Fast interfacial electrocatalytic desolvation enabling low-temperature and long-cycle-life aqueous Zn batteries

Jian Wang , Hongfei Hu , Lujie Jia , Jing Zhang , Quan Zhuang , Linge Li , Yongzheng Zhang , Dong Wang , Qinghua Guan , Huimin Hu , Meinan Liu , Liang Zhan , Henry Adenusi , Stefano Passerini , Hongzhen Lin

InfoMat ›› 2024, Vol. 6 ›› Issue (7) : e12558

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (7) : e12558 DOI: 10.1002/inf2.12558
RESEARCH ARTICLE

Fast interfacial electrocatalytic desolvation enabling low-temperature and long-cycle-life aqueous Zn batteries

Author information +
History +
PDF

Abstract

Low-temperature zinc batteries (LT-ZIBs) based on aqueous electrolytes show great promise for practical applications owing to their natural resource abundance and low cost. However, they suffer from sluggish kinetics with elevated energy barriers due to the dissociation of bulky Zn(H2O)62+ solvation structure and free Zn2+ diffusion, resulting in unsatisfactory lifespan and performance. Herein, dissimilar to solvation shell tuning or layer spacing enlargement engineering, delocalized electrons in cathode through constructing intrinsic defect engineering is proposed to achieve a rapid electrocatalytic desolvation to obtain free Zn2+ for insertion/extraction. As revealed by density functional theory calculations and interfacial spectroscopic characterizations, the intrinsic delocalized electron distribution propels the Zn(H2O)62+ dissociation, forming a reversible interphase and facilitating Zn2+ diffusion across the electrolyte/cathode interface. The as-fabricated oxygen defect-rich V2O5 on hierarchical porous carbon (ODVO@HPC) electrode exhibits high capacity robustness from 25 to –20°C. Operating at –20°C, the ODVO@HPC delivers 191 mAh g–1 at 50 A g–1 and lasts for 50 000 cycles at 10 A g–1, significantly enhancing the power density and lifespan under low-temperature environments in comparison to previous reports. Even with areal mass loading of ∼13 mg cm–2, both coin cells and pouch batteries maintain excellent stability and areal capacities, realizing practical high-performance LT-ZIBs.

Keywords

defect catalysis / delocalized electron engineering / diffusion kinetics modulation / lowtemperature Zn batteries / V 2O 5 cathode

Cite this article

Download citation ▾
Jian Wang, Hongfei Hu, Lujie Jia, Jing Zhang, Quan Zhuang, Linge Li, Yongzheng Zhang, Dong Wang, Qinghua Guan, Huimin Hu, Meinan Liu, Liang Zhan, Henry Adenusi, Stefano Passerini, Hongzhen Lin. Fast interfacial electrocatalytic desolvation enabling low-temperature and long-cycle-life aqueous Zn batteries. InfoMat, 2024, 6(7): e12558 DOI:10.1002/inf2.12558

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang J, He R, Jia L, et al. Strategies for realizing rechargeable high volumetric energy density conversion-based aluminum–sulfur batteries. Adv Funct Mater. 2023; 33(48): 2305674.

[2]

Song M, Tan H, Chao D, Fan HJ. Recent advances in Zn-ion batteries. Adv Funct Mater. 2018; 28(41): 1802564.

[3]

Ming J, Guo J, Xia C, Wang W, Alshareef HN. Zinc-ion batteries: materials, mechanisms, and applications. Mater Sci Eng R Rep. 2019; 135: 58-84.

[4]

Li C, Jin S, Archer LA, Nazar LF. Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule. 2022; 6(8): 1733-1738.

[5]

Lei S, Liu Z, Liu C, et al. Opportunities for biocompatible and safe zinc-based batteries. Energy Environ Sci. 2022; 15(12): 4911-4927.

[6]

Nam KW, Kim H, Choi JH, Choi JW. Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ Sci. 2019; 12(6): 1999-2009.

