(Pt A): 212-222.

[54]

Huang S, Li Z, Kong L, Zhu N, Shan A, Li L. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene. J Am Chem Soc. 2016; 138(18): 5749-5752.

[55]

Zhong Q, Cao M, Hu H, et al. One-pot synthesis of highly stable CsPbBr3@SiO2 core–shell nanoparticles. ACS Nano. 2018; 12(8): 8579-8587.

[56]

Zhu L, Wu C, Riaz S, Dai J. Stable silica coated DDAB-CsPbX3 quantum dots and their application for white light-emitting diodes. JOL. 2021; 233: 117884.

[57]

González-Pedro V, Veldhuis SA, Begum R, et al. Recovery of shallow charge-trapping defects in CsPbX3 nanocrystals through specific binding and encapsulation with amino-functionalized silanes. ACS Energy Lett. 2018; 3(6): 1409-1414.

[58]

Tang X, Chen W, Liu Z, et al. Ultrathin, core–shell structured SiO2 coated Mn2+-doped perovskite quantum dots for bright white light-emitting diodes. Small. 2019; 15(19): 1900484.

[59]

Zhang F, Shi ZF, Ma ZZ, et al. Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices. Nanoscale. 2018; 10(43): 20131-20139.

[60]

Xu L, Chen J, Song J, et al. Double-protected all-inorganic perovskite nanocrystals by crystalline matrix and silica for triple-modal anti-counterfeiting codes. ACS Appl Mater Interfaces. 2017; 9(31): 26556-26564.

[61]

Hu Z, Liu Z, Bian Y, et al. Enhanced two-photon-pumped emission from in situ synthesized nonblinking CsPbBr3/SiO2 nanocrystals with excellent stability. Adv Opt Mater. 2018; 6(3): 1700997.

[62]

Rosales BA, Schutt K, Berry JJ, Wheeler LM. Leveraging low-energy structural thermodynamics in halide perovskites. ACS Energy Lett. 2023; 8(4): 1705-1715.

[63]

Jin RJ, Lou YH, Wang ZK. Doping strategies for promising organic–inorganic halide perovskites. Small. 2023; 19(16): 2206581.

[64]

Jana A, Meena A, Patil SA, et al. Self-assembly of perovskite nanocrystals. Prog Mater Sci. 2022; 129: 100975.

[65]

Li J, Han Z, Liu J, Zou Y, Xu X. Compositional gradient engineering and applications in halide perovskites. Chem Commun. 2023; 59(35): 5156-5173.

[66]

Otero-Martínez C, Fiuza-Maneiro N. Polavarapu L. Enhancing the intrinsic and extrinsic stability of halide perovskite nanocrystals for efficient and durable optoelectronics. ACS Appl Mater Interfaces. 2022; 14(30): 34291-34302.

[67]

Zheng X, Wu C, Jha SK, Li Z, Zhu K, Priya S. Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation. ACS Energy Lett. 2016; 1(5): 1014-1020.

[68]

Kim G, Min H, Lee KS, Lee DY, Yoon SM, Il SS. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science. 2020; 370(6512): 108-112.

[69]

Li Z, Yang M, Park JS, Wei SH, Berry JJ, Zhu K. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem Mater. 2016; 28(1): 284-292.

[70]

Huang H, Bodnarchuk MI, Kershaw SV, Kovalenko MV, Rogach AL. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett. 2017; 2(9): 2071-2083.

[71]

Charles B, Dillon J, Weber OJ, Islam MS, Weller MT. Understanding the stability of mixed A-cation lead iodide perovskites. J Mater Chem A. 2017; 5(43): 22495-22499.

[72]

Ma L, Guo D, Li M, et al. Temperature-dependent thermal decomposition pathway of organic–inorganic halide perovskite materials. Chem Mater. 2019; 31(20): 8515-8522.

[73]

Zhao J, Cai B, Luo Z, et al. Investigation of the hydrolysis of perovskite organometallic halide CH3NH3PbI3 in humidity environment. Sci Rep. 2016; 6(1): 21976.

[74]

Huang J, Tan S, Lund PD, Zhou H. Impact of H2O on organic–inorganic hybrid perovskite solar cells. Energy Environ Sci. 2017; 10(11): 2284-2311.

[75]

Leguy AMA, Hu Y, Campoy-Quiles M. et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem Mater. 2015; 27(9): 3397-3407.

[76]

Askar AM, Bernard GM, Wiltshire B, Shankar K, Michaelis VK. Multinuclear magnetic resonance tracking of hydro, thermal, and hydrothermal decomposition of CH3NH3PbI3. J Phys Chem C. 2017; 121(2): 1013-1024.

[77]

Zhao L, Kerner RA, Xiao Z, et al. Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices. ACS Energy Lett. 2016; 1(3): 595-602.

[78]

Xiong H, Rui Y, Li Y, Zhang Q, Wang H. Hydrophobic coating over a CH3NH3PbI3 absorbing layer towards air stable perovskite solar cells. J Mater Chem C. 2016; 4(28): 6848-6854.

[79]

Yu X, Wang Y, Gao P. The effect of redox reactions on the stability of perovskite solar cells. ChemPhotoChem. 2023; 7(8): e202200311.

[80]

He J, Fang WH, Long R, Prezhdo OV. Why oxygen increases carrier lifetimes but accelerates degradation of CH3NH3PbI3 under light irradiation: time-domain ab initio analysis. J Am Chem Soc. 2020; 142(34): 14664-14673.

[81]

Kerner RA, Xu Z, Larson BW, Rand BP. The role of halide oxidation in perovskite halide phase separation. Joule. 2021; 5(9): 2273-2295.

[82]

Siegler TD, Dunlap-Shohl WA. Meng Y, et al. Water-accelerated Photooxidation of CH3NH3PbI3 perovskite. J Am Chem Soc. 2022; 144(12): 5552-5561.

