Boosting flexible electronics with integration of two-dimensional materials

Chongyang Hou , Shuye Zhang , Rui Liu , Thomas Gemming , Alicja Bachmatiuk , Hongbin Zhao , Hao Jia , Shirong Huang , Weijia Zhou , Jian-Bin Xu , Jinbo Pang , Mark H. Rümmeli , Jinshun Bi , Hong Liu , Gianaurelio Cuniberti

InfoMat ›› 2024, Vol. 6 ›› Issue (7) : e12555

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (7) : e12555 DOI: 10.1002/inf2.12555
REVIEW ARTICLE

Boosting flexible electronics with integration of two-dimensional materials

Author information +
History +
PDF

Abstract

Flexible electronics has emerged as a continuously growing field of study. Two-dimensional (2D) materials often act as conductors and electrodes in electronic devices, holding significant promise in the design of high-performance, flexible electronics. Numerous studies have focused on harnessing the potential of these materials for the development of such devices. However, to date, the incorporation of 2D materials in flexible electronics has rarely been summarized or reviewed. Consequently, there is an urgent need to develop comprehensive reviews for rapid updates on this evolving landscape. This review covers progress in complex material architectures based on 2D materials, including interfaces, heterostructures, and 2D/polymer composites. Additionally, it explores flexible and wearable energy storage and conversion, display and touch technologies, and biomedical applications, together with integrated design solutions. Although the pursuit of high-performance and high-sensitivity instruments remains a primary objective, the integrated design of flexible electronics with 2D materials also warrants consideration. By combining multiple functionalities into a singular device, augmented by machine learning and algorithms, we can potentially surpass the performance of existing wearable technologies. Finally, we briefly discuss the future trajectory of this burgeoning field. This review discusses the recent advancements in flexible sensors made from 2D materials and their applications in integrated architecture and device design.

Keywords

2D materials / biomedical healthcare / energy storage and conversion / flexible electronics / heterostructures / sensors

Cite this article

Download citation ▾
Chongyang Hou, Shuye Zhang, Rui Liu, Thomas Gemming, Alicja Bachmatiuk, Hongbin Zhao, Hao Jia, Shirong Huang, Weijia Zhou, Jian-Bin Xu, Jinbo Pang, Mark H. Rümmeli, Jinshun Bi, Hong Liu, Gianaurelio Cuniberti. Boosting flexible electronics with integration of two-dimensional materials. InfoMat, 2024, 6(7): e12555 DOI:10.1002/inf2.12555

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yan Z, Xu D, Lin Z, et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science. 2022; 375(6583): 852-859.

[2]

Cooper CB, Root SE, Michalek L, et al. Autonomous alignment and healing in multilayer soft electronics using immiscible dynamic polymers. Science. 2023; 380(6648): 935-941.

[3]

Piatti E, Arbab A, Galanti F, et al. Charge transport mechanisms in inkjet-printed thin-film transistors based on two-dimensional materials. Nat Electron. 2021; 4(12): 893-905.

[4]

Yang Y, Guo X, Zhu M, et al. Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable internet of things integrated green earth. Adv Energy Mater. 2022; 13(1): 2203040.

[5]

Luo Y, Abidian MR, Ahn JH, et al. Technology roadmap for flexible sensors. ACS Nano. 2023; 17(6): 5211-5295.

[6]

Wang W, Xu L, Zhang L, Zhang A, Zhang J. Self-powered integrated sensing system with in-plane micro-supercapacitors for wearable electronics. Small. 2023; 19(29): 2207723.

[7]

Pal A, Zhang S, Chavan T, et al. Quantum-engineered devices based on 2D materials for next-generation information processing and storage. Adv Mater. 2023; 35(27): 2109894.

[8]

Jin T, Mao J, Gao J, et al. Ferroelectrics-integrated two-dimensional devices toward next-generation electronics. ACS Nano. 2022; 16(9): 13595-13611.