[7]

Tan Y, Li S, Zhao X, et al. Unexpected role of the interlayer “dead Zn2+” in strengthening the nanostructures of VS2 cathodes for high-performance aqueous Zn-ion storage. Adv Energy Mater. 2022; 12(19): 2104001.

[8]

Hurlbutt K, Wheeler S, Capone I, Pasta M. Prussian blue analogs as battery materials. Joule. 2018; 2(10): 1950-1960.

[9]

Geng H, Cheng M, Wang B, Yang Y, Zhang Y, Li CC. Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Adv Funct Mater. 2019; 30(6): 1907684.

[10]

Zhao Y, Chen Z, Mo F, et al. Aqueous rechargeable metal-ion batteries working at subzero temperatures. Adv Sci (Weinh). 2020; 8(1): 2002590.

[11]

Su G, Chen S, Dong H, et al. Tuning the electronic structure of layered vanadium pentoxide by pre-intercalation of potassium ions for superior room/low-temperature aqueous zinc-ion batteries. Nanoscale. 2021; 13(4): 2399-2407.

[12]

Lin C, Qi F, Dong H, et al. Suppressing vanadium dissolution of V2O5 via in situ polyethylene glycol intercalation towards ultralong lifetime room/low-temperature zinc-ion batteries. Nanoscale. 2021; 13(40): 17040-17048.

[13]

Liu Z, Luo X, Qin L, Fang G, Liang S. Progress and prospect of low-temperature zinc metal batteries. Adv Powder Mater. 2022; 1(2): 100011.

[14]

Gao S, Li B, Tan H, et al. High-energy and stable subfreezing aqueous Zn-MnO2 batteries with selective and pseudocapacitive Zn-ion insertion in MnO2. Adv Mater. 2022; 34(21): e2201510.

[15]

Kim W-Y, Kim H-I, Lee KM, et al. Demixing the miscible liquids: toward biphasic battery electrolytes based on the kosmotropic effect. Energy Environ Sci. 2022; 15(12): 5217-5228.

[16]

Jia L, Hu H, Cheng X, et al. Toward low-temperature zinc-ion batteries: strategy, progress, and prospect in vanadium-based cathodes. Adv Energy Mater. 2023; 14(8): 2304010.

[17]

Chang N, Li T, Li R, et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ Sci. 2020; 13(10): 3527-3535.

[18]

Liu DS, Zhang Y, Liu S, et al. Regulating the electrolyte solvation structure enables ultralong lifespan vanadium-based cathodes with excellent low-temperature performance. Adv Funct Mater. 2022; 32(24): 2111714.

[19]

Li TC, Lim Y, Li XL, et al. A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage. Adv Energy Mater. 2022; 12(15): 2103231.

[20]

Lukatskaya MR, Feldblyum JI, Mackanic DG, et al. Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy Environ Sci. 2018; 11(10): 2876-2883.

[21]

Tang X, Wang P, Bai M, et al. Unveiling the reversibility and stability origin of the aqueous V2O5-Zn batteries with a ZnCl2 “water-in-salt” electrolyte. Adv Sci (Weinh). 2021; 8(23): e2102053.

[22]

Yang Y, Tang Y, Fang G, et al. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ Sci. 2018; 11(11): 3157-3162.

[23]

Liu C, Neale Z, Zheng J, et al. Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ Sci. 2019; 12(7): 2273-2285.

[24]

Liu S, Zhu H, Zhang B, et al. Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv Mater. 2020; 32(26): e2001113.

[25]

Fan C-Y, Zheng Y-P, Zhang X-H. et al. High-performance and low-temperature lithium-sulfur batteries: synergism of thermodynamic and kinetic regulation. Adv Energy Mater. 2018; 8(18): 1703638.

[26]

Zheng X, Gu Z, Fu J, et al. Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries. Energy Environ Sci. 2021; 14(9): 4936-4947.

[27]

Chang Z, Yang H, Qiao Y, Zhu X, He P, Zhou H. Tailoring the solvation sheath of cations by constructing electrode front-faces for rechargeable batteries. Adv Mater. 2022; 34(34): e2201339.

[28]

Zhang Q, Ma Y, Lu Y, et al. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat Commun. 2020; 11(1): 4463.