[83]

Lee JW, Kim SG, Yang JM, Yang Y, Park NG. Verification and mitigation of ion migration in perovskite solar cells. APL Mater. 2019; 7(4): 041111.

[84]

Roh T, Zhu H, Yang W, Liu A, Noh YY. Ion migration induced unusual charge transport in tin halide perovskites. ACS Energy Lett. 2023; 8(2): 957-962.

[85]

Mbumba MT, Malouangou DM, Tsiba JM, Bai L, Yang Y, Guli M. Degradation mechanism and addressing techniques of thermal instability in halide perovskite solar cells. Sol Energy. 2021; 230: 954-978.

[86]

Boyd CC, Cheacharoen R, Leijtens T, McGehee MD. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev. 2019; 119(5): 3418-3451.

[87]

Ning Y, Lv L, Lu Y, et al. Investigation on thermal degradation process of polymer solar cells based on blend of PBDTTT-C and PC70 BM. Int J Photoenergy. 2014; 2014: 354837.

[88]

Kumar A, Bansode U, Ogale S, Rahman A. Understanding the thermal degradation mechanism of perovskite solar cells via dielectric and noise measurements. Nanotechnology. 2020; 31(36): 365403.

[89]

Fang R, Wu S, Chen W, et al. [6, 6]-Phenyl-C61-butyric acid methyl ester/cerium oxide bilayer structure as efficient and stable electron transport layer for inverted perovskite solar cells. ACS Nano. 2018; 12(3): 2403-2414.

[90]

Tan W, Bowring AR, Meng AC, McGehee MD, McIntyre PC. Thermal stability of mixed cation metal halide perovskites in air. ACS Appl Mater Interfaces. 2018; 10(6): 5485-5491.

[91]

Jeon NJ, Noh JH, Yang WS, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature. 2015; 517(7535): 476-480.

[92]

Saliba M, Orlandi S, Matsui T, et al. A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nat Energy. 2016; 1(2): 15017.

[93]

Saliba M, Matsui T, Seo JY, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci. 2016; 9(6): 1989-1997.

[94]

Abdi-Jalebi M, Dar MI, Sadhanala A, et al. Impact of monovalent cation halide additives on the structural and optoelectronic properties of CH3NH3PbI3 perovskite. Adv Energy Mater. 2016; 6(10): 1502472.

[95]

Wu J, Li Y, Tan S, et al. Enhanced perovskite solar cell efficiency via the electric-field-induced approach. ACS Appl Mater Interfaces. 2020; 12(24): 27258-27267.

[96]

Hu J, Chen P, Luo D, et al. Tracking the evolution of materials and interfaces in perovskite solar cells under an electric field. Commun Mater. 2022; 3(1): 39.

[97]

Shi J, Li Y, Li Y, et al. Eliminating the electric field response in a perovskite heterojunction solar cell to improve operational stability. Sci Bull. 2021; 66(6): 536-544.

[98]

Nie J, Zhang Y, Li L, Zhang Y. High-performance Piezophototronic solar cells based on polarization modulation perovskite. Adv Devices Instrum. 2023; 4: 0025.

[99]

Mahapatra A, Prochowicz D, Tavakoli MM, Trivedi S, Kumar P, Yadav P. A review of aspects of additive engineering in perovskite solar cells. J Mater Chem A. 2020; 8(1): 27-54.

[100]

Deng W, Liang X, Kubiak PS, Cameron PJ. Molecular interlayers in hybrid perovskite solar cells. Adv Energy Mater. 2018; 8(1): 1701544.

[101]

Li L, Li B, Dong J, Zhang J. Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials. J Mater Chem A. 2016; 4(36): 13677-13725.

[102]

Xie Y, Hill CAS, Xiao Z, Militz H, Mai C. Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf. 2010; 41(7): 806-819.

[103]

Asenath Smith E, Chen W. How to prevent the loss of surface functionality derived from Aminosilanes. Langmuir. 2008; 24(21): 12405-12409.

[104]

Wang B, Li H, Dai Q, et al. Robust molecular dipole-enabled defect passivation and control of energy-level alignment for high-efficiency perovskite solar cells. Angew Chem Int Ed. 2021; 60(32): 17664-17670.

[105]

Dai Z, Yadavalli SK, Chen M, Abbaspourtamijani A, Qi Y, Padture NP. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science. 2021; 372(6542): 618-622.

[106]

Shi Y, Zhang H, Tong X, et al. Interfacial engineering via self-assembled thiol silane for high efficiency and stability perovskite solar cells. Sol RRL. 2021; 5(7): 2100128.

[107]

Liu C, Zhou X, Chen S, Zhao X, Dai S, Xu B. Hydrophobic Cu2O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells. Adv Sci. 2019; 6(7): 1801169.

[108]

Bai Y, Dong Q, Shao Y, et al. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat Commun. 2016; 7(1): 12806.

[109]

Zhang Y, Hsu BYW, Ren C, Li X, Wang J. Silica-based nanocapsules: synthesis, structure control and biomedical applications. Chem Soc Rev. 2015; 44(1): 315-335.

[110]

Shen J, Zhu Q. Stability strategies of perovskite quantum dots and their extended applications in extreme environment: a review. Mater Res Bull. 2022; 156: 111987.

[111]

Duan Y, Wang D-Y, Costa RD. Recent progress on synthesis, characterization, and applications of metal halide perovskites@metal oxide. Adv Funct Mater. 2021; 31(49): 2104634.

[112]

Li Z, Kong L, Huang S, Li L. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith. Angew Chem Int Ed. 2017; 129(28): 8246-8250.