[9]

Zhang Y, Wang L, Zhao L, et al. Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films. Adv Mater. 2021; 33(22): 2007890.

[10]

Wu J, Liu H, Chen W, Ma B, Ju H. Device integration of electrochemical biosensors. Nat Rev Bioeng. 2023; 1(5): 346-360.

[11]

Wu J, Guo Y, Deng C, et al. An integrated imaging sensor for aberration-corrected 3D photography. Nature. 2022; 612(7938): 62-71.

[12]

Wang Y, Adam ML, Zhao Y, et al. Machine learning-enhanced flexible mechanical sensing. Nano-Micro Lett. 2023; 15(1): 55.

[13]

Zhou F, Chai Y. Near-sensor and in-sensor computing. Nat Electron. 2020; 3(11): 664-671.

[14]

Du Y, Tang J, Li Y, et al. Monolithic 3D integration of analog RRAM-based computing-in-memory and sensor for energy-efficient near-sensor computing. Adv Mater. 2023;2302658.

[15]

Nagwade P, Parandeh S, Lee S. Prospects of soft biopotential interfaces for wearable human-machine interactive devices and applications. Soft Sci. 2023; 3(3): 24.

[16]

Ni Y, Zang X, Chen J, et al. Flexible MXene-based hydrogel enables wearable human–computer interaction for intelligent underwater communication and sensing rescue. Adv Funct Mater. 2023; 33(49): 2301127.

[17]

Yin R, Wang D, Zhao S, Lou Z, Shen G. Wearable sensors-enabled human–machine interaction systems: from design to application. Adv Funct Mater. 2020; 31(11): 2008936.

[18]

Kim D, Min J, Ko SH. Recent developments and future directions of wearable skin biosignal sensors. Adv Sens Res. 2023; 3(2): 2300118.

[19]

Qian M, Xu Z, Wang Z, et al. Realizing few-layer iodinene for high-rate sodium-ion batteries. Adv Mater. 2020; 32(43): 2004835.

[20]

Kapfer M, Jessen BS, Eisele ME, et al. Programming twist angle and strain profiles in 2D materials. Science. 2023; 381(6658): 677-681.

[21]

Zhu K, Pazos S, Aguirre F, et al. Hybrid 2D-CMOS microchips for memristive applications. Nature. 2023; 618(7963): 57-62.

[22]

Kim T, Lim J, Byeon J, et al. Electronic modulation of Semimetallic electrode for 2D van der Waals devices. Small Struct. 2023; 4(5): 2200274.

[23]

Qiao H, Liu H, Huang Z, et al. Tunable electronic and optical properties of 2D monoelemental materials beyond graphene for promising applications. Energy Environ Mater. 2021; 4(4): 522-543.

[24]

Conti S, Calabrese G, Parvez K, et al. Printed transistors made of 2D material-based inks. Nat Rev Mater. 2023; 8(10): 651-667.

[25]

Liu S, Wang J, Shao J, et al. Nanopatterning technologies of 2D materials for integrated electronic and optoelectronic devices. Adv Mater. 2022; 34(52): 2200734.

[26]

Gao X-G, Li X-K, Xin W, Chen X-D, Liu Z-B. Tian J-G. Fabrication, optical properties, and applications of twisted two-dimensional materials. Nanophotonics. 2020; 9(7): 1717-1742.

[27]

Chang C, Chen W, Chen Y, et al. Recent progress on two-dimensional materials. Acta Phys Chim Sin. 2021; 37(12): 2108017.

[28]

Elbanna A, Jiang H, Fu Q, et al. 2D material infrared photonics and plasmonics. ACS Nano. 2023; 17(5): 4134-4179.

[29]

Li Z, Xu B, Liang D, Pan A. Polarization-dependent optical properties and optoelectronic devices of 2D materials. Research. 2020; 2020: 5464258.