[29]

Zhao M, Lv Y, Zhao S, et al. Simultaneously stabilizing both electrodes and electrolytes by a self-separating organometallics interface for high-performance zinc-ion batteries at wide temperatures. Adv Mater. 2022; 34(49): e2206239.

[30]

Blanc LE, Kundu D, Nazar LF. Scientific challenges for the implementation of Zn-ion batteries. Joule. 2020; 4(4): 771-799.

[31]

Cui F, Wang D, Hu F, et al. Deficiency and surface engineering boosting electronic and ionic kinetics in NH4V4O10 for high-performance aqueous zinc-ion battery. Energy Storage Mater. 2022; 44: 197-205.

[32]

Kundu D, Hosseini Vajargah S, Wan L, Adams B, Prendergast D, Nazar LF. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ Sci. 2018; 11(4): 881-892.

[33]

Zhao M, Rong J, Huo F, et al. Semi-immobilized ionic liquid regulator with fast kinetics toward highly stable zinc anode under –35 to 60 degrees C. Adv Mater. 2022; 34(32): e2203153.

[34]

Xi Y, Ye X, Duan S, et al. Iron vacancies and surface modulation of iron disulfide nanoflowers as a high power/energy density cathode for ultralong-life stable Li storage. J Mater Chem A. 2020; 8(29): 14769-14777.

[35]

Guo C, Yi S, Si R, et al. Advances on defect engineering of vanadium-based compounds for high-energy aqueous zinc–ion batteries. Adv Energy Mater. 2022; 12(40): 2202039.

[36]

Zhang J, You C, Lin H, Wang J. Electrochemical kinetics modulators in lithium sulfur batteries: from defect-rich catalysts to single atomic catalysts. Energy Environ Mater. 2021; 5(3): 731-750.

[37]

Liu F, Yu Q, Xue J, et al. Bimetallic alloys b-AsxP1–x at high concentration differences: ideal for photonic devices. J Phys Chem Lett. 2022; 13(40): 9501-9509.

[38]

Zhang Y, Cao Z, Liu S, et al. Charge-enriched strategy based on MXene-based polypyrrole layers toward dendrite-free zinc metal anodes. Adv Energy Mater. 2022; 12(13): 2103979.

[39]

He T, Weng S, Ye Y, et al. Cation-deficient Zn0.3(NH4)0.3V4O10•0.91H2O for rechargeable aqueous zinc battery with superior low-temperature performance. Energy Storage Mater. 2021; 38: 389-396.

[40]

Xiong T, Yu ZG, Wu H, et al. Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv Energy Mater. 2019; 9(14): 1803815.

[41]

Liao M, Wang J, Ye L, et al. A deep-cycle aqueous zinc-ion battery containing an oxygen-deficient vanadium oxide cathode. Angew Chem Int Ed Engl. 2020; 59(6): 2273-2278.

[42]

Zhang Y, Tao L, Xie C, et al. Defect engineering on electrode materials for rechargeable batteries. Adv Mater. 2020; 32(7): e1905923.

[43]

Kondo Y, Abe T, Yamada Y. Kinetics of interfacial ion transfer in lithium-ion batteries: mechanism understanding and improvement strategies. ACS Appl Mater Interfaces. 2022; 14(20): 22706-22718.

[44]

Wang J, Jia L, Zhong J, et al. Single-atom catalyst boosts electrochemical conversion reactions in batteries. Energy Storage Mater. 2019; 18: 246-252.

[45]

Wang J, Jia L, Liu H, et al. Multi-ion modulated single-step synthesis of a nanocarbon embedded with a defect-rich nanoparticle catalyst for a high loading sulfur cathode. ACS Appl Mater Interfaces. 2020; 12(11): 12727-12735.

[46]

Cheng S, Wang J, Duan S, et al. Anionic oxygen vacancies in Nb2O5–x carbon hybrid host endow rapid catalytic behaviors for high-performance high areal loading lithium sulfur pouch cell. Chem Eng J. 2021; 417: 128172.