[113]

Gu K, Wang Y, Shen J, Zhu J, Zhu Y, Li C. Effective singlet oxygen generation in silica-coated CsPbBr3 quantum dots through energy transfer for photocatalysis. ChemSusChem. 2020; 13(4): 682-687.

[114]

Luo B, Pu YC, Lindley SA, et al. Organolead halide perovskite nanocrystals: branched capping ligands control crystal size and stability. Angew Chem Int Ed. 2016; 55(31): 8864-8868.

[115]

Cheng J, Yuan S, Zhu L, et al. Room-temperature in situ synthesis of a highly efficient CsPbBr3/SiO2 sol entirely in ethanol solvent by constructing amine-functionalized silica micelles. Langmuir. 2020; 36(21): 6017-6024.

[116]

Zhang Q, Li Z, Liu M, et al. Bifunctional passivation strategy to achieve stable CsPbBr3 nanocrystals with drastically reduced thermal-quenching. J Phys Chem Lett. 2020; 11(3): 993-999.

[117]

Hu H, Wu L, Tan Y, et al. Interfacial synthesis of highly stable CsPbX3/oxide Janus nanoparticles. J Am Chem Soc. 2018; 140(1): 406-412.

[118]

Wang B, Zhang S, Liu B, Li J, Cao B, Liu Z. Stable CsPbBr3:Sn@SiO2 and Cs4PbBr6:Sn@SiO2 core–shell quantum dots with tunable color emission for light-emitting diodes. ACS Appl Nano Mater. 2020; 3(3): 3019-3027.

[119]

Liang X, Chen M, Wang Q, Guo S, Yang H. Ethanol-precipitable, silica-passivated perovskit. nanocrystals incorporated into polystyrene microspheres for long-term storage and reusage. Angew Chem Int Ed. 2019; 131(9): 2825-2829.

[120]

Zeng FL, Yang M, Qin JL, et al. Ultrastable luminescent organic–inorganic perovskite quantum dots via surface engineering: coordination of methylammonium bromide and covalent silica encapsulation. ACS Appl Mater Interfaces. 2018; 10(49): 42837-42843.

[121]

Ma X, Yang W, Ge X, et al. Design a novel multifunctional (CsPbBr3/Fe3O4)@MPSs@SiO2 magneto-optical microspheres for capturing circulating tumor cells. Appl Surf Sci. 2021; 551(15): 149427.

[122]

Zhang C, Zhang H, Wang R, et al. Exciton photoluminescence of CsPbBr3@SiO2 quantum dots and its application as a phosphor material in light-emitting devices. Opt Mater Express. 2020; 10(4): 1007.

[123]

Zhao H, Wei L, Zeng P, Liu M. Formation of highly uniform thinly-wrapped CsPbX3@silicone nanocrystals via self-hydrolysis: suppressed anion exchange and superior stability in polar solvents. J Mater Chem C. 2019; 7(32): 9813-9819.

[124]

Collantes C, González Pedro V, Bañuls MJ, Maquieira Á. Monodispersed CsPb2Br5@SiO2 core–shell nanoparticles as luminescent labels for biosensing. ACS Appl Nano Mater. 2021; 4(2): 2011-2018.

[125]

Tu S, Chen M, Wu L. Dual-encapsulation for highly stable all-inorganic perovskite quantum dots for long-term storage and reuse in white light-emitting diodes. Chem Eng J. 2021; 412(15): 128688.

[126]

Zhou Y, Yu Y, Zhang Y, et al. Highly photoluminescent CsPbBr3/CsPb2Br5NCs@TEOS nanocomposite in light-emitting diodes. Inorg Chem. 2021; 60(6): 3814-3822.

[127]

Li L, Zhang Z, Chen Y, et al. Sustainable and self-enhanced electrochemiluminescent ternary suprastructures derived from CsPbBr3 perovskite quantum dots. Adv Funct Mater. 2019; 29(32): 1902533.

[128]

He K, Shen C, Zhu Y, et al. Stable luminescent CsPbI3 quantum dots passivated by (3-aminopropyl)triethoxysilane. Langmuir. 2020; 36(34): 10210-10217.

[129]

Liao JF, Xu YF, Wang XD, Chen HY, Kuang DB. CsPbBr3 nanocrystal/MO2 (M = Si, Ti, Sn) composites: insight into charge-carrier dynamics and photoelectrochemical applications. ACS Appl Mater Interfaces. 2018; 10(49): 42301-42309.

[130]

Park DH, Han JS, Kim W, Jang HS. Facile synthesis of thermally stable CsPbBr3 perovskite quantum dot-inorganic SiO2 composites and their application to white light-emitting diodes with wide color gamut. Dye Pigment. 2018; 149: 246-252.

[131]

Bu IY, Ke HW, Fu YS, Guo TF. Highly stable perovskite; light CsPbBr3/silica composite prepared via novel electrospray injection process. Optik (Stuttg). 2021; 238: 166690.

[132]

Meng C, Yang D, Wu Y, Zhang X, Zeng H, Li X. Synthesis of single CsPbBr3@SiO2 core–shell particles via surface activation. J Mater Chem C. 2020; 8(48): 17403-17409.

[133]

Liu Z, Hu Z, Shi T, et al. Stable and enhanced frequency up-converted lasing from CsPbBr3 quantum dots embedded in silica sphere. Opt Express. 2019; 27(7): 9459-9466.

[134]

Gao F, Yang W, Liu X, et al. Highly stable and luminescent silica-coated perovskite quantum dots at nanoscale-particle level via nonpolar solvent synthesis. Chem Eng J. 2021; 407(1): 128001.

[135]

Hsu SC, Huang YM, Huang CP, et al. Improved Long-term reliability of a silica-encapsulated perovskite quantum-dot light-emitting device with an optically pumped remote film package. ACS Omega. 2021; 6(4): 2836-2845.