[30]

Tan T, Jiang X, Wang C, Yao B, Zhang H. 2D material optoelectronics for information functional device applications: status and challenges. Adv Sci. 2020; 7(11): 2000058.

[31]

Zhao T, Guo J, Li T, et al. Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem Soc Rev. 2023; 52(5): 1650-1671.

[32]

Yu L, Xu J, Peng B, Qin G, Su G. Anisotropic optical, mechanical, and thermoelectric properties of two-dimensional fullerene networks. J Phys Chem Lett. 2022; 13(50): 11622-11629.

[33]

Kim M, Ma KY, Kim H, Lee Y, Park JH, Shin HS. 2D materials in the display industry: status and prospects. Adv Mater. 2023; 35(43): 2205520.

[34]

Yang X, Li Y, Ma J, et al. General and efficient synthesis of two-dimensional monolayer mesoporous materials with diverse framework compositions. ACS Appl Mater Interfaces. 2021; 13(1): 1222-1233.

[35]

Murali A, Lokhande G, Deo KA, Brokesh A, Gaharwar AK. Emerging 2D nanomaterials for biomedical applications. Mater Today. 2021; 50: 276-302.

[36]

Wang J, Tan J, He L, et al. Facet-engineered growth of non-layered 2D manganese chalcogenides. Adv Power Mater. 2024; 3(2): 100164.

[37]

Zhan G, Cai ZF, Strutynski K, et al. Observing polymerization in 2D dynamic covalent polymers. Nature. 2022; 603(7903): 835-840.

[38]

Sporrer L, Zhou G, Wang M, et al. Near IR bandgap semiconducting 2D conjugated metal-organic framework with rhombic lattice and high mobility. Angew Chem Int Ed Engl. 2023; 62(25): e202300186.

[39]

Wang S, Liu X, Xu M, Liu L, Yang D, Zhou P. Two-dimensional devices and integration towards the silicon lines. Nat Mater. 2022; 21(11): 1225-1239.

[40]

Xu L, Zhan K, Ding S, et al. A malleable composite dough with well-dispersed and high-content boron nitride nanosheets. ACS Nano. 2023; 17(5): 4886-4895.

[41]

Chuang MH, Chiu KC, Lin YT, et al. Integrated low-dimensional semiconductors for scalable low-power CMOS logic. Adv Funct Mater. 2023; 33(27): 2212722.

[42]

Zou J, Yang Y, Hu D, et al. Controlled growth of ultrathin ferromagnetic β-MnSe semiconductor. SmartMat. 2022; 3(3): 482-490.

[43]

Ma J, Liu H, Yang N, et al. Circuit-level memory technologies and applications based on 2D materials. Adv Mater. 2022; 34(48): 2202371.

[44]

Wang TY, Meng JL, He ZY, et al. Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv Sci. 2020; 7(8): 1903480.

[45]

Liu Y, Duan X, Shin HJ, Park S, Huang Y, Duan X. Promises and prospects of two-dimensional transistors. Nature. 2021; 591(7848): 43-53.

[46]

Aftab S, Hussain S, Al-Kahtani AA. Latest innovations in 2D flexible Nanoelectronics. Adv Mater. 2023; 35(42): 2301280.

[47]

Jiang H, Zheng L, Liu Z, Wang X. Two-dimensional materials: from mechanical properties to flexible mechanical sensors. InfoMat. 2019; 2(6): 1077-1094.

[48]

Wang Q, Li N, Tang J, et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 2020; 20(10): 7193-7199.

[49]

Joksas D, AlMutairi A, Lee O, et al. Memristive, spintronic, and 2D-materials-based devices to improve and complement computing hardware. Adv Intell Syst. 2022; 4(8): 2200068.

[50]

Tan C, Cao X, Wu XJ, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev. 2017; 117(9): 6225-6331.

[51]

Zeng S, Tang Z, Liu C, Zhou P. Electronics based on two-dimensional materials: status and outlook. Nano Res. 2020; 14(6): 1752-1767.