[47]

Wang J, Zhang J, Cheng S, et al. Long-life dendrite-free lithium metal electrode achieved by constructing a single metal atom anchored in a diffusion modulator layer. Nano Lett. 2021; 21(7): 3245-3253.

[48]

Zhang J, He R, Zhuang Q, et al. Tuning 4f-center electron structure by Schottky defects for catalyzing Li diffusion to achieve long-term dendrite-free lithium metal battery. Adv Sci (Weinh). 2022; 9(23): e2202244.

[49]

Ma Q, Gao R, Liu Y, et al. Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv Mater. 2022; 34(49): e2207344.

[50]

Wang J, Zhang J, Wu J, et al. Interfacial “single-atom-in-defects” catalysts accelerating Li+ desolvation kinetics for long-lifespan lithium-metal batteries. Adv Mater. 2023; 35(39): e2302828.

[51]

Li L, Tu H, Wang J, et al. Electrocatalytic MOF-carbon bridged network accelerates Li+-solvents desolvation for high Li+ diffusion toward rapid sulfur redox kinetics. Adv Funct Mater. 2023; 33(13): 2212499.

[52]

Zhang X, Li XY, Zhang YZ, et al. Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grafted-CoP porous nanosheets. Adv Funct Mater. 2023; 33(36): 2302624.

[53]

Shin J, Choi DS, Lee HJ, Jung Y, Choi JW. Hydrated intercalation for high-performance aqueous zinc ion batteries. Adv Energy Mater. 2019; 9(14): 1900083.

[54]

Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for electrochemical energy storage. Nat Mater. 2015; 14(3): 271-279.

[55]

Du M, Miao Z, Li H, et al. Oxygen-vacancy and phosphate coordination triggered strain engineering of vanadium oxide for high-performance aqueous zinc ion storage. Nano Energy. 2021; 89: 106477.

[56]

Peng X, Zhang X, Wang L, et al. Hydrogenated V2O5 nanosheets for superior lithium storage properties. Adv Funct Mater. 2016; 26(5): 784-791.

[57]

Liang X, Yan L, Li W, et al. Flexible high-energy and stable rechargeable vanadium-zinc battery based on oxygen defect modulated V2O5 cathode. Nano Energy. 2021; 87: 106164.

[58]

Qi Z, Xiong T, Chen T, et al. Harnessing oxygen vacancy in V2O5 as high performing aqueous zinc-ion battery cathode. J Alloys Comp. 2021; 870: 159403.

[59]

Li X, Guan Q, Zhuang Z, et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S battery. ACS Nano. 2023; 17(2): 1653-1662.

[60]

He W, Lin Z, Zhao K, et al. Interspace and vacancy modulation: promoting the zinc storage of an alcohol-based organic–inorganic cathode in a water-organic electrolyte. Adv Mater. 2022; 34(47): e2203920.

[61]

Liu F, Chen Z, Fang G, et al. V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nanomicro Lett. 2019; 11(1): 25.

[62]

Zhang Y, Wan F, Huang S, Wang S, Niu Z, Chen J. A chemically self-charging aqueous zinc-ion battery. Nat Commun. 2020; 11(1): 2199.

[63]

Ding S, Zhang M, Qin R, et al. Oxygen-deficient beta-MnO2@graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nanomicro Lett. 2021; 13(1): 173.

[64]

Luo H, Wang B, Wu F, et al. Synergistic nanostructure and heterointerface design propelled ultra-efficient in-situ self-transformation of zinc-ion battery cathodes with favorable kinetics. Nano Energy. 2021; 81: 105601.

[65]

Zhou J, Dong A, Du L, et al. Mn-doped ZnO microspheres as cathode materials for aqueous zinc ion batteries with ultrastability up to 10000 cycles at a large current density. Chem Eng J. 2021; 421: 127770.

[66]

Chen H, Huang J, Tian S, et al. Interlayer modification of pseudocapacitive vanadium oxide and Zn(H2O)n2+ migration regulation for ultrahigh rate and durable aqueous zinc-ion batteries. Adv Sci (Weinh). 2021; 8(14): e2004924.