[136]

An MN, Park S, Brescia R, et al. Low-temperature molten salts synthesis: CsPbBr3 nanocrystals with high photoluminescence emission buried in mesoporous SiO2. ACS Energy Lett. 2021; 6(3): 900-907.

[137]

Son S, Jeon S, Chae D, et al. Colored emitters with silica-embedded perovskite nanocrystals for efficient daytime radiative cooling. Nano Energy. 2021; 79: 105461.

[138]

Yan D, Shi T, Zang Z, Zhao S, Du J, Leng Y. Stable and low-threshold whispering-gallery-mode lasing from modified CsPbBr3 perovskite quantum dots@SiO2 sphere. Chem Eng J. 2020; 401(1): 126066.

[139]

Gong XK, Zhang XS, Liu X, et al. Novel cryogenic dual-emission mechanism of lead-free double perovskite Cs2AgInCl6 and using SiO2 to enhance their photoluminescence and photostability. J Hazard Mater. 2021; 403(5): 123821.

[140]

Yu X, Wu L, Yang D, et al. Hydrochromic CsPbBr3 nanocrystals for anti-counterfeiting. Angew Chem Int Ed. 2020; 59(34): 14527-14532.

[141]

Malgras V, Tominaka S, Ryan JW, et al. Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica. J Am Chem Soc. 2016; 138(42): 13874-13881.

[142]

Su Y, Jing Q, Xu Y, Xing X, Lu Z. Preventing anion exchange between perovskite nanocrystals by confinement in porous SiO2 nanobeads. ACS Omega. 2019; 4(26): 22209-22213.

[143]

Anderson BD, Wu WC, Tracy JB. Silica overcoating of CdSe/CdS core/shell quantum dot nanorods with controlled morphologies. Chem Mater. 2016; 28(14): 4945-4952.

[144]

Chang KP, Wu CJ, Lo CW, Lin YS, Yen CC, Wuu DS. Synthesis of SiO2-coated CdSe/ZnS quantum dots using various dispersants in the photoresist for color-conversion micro-LED displays. Mater Sci Semicond Process. 2022; 148: 106790.

[145]

Xuan TT, Liu JQ, Li HL, et al. Microwave synthesis of high luminescent aqueous CdSe/CdS/ZnS quantum dots for crystalline silicon solar cells with enhanced photovoltaic performance. RSC Adv. 2015; 5(10): 7673-7678.

[146]

Chen X, Liu F, Jiang Q, Sun L, Wang Q. Synthesis and properties of water-soluble silica-coated ZnSe/ZnS semiconductor quantum dots. J Inorg Organomet Polym Mater. 2012; 22(1): 6-11.

[147]

Lei H, Dai P, Wang X, et al. In situ defect passivation with silica oligomer for enhanced performance and stability of perovskite solar cells. Adv Mater Interfaces. 2020; 7(3): 1901716.

[148]

Park S, An MN, Almeida G, et al. CsPbX3/SiOx (X = Cl, Br, I) monoliths prepared via a novel sol–gel route starting from Cs4PbX6 nanocrystals. Nanoscale. 2019; 11(40): 18739-18745.

[149]

Rossi C, Scarfiello R, Brescia R, et al. Exploiting the transformative features of metal halides for the synthesis of CsPbBr3@SiO2 core–shell nanocrystals. Chem Mater. 2022; 34(1): 405-413.

[150]

He Y, Yoon YJ, Harn YW, et al. Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities. Sci Adv. 2019; 5(11): eaax4424.

[151]

Li X, Wang Y, Sun H, Zeng H. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Adv Mater. 2017; 29(36): 1701185.

[152]

Yang J, Liu Z, Pi M, et al. High efficiency up-conversion random lasing from formamidinium lead bromide/amino-mediated silica spheres composites. Adv Opt Mater. 2020; 8(12): 2000290.

[153]

Wu SH, Mou CY, Lin HP. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev. 2013; 42(9): 3862-3875.

[154]

Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev. 2022; 51(13): 5365-5451.

[155]

Paul G, Bisio C, Braschi I, et al. Combined solid-state NMR, FT-IR an. computational studies on layered and porous materials. Chem Soc Rev. 2018; 47(15): 5684-5739.

[156]

Chipanina NN, Lazareva NF, Oznobikhina LP, Lazarev IM, Shainyan BA. The hydrolysis of (O-Si)-chelate [N-(acetamido)methyl]dimethylchlorosilanes. DFT and MP2 study, QTAIM and NBO analysis. Comput Theor Chem. 2015; 1070: 162-173.

[157]

Liu Y, Cai L, Xu Y, et al. In-situ passivation perovskite targeting efficient light-emitting diodes via spontaneously formed silica network. Nano Energy. 2020; 78: 105134.

[158]

Nassif N, Livage J. From diatoms to silica-based biohybrids. Chem Soc Rev. 2011; 40(2): 849-859.

[159]

Bansal P, Khan Y, Nim GK, Kar P. Surface modulation of solution processed organolead halide perovskite quantum dots to large nanocrystals integrated with silica gel G. Chem Commun. 2018; 54(28): 3508-3511.

[160]

Li Z, Kang Q, Chen L, Zhang B, Zou G, Shen D. Enhancing aqueous stability and radiative-charge-transfer efficiency of CsPbBr3 perovskite nanocrystals via conductive silica gel coating. Electrochim Acta. 2020; 330: 135332.

[161]

Lee SY, Jeon S, Ahn J, et al. Highly stretchable white-light electroluminescent devices with gel-type silica-coated all-inorganic perovskite. Appl Surf Sci. 2021; 563: 150229.

[162]

Jana A, Bathula C, Park Y, et al. Facile synthesis and optical study of organic-inorganic lead bromide perovskite-clay (kaolinite, montmorillonite, and halloysite) composites. Surf Interfaces. 2022; 29: 101785.