[52]

Huo Z, Wei Y, Wang Y, Wang ZL, Sun Q. Integrated self-powered sensors based on 2D material devices. Adv Funct Mater. 2022; 32(41): 2206900.

[53]

Li W, Xu M, Gao J, et al. Large-scale ultra-robust MoS2 patterns directly synthesized on polymer substrate for flexible sensing electronics. Adv Mater. 2023; 35(8): 2207447.

[54]

Meng Y, Zhong H, Xu Z, et al. Functionalizing nanophotonic structures with 2D van der Waals materials. Nanoscale Horiz. 2023; 8(10): 1345-1365.

[55]

Chen X, Chen H, Sun Y, et al. Scalable production of p-MoTe2/n-MoS2 heterostructure array and its application for self-powered photodetectors and CMOS inverters. 2D Mater. 2022; 9(3): 035015.

[56]

Cheng Z, Cao R, Wei K, et al. 2D materials enabled next-generation integrated optoelectronics: from fabrication to applications. Adv Sci. 2021; 8(11): 2003834.

[57]

Zhang K, She Y, Cai X, et al. Epitaxial substitution of metal iodides for low-temperature growth of two-dimensional metal chalcogenides. Nat Nanotechnol. 2023; 18(5): 448-455.

[58]

Zhou Z, Hou F, Huang X, et al. Stack growth of wafer-scale van der Waals superconductor heterostructures. Nature. 2023; 621(7979): 499-505.

[59]

He T, Ma H, Wang Z, et al. On-chip optoelectronic logic gates operating in the telecom band. Nat Photonics. 2023; 18(1): 60-67.

[60]

Tang J, Wang Q, Tian J, et al. Low power flexible monolayer MoS2 integrated circuits. Nat Commun. 2023; 14(1): 3633.

[61]

Lu Y, Chen T, Mkhize N, et al. GaS/WS2 heterojunctions for ultrathin two-dimensional photodetectors with large linear dynamic range across broad wavelengths. ACS Nano. 2021; 15(12): 19570-19580.

[62]

Feng X, Cheng R, Yin L, Wen Y, Jiang J, He J. Two-dimensional oxide crystals for device applications: challenges and opportunities. Adv Mater. 2023; 36(2): 2304708.

[63]

Bai J, Gu W, Bai Y, et al. Multifunctional flexible sensor based on PU-TA@MXene Janus architecture for selective direction recognition. Adv Mater. 2023; 35(35): 2302847.

[64]

Wang Y, Pang J, Cheng Q, et al. Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics. Nano-Micro Lett. 2021; 13(1): 143.

[65]

Wang H, Chen Y, Li D. Two/quasi-two-dimensional perovskite-based heterostructures: construction, properties and applications. Int J Extreme Manuf. 2023; 5(1): 012004.

[66]

Tian R, Gan X, Li C, et al. Chip-integrated van der Waals PN heterojunction photodetector with low dark current and high responsivity. Light Sci Appl. 2022; 11(1): 101.

[67]

Wu Z, Jie W, Yang Z, Hao J. Hybrid heterostructures and devices based on two-dimensional layers and wide bandgap materials. Mater Today Nano. 2020; 12: 100092.

[68]

Das S, Sebastian A, Pop E, et al. Transistors based on two-dimensional materials for future integrated circuits. Nat Electron. 2021; 4(11): 786-799.

[69]

Liu G, Tian Z, Yang Z, et al. Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nat Electron. 2022; 5(5): 275-280.

[70]

Liu W, Lv J, Peng L, et al. Graphene charge-injection photodetectors. Nat Electron. 2022; 5(5): 281-288.

[71]

Ramezani M, Kim J-H, Liu X, et al. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings. Nat Nanotechnol. 2024; 19(4): 504-513.