[67]

Liu Y, Dai Z, Zhang W, et al. Sulfonic-group-grafted Ti3C2Tx MXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano. 2021; 15(5): 9065-9075.

[68]

Guan X, Sun Q, Sun C, et al. Tremella-like hydrated vanadium oxide cathode with an architectural design strategy toward ultralong lifespan aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2021; 13(35): 41688-41697.

[69]

Wu S, Liu S, Hu L, Chen S. Constructing electron pathways by graphene oxide for V2O5 nanoparticles in ultrahigh-performance and fast charging aqueous zinc ion batteries. J Alloys Comp. 2021; 878: 160324.

[70]

Ma X, Cao X, Yao M, et al. Organic–inorganic hybrid cathode with dual energy-storage mechanism for ultrahigh-rate and ultralong-life aqueous zinc-ion batteries. Adv Mater. 2022; 34(6): e2105452.

[71]

Liang P, Xu T, Zhu K, et al. Heterogeneous interface-boosted zinc storage of H2V3O8 nanowire/Ti3C2Tx MXene composite toward high-rate and long cycle lifespan aqueous zinc-ion batteries. Energy Storage Mater. 2022; 50: 63-74.

[72]

Zhao Y, Zhang P, Liang J, et al. Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery. Energy Storage Mater. 2022; 47: 424-433.

[73]

Liang W, Rao D, Chen T, Tang R, Li J, Jin H. Zn0.52V2O5–a·1.8H2O cathode stabilized by in situ phase transformation for aqueous zinc-ion batteries with ultra-long cyclability. Angew Chem Int ed Engl. 2022; 61(35): e202207779.

[74]

Gao S, Ju P, Liu Z, et al. Electrochemically induced phase transition in a nanoflower vanadium tetrasulfide cathode for high-performance zinc-ion batteries. J Energy Chem. 2022; 69: 356-362.

[75]

Bi W, Gao G, Wu G, Atif M, AlSalhi MS, Cao G. Sodium vanadate/PEDOT nanocables rich with oxygen vacancies for high energy conversion efficiency zinc ion batteries. Energy Storage Mater. 2021; 40: 209-218.

[76]

Yang X, Rogach AL. Electrochemical techniques in battery research: a tutorial for nonelectrochemists. Adv Energy Mater. 2019; 9(25): 1900747.

[77]

Zhang F, Du M, Miao Z, et al. Oxygen vacancies and N-doping in organic–inorganic pre-intercalated vanadium oxide for high-performance aqueous zinc-ion batteries. InfoMat. 2022; 4(11): e12346.

[78]

Cao J, Zhang D, Yue Y, et al. Revealing the impacts of oxygen defects on Zn2+ storage performance in V2O5. Mater Today Energy. 2021; 21: 100824.

[79]

He T, Ye Y, Li H, et al. Oxygen-deficient ammonium vanadate for flexible aqueous zinc batteries with high energy density and rate capability at –30°C. Mater Today. 2021; 43: 53-61.

[80]

Zhao Q, Song A, Ding S, et al. Preintercalation strategy in manganese oxides for electrochemical energy storage: review and prospects. Adv Mater. 2020; 32(50): e2002450.

[81]

Wang J, Hu H, Duan S, et al. Construction of moisture-stable lithium diffusion-controlling layer toward high performance dendrite-free lithium anode. Adv Funct Mater. 2022;32(12):2110468.

[82]

Montenegro A, Dutta C, Mammetkuliev M, et al. Asymmetric response of interfacial water to applied electric fields. Nature. 2021; 594(7861): 62-65.

[83]

Li E, Liu C, Lin H, et al. Bonding strength regulates anchoring-based self-assembly monolayers for efficient and stable perovskite solar cells. Adv Funct Mater. 2021; 31(35): 2103847.

[84]

Zhang H, Guo G, Adenusi H, et al. Advances and issues in developing intercalation graphite cathodes for aqueous batteries. Mater Today. 2022; 53: 162-172.

RIGHTS & PERMISSIONS

2024 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/