[163]

Abdullayev E, Lvov Y. Halloysite clay nanotubes for controlled release of protective agents. J Nanosci Nanotechnol. 2011; 11(11): 10007-10026.

[164]

Yuan L, Zhou Y, Wang Z, Mei E, Liang X, Xiang W. Eco-friendly all-inorganic CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals in pyrophyllite for bright white light-emitting diodes. Appl Clay Sci. 2021; 211: 106158.

[165]

van Wijk J, Heunis T, Harmzen E, Dicks LMT, Meuldijk J, Klumperman B. Compartmentalization of bacteria in microcapsules. Chem Commun. 2014; 50(97): 15427-15430.

[166]

Kataoka S, Banerjee S, Kawai A, et al. Layered hybrid perovskites with micropores created by alkylammonium functional silsesquioxane interlayers. J Am Chem Soc. 2015; 137(12): 4158-4163.

[167]

Lin D, Xu X, Wang J, et al. Construction of an iodine diffusion barrier using network structure silicone resin for stable perovskite solar cells. ACS Appl Mater Interfaces. 2021; 13(7): 8138-8146.

[168]

Wang H, Lin H, Piao X, et al. Organometal halide perovskite nanocrystals embedded in silicone resins with bright luminescence and ultrastability. J Mater Chem C. 2017; 5(46): 12044-12049.

[169]

Wang Y, Dong Y, Liu Q, Guo X, Zhang M, Li Y. In-situ stabilization strategy for CsPbX3-silicone resin composite with enhanced luminescence and stability. Nano Energy. 2020; 78: 105150.

[170]

Duan Y, He K, Yang L, Xu J, Zhao W, Liu Z. 24.20%-efficiency MA-free perovskite solar cells enabled by siloxane derivative Interface engineering. Small. 2022; 18(48): 2204733.

[171]

Wang X, Xu Z, Zhuo S, et al. Strain modulation for high brightness blue luminescence of Pr3+-doped perovskite nanocrystals via siloxane passivation. ACS Appl Electron Mater. 2021; 3(9): 3815-3823.

[172]

Matsushima T, Nasu R, Takekuma K, et al. Efficient perovskite light-emitting diodes with a siloxane-blended organic hole transport layer. Adv Photonics Res. 2022; 3(10): 2200003.

[173]

Li F, Gong C, Fan B, et al. 3D network-assisted crystallization for fully printed perovskite solar cells with superior irradiation stability. Adv Funct Mater. 2022; 32(39): 2206412.

[174]

Kim W, Park JB, Kim H, et al. Enhanced long-term stability of perovskite solar cells by passivating grain boundary with polydimethylsiloxane (PDMS). J Mater Chem A. 2019; 7(36): 20832-20839.

[175]

Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature. 2021; 592(7854): 381-385.

[176]

Choi EY, Kim JH, Kim BJ, Jang JH, Kim J, Park N. Development of moisture-proof polydimethylsiloxane/aluminum oxide film and stability improvement of perovskite solar cells using the film. RSC Adv. 2019; 9(21): 11737-11744.

[177]

Shi B, J, Liu Y, Xiao Y, C. Ultra-stable water-dispersive perovskite QDs encapsulated by triple siloxane coupling agent system with different hydrophilic/hydrophobic properties. Mater Chem Front. 2021; 5(11): 4343-4354.

[178]

Yoon HC, Do YR. Stable and efficient green perovskite nanocrystal–polysilazane films for white LEDs using an electrospray deposition process. ACS Appl Mater Interfaces. 2019; 11(25): 22510-22520.

[179]

Zou G, Li Z, Chen Z, Chu L, Yip H, Cao Y. Color-stable deep-blue perovskite light-emitting diodes based on organotrichlorosilane post-treatment. Adv Funct Mater. 2021; 31(46): 2103219.

[180]

Zhao S, Qin M, Xiang Y, et al. Bifunctional effects of trichloro(octyl)silane modification on the performance and stability of a perovskite solar cell via microscopic characterization techniques. ACS Appl Energy Mater. 2020; 3(4): 3302-3309.

[181]

Hu Y, Kareem S, Dong H, et al. CsPbBr3 @SiO2 core–shell nanoparticle films for superhydrophobic coatings. ACS Appl Nano Mater. 2021; 4(6): 6306-6315.

[182]

Hu Y, Fan L, Hui H, Wen H, Yang D, Feng G. Monodisperse bismuth-halide double perovskite nanocrystals confined in mesoporous silica templates. Inorg Chem. 2019; 58(13): 8500-8505.

[183]

Yuan S, Chen D, Li X, Zhong J, Xu X. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing. ACS Appl Mater Interfaces. 2018; 10(22): 18918-18926.

[184]

Zhenfu Z, Zhihai W, Jiong C, Liang J, Yafei H. Nanocomposites of perovskite quantum dots embedded in magnesium silicate hollow spheres for multicolor display. J Phys Chem C. 2018; 122(29): 16887-16893.

[185]

Pan A, Li Y, Wu Y, et al. Stable luminous nanocomposites of CsPbX3 perovskite nanocrystals anchored on silica for multicolor anti-counterfeit ink and white-LEDs. Mater Chem Front. 2019; 3(3): 414-419.

[186]

Li Z, Guo J, Li Z, et al. Incorporating self-assembled silane-crosslinked carbon dots into perovskite solar cells to improve efficiency and stability. J Mater Chem A. 2020; 8(11): 5629-5637.

[187]

Wang Q, Dong Q, Li T, Gruverman A, Huang J. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv Mater. 2016; 28(31): 6734-6739.

[188]

Kim J, Khang DY, Kim JH, Lee HH. The surface engineering of top electrode in inverted polymer bulk-heterojunction solar cells. Appl Phys Lett. 2008; 92(13): 133307.