[72]

Chen H, Guo S, Zhang S, et al. Improved flexible triboelectric nanogenerator based on tile-nanostructure for wireless human health monitor. Energy Environ Mater. 2023;e12654.

[73]

Mao M, Kong J, Ge X, et al. Mxene-based wearable self-powered and photothermal triboelectric nanogenerator patches for wound healing acceleration and tactile sensing. Chem Eng J. 2024; 482: 148949.

[74]

Ma R, Cao L, Zhuo J, et al. Designed redox-electrolyte strategy boosted with electrode engineering for high-performance Ti3C2Tx MXene-based supercapacitors. Adv Energy Mater. 2023; 13(34): 2301219.

[75]

Jiao H, Wang X, Chen Y, et al. HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector. Sci Adv. 2022; 8(19): eabn1811.

[76]

Tsai MY, Tsai TH, Gandhi AC, et al. Ultrafast and broad-band graphene heterojunction photodetectors with high gain. ACS Nano. 2023; 17(24): 25037-25044.

[77]

Li N, Wang Q, He C, et al. 2D semiconductor based flexible photoresponsive ring oscillators for artificial vision pixels. ACS Nano. 2023; 17(2): 991-999.

[78]

Xue S, Wang S, Wu T, et al. Hybrid neuromorphic hardware with sparing 2D synapse and CMOS neuron for character recognition. Sci Bull. 2023; 68(20): 2336-2343.

[79]

Yang J, Liu Y, Wang E-Y, et al. Modulating p-type doping of two dimensional material palladium diselenide. Nano Res. 2023; 17(4): 3232-3244.

[80]

Ding G, Yang B, Chen RS, et al. Reconfigurable 2D WSe2-based memtransistor for mimicking homosynaptic and heterosynaptic plasticity. Small. 2021; 17(41): 2103175.

[81]

Dong K, Zhou H, Gao Z, et al. 2D perovskite single-crystalline photodetector with large linear dynamic range for UV weak-light imaging. Adv Funct Mater. 2023; 34(1): 2306941.

[82]

Katiyar AK, Hoang AT, Xu D, et al. 2D materials in flexible electronics: recent advances and future prospectives. Chem Rev. 2024; 124(2): 318-419.

[83]

Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol. 2014; 9(10): 768-779.

[84]

Kanahashi K, Pu J, Takenobu T. 2D materials for large-area flexible thermoelectric devices. Adv Energy Mater. 2019; 10(11): 1902842.

[85]

Du J, Yu H, Liu B, et al. Strain engineering in 2D material-based flexible optoelectronics. Small Methods. 2021; 5(1): 2000919.

[86]

Yu W, Gong K, Li Y, et al. Flexible 2D materials beyond graphene: synthesis, properties, and applications. Small. 2022; 18(14): 2105383.

[87]

Moses OA, Gao L, Zhao H, et al. 2D materials inks toward smart flexible electronics. Mater Today. 2021; 50: 116-148.

[88]

Chao Y, Han Y, Chen Z, et al. Multiscale structural design of 2D nanomaterials-based flexible electrodes for wearable energy storage applications. Adv Sci. 2023; 11(9): 2305558.

[89]

Jiang D, Liu Z, Xiao Z, et al. Flexible electronics based on 2D transition metal dichalcogenides. J Mater Chem A. 2022; 10(1): 89-121.

[90]

Gao L. Flexible device applications of 2D semiconductors. Small. 2017; 13(35): 1603994.

[91]

Daus A, Vaziri S, Chen V, et al. High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat Electron. 2021; 4(7): 495-501.

[92]

Cai S, Xu X, Yang W, Chen J, Fang X. Materials and designs for wearable photodetectors. Adv Mater. 2019; 31(18): 1808138.

[93]

Dong T, Simões J, Yang Z. Flexible photodetector based on 2D materials: processing, architectures, and applications. Adv Mater Interfaces. 2020; 7(4): 1901657.