[189]

Wang J, Xiang X, Yao X, Xiao WJ, Lin J, Li WS. Efficient perovskite solar cells using trichlorosilanes as perovskite/PCBM interface modifiers. Org Electron. 2016; 39: 1-9.

[190]

Yang G, Wang C, Lei H, et al. Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement. J Mater Chem A. 2017; 5(4): 1658-1666.

[191]

Zhang J, Hu Z, Huang L, et al. Bifunctional alkyl chain barriers for efficient perovskite solar cells. Chem Commun. 2015; 51(32): 7047-7050.

[192]

Liu L, Mei A, Liu T, et al. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J Am Chem Soc. 2015; 137(5): 1790-1793.

[193]

Zhang CC, Yuan S, Lou YH, et al. Perovskite films with reduced interfacial strains via a molecular-level flexible interlayer for photovoltaic application. Adv Mater. 2020; 32(38): 2001479.

[194]

Wang W, Yang Z, Ding J, Kong J, Li X. Improving water-resistance of inverted flexible perovskite solar cells via tailoring the top electron-selective layers. Sol Energy Mater Sol Cells. 2022; 238: 111609.

[195]

Zheng R, Zhao S, Zhang H, et al. Defect passivation grain boundaries using 3-aminopropyltrimethoxysilane for highly efficient and stable perovskite solar cells. Sol Energy. 2021; 224: 472-479.

[196]

Xia J, Sohail M, Nazeeruddin MK. Efficient and stable perovskite solar cells by tailoring of interfaces. Adv Mater. 2023; 35(31): 2211324.

[197]

Kanda H, Usiobo OJ, Momblona C, et al. Light stability enhancement of perovskite solar cells using 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane passivation. Sol RRL. 2021; 5(3): 2000650.

[198]

Dkhili M, Lucarelli G, De Rossi F, et al. Attributes of high-performance electron transport layers for perovskite solar cells on flexible PET versus on glass. ACS Appl Energy Mater. 2022; 5(4): 4096-4107.

[199]

Liu M, Li M, Li Y, et al. Defect-passivating and stable benzothiophene-based self-assembled monolayer for high-performance inverted perovskite solar cells. Adv Energy Mater. 2024; 2303742(12): 2303742.

[200]

Roose B, Wang Q, Abate A. The role of charge selective contacts in perovskite solar cell stability. Adv Energy Mater. 2019; 9(5): 1803140.

[201]

Prince KJ, Nardone M, Dunfield SP, et al. Complementary interface formation toward high-efficiency all-back-contact perovskite solar cells. Cell Reports Phys Sci. 2021; 2(3): 100363.

[202]

Zhang J, Sun Y, Yu H. Reducing energy loss via adjusting the anode work function and perovskite layer morphology for the efficient and stable hole transporting layer-free perovskite solar cells. Chem Eng J. 2022; 431(P1):133948.

[203]

Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics. 2018; 12(11): 681-687.

[204]

Lin K, Xing J, Quan LN, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature. 2018; 562(7726): 245-248.

[205]

Quan LN, García de Arquer FP, Sabatini RP, Sargent EH. Perovskites for light emission. Adv Mater. 2018; 30(45): 1801996.

[206]

Kirakosyan A, Jeon MG, Li L, Choi J. Suppressed phase and structural evolution of CH3NH3PbBr3 microwires to (CH3)2NH2PbBr3 by addition of hydrazine bromide. Appl Surf Sci. 2021; 566: 150691.

[207]

Kirakosyan A, Chinh ND, Sihn MR, et al. Mechanistic insight into surface defect control in perovskite nanocrystals: ligands terminate the valence transition from Pb2+ to metallic Pb0. J Phys Chem Lett. 2019; 10(15): 4222-4228.

[208]

Qiu L, Yang H, Dai Z, et al. Highly efficient and stable CsPbBr3 perovskite quantum dots by encapsulation in dual-shell hollow silica spheres for WLEDs. Inorg Chem Front. 2020; 7(10): 2060-2071.

[209]

Wang HC, Lin SY, Tang AC, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew Chem Int Ed. 2016; 55(28): 7924-7929.

[210]

Zhang Q, Zheng W, Wan Q, et al. Confined synthesis of stable and uniform CsPbBr3 nanocrystals with high quantum yield up to 90% by high temperature solid-state reaction. Adv Opt Mater. 2021; 9(11): 2002130.

[211]

Pan A, Wu Y, Yan K, et al. Stable luminous nanocomposites of confined Mn2+-doped lead halide perovskite nanocrystals in mesoporous silica nanospheres as orange fluorophores. Inorg Chem. 2019; 58(6): 3950-3958.

[212]

Huang Y, Li F, Qiu L, et al. Enhancing the stability of CH3NH3PbBr3 nanoparticles using double hydrophobic shells of SiO2 and poly(vinylidene fluoride). ACS Appl Mater Interfaces. 2019; 11(29): 26384-26391.

[213]

Li X, Cai W, Guan H, et al. Highly stable CsPbBr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication. Chem Eng J. 2021; 419: 129551.

[214]

He M, Cheng Y, Shen L, et al. Mn-doped CsPbCl3 perovskite quantum dots (PQDs) incorporated into silica/alumina particles used for WLEDs. Appl Surf Sci. 2018; 448: 400-406.

[215]

Liu H, Tan Y, Cao M, et al. Fabricating CsPbX3-based type I and type II heterostructures by tuning the halide composition of Janus CsPbX3/ZrO2 nanocrystals. ACS Nano. 2019; 13(5): 5366-5374.

[216]

Loiudice A, Saris S, Oveisi E, Alexander DTL, Buonsanti R. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew Chem Int Ed. 2017; 56(36): 10696-10701.

[217]

Paul S, Samanta A. N-Bromosuccinimide as bromide precursor for direct synthesis of stable and highly luminescent green-emitting perovskite nanocrystals. ACS Energy Lett. 2020; 5(1): 64-69.

[218]

Bao Z, Chiu HD, Wang W, et al. Highly luminescent CsPbBr3@Cs4PbBr6 nanocrystals and their application in electroluminescent emitters. J Phys Chem Lett. 2020; 11(23): 10196-10202.

[219]

Shi J, Ge W, Zhu J, Saruyama M, Teranishi T. Core–shell CsPbBr3@CdS quantum dots with enhanced stability and photoluminescence quantum yields for optoelectronic devices. ACS Appl Nano Mater. 2020; 3(8): 7563-7571.

[220]

Chen W, Hao J, Hu W, et al. Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure. Small. 2017; 13(21): 1604085.

[221]

Li M, Zhang X, Yang P. Controlling the growth of a SiO2 coating on hydrophobic CsPbBr3 nanocrystals towards aqueous transfer and high luminescence. Nanoscale. 2021; 13(6): 3860-3867.

[222]

Dutta A, Behera RK, Pal P, Baitalik S, Pradhan N. Near-unity photoluminescence quantum efficiency for all CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals: a generic synthesis approach. Angew Chem Int Ed. 2019; 58(17): 5552-5556.

[223]

Grisorio R, Fasulo F, Muñoz-García AB, et al. In situ formation of zwitterionic ligands: changing the passivation paradigms of CsPbBr3 nanocrystals. Nano Lett. 2022; 22(11): 4437-4444.

[224]

Su M, Fan B, Li H, Wang K, Luo Z. Hydroxyl terminated mesoporous silica-assisted dispersion of ligand-free CsPbBr3/Cs4PbBr6 nanocrystals in polymer for stable white LED. Nanoscale. 2019; 11(3): 1335-1342.

[225]

Lal M, Levy L, Kim KS, et al. Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence. Chem Mater. 2000; 12(9): 2632-2639.

[226]

Philipse AP, Van Bruggen MPB, Pathmamanoharan C. Magnetic silica dispersions: preparation and stability of surface-modified silica particles with a magnetic core. Langmuir. 1994; 10(1): 92-99.

[227]

Liu Y, Zhang L, Long X, Jiang P, Geng C, Xu S. Ultra-stable CsPbBr3 nanocrystals with lead-carboxylate/SiO2 encapsulation for LED applications. J Mater Chem C. 2021; 9(37): 12581-12589.

[228]

Jeon MG, Kabir RM, Kim S, et al. Highly processable and stable PMMA-grafted CsPbBr3–SiO2 nanoparticles for down-conversion photoluminescence. Compos Part B Eng. 2022; 239: 109956.

[229]

Liu Z, Sinatra L, Lutfullin M, et al. One hundred-nanometer-sized CsPbBr3/m-SiO2 composites prepared via molten-salts synthesis are optimal green phosphors for LCD display devices. Adv Energy Mater. 2022; 12(38): 2201948.

[230]

Yang W, Fei L, Gao F, et al. Thermal polymerization synthesis of CsPbBr3 perovskite-quantum-dots@copolymer composite: towards long-term stability and optical phosphor application. Chem Eng J. 2020; 387: 124180.

[231]

Yang W, Gao F, Qiu Y, et al. CsPbBr3-quantum-dots/polystyrene@silica hybrid microsphere structures with significantly improved stability for white LEDs. Adv Opt Mater. 2019; 7(13): 1900546.

[232]

Erol E, Kıbrıslı O, Çelikbilek Ersundu M, Ersundu AE. Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites. Chem Eng J. 2020; 401: 126053.

[233]

Zhao C, Li Y, Ye W, et al. Ligand-free CsPbBr3 perovskite quantum dots in silica-aerogel composites with enhanced stability for w-LED and display by substituting Pb2+ with Pr3+ or Gd3+ ions. Adv Opt Mater. 2022; 10(10): 2102200.

[234]

Fan M, Huang J, Turyanska L, et al. Efficient all-perovskite white light-emitting diodes made of in situ grown perovskite-mesoporous silica nanocomposites. Adv Funct Mater. 2023; 33: 2215032.

[235]

Zang J, Cai L, Zou Y, et al. Self-healing perovskite films enabled by fluorinated cross-linked network targeting flexible light-emitting diode. Adv Opt Mater. 2022; 10(16): 2200566.

[236]

Li Q, Shen D, Luo C, et al. Ultra-thermostability of spatially confined and fully protected perovskite nanocrystals by in situ crystallization. Small. 2022; 18(15): 2107452.

[237]

Hou J, Cao S, Wu Y, et al. Inorganic colloidal perovskite quantum dots for robust solar CO2 reduction. Chem A Eur J. 2017; 23(40): 9481-9485.

[238]

Qian X, Chen Z, Yang X, et al. Perovskite cesium lead bromide quantum dots: a new efficient photocatalyst for degrading antibiotic residues in organic system. J Clean Prod. 2020; 249: 119335.

[239]

Wang Y, Huang H, Zhang Z, et al. Lead-free perovskite Cs2AgBiBr6@g-C3N4 Z-scheme system for improving CH4 production in photocatalytic CO2 reduction. Appl Catal Environ. 2021; 282: 119570.

[240]

Jiang Y, Liao JF, Chen HY, et al. All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction. Chem. 2020; 6(3): 766-780.

[241]

Wan S, Ou M, Zhong Q, Wang X. Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction. Chem Eng J. 2019; 358: 1287-1295.

[242]

Huo B, Yang J, Bian Y, et al. Amino-mediated anchoring of FAPbBr3 perovskite quantum dots on silica spheres for efficient visible light photocatalytic NO removal. Chem Eng J. 2021; 406: 126740.