[94]

Zhu W, Park S, Yogeesh MN, Akinwande D. Advancements in 2D flexible nanoelectronics: from material perspectives to RF applications. Flexible Printed Electron. 2017; 2(4): 043001.

[95]

Myny K. The development of flexible integrated circuits based on thin-film transistors. Nat Electron. 2018; 1(1): 30-39.

[96]

Hu L, Kim BJ, Ji S, Hong J, Katiyar AK, Ahn J-H. Smart electronics based on 2D materials for wireless healthcare monitoring. Appl Phys Rev. 2022; 9(4): 041308.

[97]

Choi C, Lee Y, Cho KW, Koo JH, Kim DH. Wearable and implantable soft bioelectronics using two-dimensional materials. Acc Chem Res. 2019; 52(1): 73-81.

[98]

Zhang R, Lin J, He T, et al. High-performance piezoresistive sensors based on transfer-free large-area PdSe2 films for human motion and health care monitoring. InfoMat. 2023; 6(1): e12484.

[99]

Shi B, Li L, Chen A, Jen TC, Liu X, Shen G. Continuous fabrication of Ti3C2Tx MXene-based braided coaxial zinc-ion hybrid supercapacitors with improved performance. Nano-Micro Lett. 2021; 14(1): 34.

[100]

Sun H, Gao X, Guo LY, et al. Graphene-based dual-function acoustic transducers for machine learning-assisted human–robot interfaces. InfoMat. 2022; 5(2): e12385.

[101]

Han X, Zhang YF, Huo ZH, et al. A two-terminal optoelectronic synapses array based on the ZnO/AlO/CdS heterojunction with strain-modulated synaptic weight. Adv Electron Mater. 2023; 9(4): 2201068.

[102]

Wang T, Meng J, Zhou X, et al. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat Commun. 2022; 13(1): 7432.

[103]

Shao Y, Wei L, Wu X, et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat Commun. 2022; 13(1): 3223.

[104]

Polat EO, Mercier G, Nikitskiy I, et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci Adv. 2019; 5(9): eaaw7846.

[105]

Kang M, Jeong H, Park SW, et al. Wireless graphene-based thermal patch for obtaining temperature distribution and performing thermography. Sci Adv. 2022; 8(15): eabm6693.

[106]

Zhang F, Yang K, Pei Z, et al. A highly accurate flexible sensor system for human blood pressure and heart rate monitoring based on graphene/sponge. RSC Adv. 2022; 12(4): 2391-2398.

[107]

Kim JY, Ju X, Ang KW, Chi D. Van der Waals layer transfer of 2D materials for monolithic 3D electronic system integration: review and outlook. ACS Nano. 2023; 17(3): 1831-1844.

[108]

Thi QH, Man P, Liu H, et al. Ultrahigh lubricity between two-dimensional ice and two-dimensional atomic layers. Nano Lett. 2023; 23(4): 1379-1385.

[109]

Kim H, Liu Y, Lu K, et al. High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process. Nat Nanotechnol. 2023; 18(5): 464-470.

[110]

Mondal A, Biswas C, Park S, et al. Low Ohmic contact resistance and high on/off ratio in transition metal dichalcogenides field-effect transistors via residue-free transfer. Nat Nanotechnol. 2023; 19(1): 34-43.

[111]

Li R, Ma X, Li J, et al. Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nat Commun. 2021; 12(1): 1587.

[112]

An Y, Tian Y, Shen H, Man Q, Xiong S, Feng J. Two-dimensional MXenes for flexible energy storage devices. Energy Environ Sci. 2023; 16(10): 4191-4250.

[113]

Liu H, Thi QH, Man P, et al. Controlled adhesion of ice-toward ultraclean 2D materials. Adv Mater. 2023; 35(14): 2210503.

[114]

Yang X, Li X, Deng Y, et al. Ethanol assisted transfer for clean assembly of 2D building blocks and suspended structures. Adv Funct Mater. 2019; 29(26): 1902427.