[243]

Carulli F, He M, Cova F, Erroi A, Li L, Brovelli S. Silica-encapsulated perovskite nanocrystals for X-ray-activated singlet oxygen production and radiotherapy application. ACS Energy Lett. 2023; 8(4): 1795-1802.

[244]

Kar MR, Kumar S, Acharya TK, Goswami C, Bhaumik S. Highly water-stable, luminescent, and monodisperse polymer-coated CsPbBr3 nanocrystals for imaging in living cells with better sensitivity. RSC Adv. 2023; 13(9): 5946-5956.

[245]

Zhong CY, Xiao L, Zhou J, et al. Two-photon photoluminescence and bio-imaging application of monodispersed perovskite-in-silica nanocrystals with high biocompatibility. Chem Eng J. 2022; 431(P3):134110.

[246]

Chan KK, Giovanni D, He H, Sum TC, Yong KT. Water-stable all-inorganic perovskite nanocrystals with nonlinear optical properties for targeted multiphoton bioimaging. ACS Appl Nano Mater. 2021; 4(9): 9022-9033.

[247]

Song W, Wang D, Tian J, et al. Encapsulation of dual-passivated perovskite quantum dots for bio-imaging. Small. 2022; 18(42): 2204763.

[248]

Hao D, Zou J, Huang J. Recent developments in flexible photodetectors based on metal halide perovskite. InfoMat. 2020; 2(1): 139-169.

[249]

Sutherland BR, Johnston AK, Ip AH, et al. Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering. ACS Photonics. 2015; 2(8): 1117-1123.

[250]

Li G, Wang Y, Huang L, Sun W. Research progress of high-sensitivity perovskite photodetectors: a review of photodetectors: noise, structure, and materials. ACS Appl Electron Mater. 2022; 4(4): 1485-1505.

[251]

Ai B, Fan Z, Wong ZJ. Plasmonic–perovskite solar cells, light emitters, and sensors. Microsyst Nanoeng. 2022; 8(1): 5.

[252]

Wang Q, Zhang G, Zhang H, Duan Y, Yin Z, Huang Y. High-resolution, flexible, and full-colo. perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Adv Funct Mater. 2021; 31(28): 2100857.

[253]

Mandal A, Ghosh A, Ghosh D, Bhattacharyya S. Photodetectors with high responsivity by thickness tunable mixed halide perovskite nanosheets. ACS Appl Mater Interfaces. 2021; 13(36): 43104-43114.

[254]

Wang T, Fang T, Li X, Xu L, Song J. Controllable transient photocurrent in photodetectors based on perovskite nanocrystals via doping and interfacial engineering. J Phys Chem C. 2021; 125(10): 5475-5484.

[255]

Lu X, Li J, Zhang Y, et al. Recent progress on perovskite photodetectors for narrowband detection. Adv Photonics Res. 2022; 3(5): 2100335.

[256]

Wei W, Zhang Y, Xu Q, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive x-ray imaging. Nat Photonics. 2017; 11(5): 315-321.

[257]

Geng X, Wang F, Tian H, et al. Ultrafast photodetector by integrating perovskite directly on silicon wafer. ACS Nano. 2020; 14(3): 2860-2868.

[258]

Ye H, Jing H, Shih WY, Shih WH. Stabilization of methylammonium lead iodide via SiO2 coating for photodetectors. J Mater Res. 2023; 38(7): 1941-1951.

[259]

Moseley ODI, Roose B, Zelewski SJ, Kahmann S, Dey K, Stranks SD. Tunable multiband halide perovskite tandem photodetectors with switchable response. ACS Photonics. 2022; 9(12): 3958-3966.

[260]

Martínez-Goyeneche L, Gil-Escrig L. Susic I, Tordera D, Bolink HJ, Sessolo M. Narrowband monolithic perovskite–perovskite tandem photodetectors. Adv Opt Mater. 2022; 10(22): 2201047.

[261]

John RA, Shah N, Vishwanath SK, et al. Halide perovskite memristors as flexible and reconfigurable physical unclonable functions. Nat Commun. 2021; 12(1): 3681.

[262]

Xiao X, Hu J, Tang S, et al. Recent advances in halide perovskite memristors: materials, structures, mechanisms, and applications. Adv Mater Technol. 2020; 5(6): 1900914.

[263]

Nguyen DA, Jo Y, Tran TU, Jeong MS, Kim H, Im H. Electrically and optically controllable p-n junction memtransistor based on an Al2O3 encapsulated 2D Te/ReS2 van der Waals heterostructure. Small Methods. 2021; 5(12): e2101303.

[264]

Nguyen DA, Cho S, Park S, et al. Tunable negative photoconductivity in encapsulated ambipolar tellurene for functional optoelectronic device applications. Nano Energy. 2023; 113: 108552.

[265]

Bach TPA, Cho S, Kim H, Nguyen DA, Im H. 2D van der Waals heterostructure with tellurene floating-gate for wide range and multi-bit optoelectronic memory. ACS Nano. 2024; 18(5): 4131-4139.

[266]

Nguyen DA, Park DY, Duong NT, et al. Large-area MoS2 via colloidal nanosheet ink for integrated memtransistor. Small Methods. 2021; 5(11): 2100558.

[267]

Yin L, Huang W, Xiao R, et al. Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite. Nano Lett. 2020; 20(5): 3378-3387.

[268]

Liu M, Cao Z, Wang X, et al. Perovskite material-based memristors for applications in information processing and artificial intelligence. J Mater Chem C. 2023; 11(39): 13167-13188.

[269]

Kumari S, Dhar BB, Panda C, Meena A, Sen GS. Fe-TAML encapsulated inside mesoporous silica nanoparticles as peroxidase mimic: femtomolar protein detection. ACS Appl Mater Interfaces. 2014; 6(16): 13866-13873.

RIGHTS & PERMISSIONS

2024 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/