[115]

Liao M, Wei Z, Du L, et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat Commun. 2020; 11(1): 2153.

[116]

Zhao Y, Song Y, Hu Z, et al. Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact. Nat Commun. 2022; 13(1): 4409.

[117]

Wang Y, Sun S, Zhang J, Huang YL, Chen W. Recent progress in epitaxial growth of two-dimensional phosphorus. SmartMat. 2021; 2(3): 286-298.

[118]

Zheng L, Wang X, Jiang H, Xu M, Huang W, Liu Z. Recent progress of flexible electronics by 2D transition metal dichalcogenides. Nano Res. 2021; 15(3): 2413-2432.

[119]

Huang Y, Pan YH, Yang R, et al. Universal mechanical exfoliation of large-area 2D crystals. Nat Commun. 2020; 11(1): 2453.

[120]

Yang R, Fan Y, Mei L, et al. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials. Nat Synth. 2023; 2(2): 101-118.

[121]

Ding H, Li Y, Li M, et al. Chemical scissor-mediated structural editing of layered transition metal carbides. Science. 2023; 379(6637): 1130-1135.

[122]

Wang D, Li X-B, Sun H-B. Modulation doping: a strategy for 2D materials electronics. Nano Lett. 2021; 21(14): 6298-6303.

[123]

Meng R, da Costa PL, Locquet J-P, Afanas’ev V, Pourtois G, Houssa M. Hole-doping induced ferromagnetism in 2D materials. npj Comput Mater. 2022; 8(1): 230.

[124]

Zabow G. Reflow transfer for conformal three-dimensional microprinting. Science. 2022; 378(6622): 894-898.

[125]

Wan X, Miao X, Yao J, et al. In situ ultrafast and patterned growth of transition metal dichalcogenides from inkjet-printed aqueous precursors. Adv Mater. 2021; 33(16): 2100260.

[126]

McManus D, Vranic S, Withers F, et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat Nanotechnol. 2017; 12(4): 343-350.

[127]

Wu Z, Liu S, Hao Z, Liu X. MXene contact engineering for printed electronics. Adv Sci. 2023; 10(19): 2207174.

[128]

Zhao J, Wei Z, Yang X, Zhang G, Wang Z. Mechanoplastic tribotronic two-dimensional multibit nonvolatile optoelectronic memory. Nano Energy. 2021; 82: 105692.

[129]

Yuan Y, Jiang L, Li X, et al. Ultrafast shaped laser induced synthesis of MXene quantum dots/graphene for transparent supercapacitors. Adv Mater. 2022; 34(12): 2110013.

[130]

Eom W, Shin H, Ambade RB, et al. Large-scale wet-spinning of highly electroconductive MXene fibers. Nat Commun. 2020; 11(1): 2825.

[131]

Li S, Fan Z, Wu G, et al. Assembly of nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation. ACS Nano. 2021; 15(4): 7821-7832.

[132]

Islam MR, Afroj S, Karim N. Scalable production of 2D material heterostructure textiles for high-performance wearable supercapacitors. ACS Nano. 2023; 17(18): 18481-18493.

[133]

Nie Z, Peng K, Lin L, et al. A conductive hydrogel based on nature polymer agar with self-healing ability and stretchability for flexible sensors. Chem Eng J. 2023; 454: 139843.

[134]

Yang M, Cheng Y, Yue Y, et al. High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv Sci. 2022; 9(20): 2200507.

[135]

Xue F, Zhang C, Ma Y, et al. Integrated memory devices based on 2D materials. Adv Mater. 2022; 34(48): 2201880.

[136]

Ni Y, Wang Y, Xu W. Recent process of flexible transistor-structured memory. Small. 2021; 17(9): 1905332.

[137]

Khan AI, Daus A, Islam R, et al. Ultralow-switching current density multilevel phase-change memory on a flexible substrate. Science. 2021; 373(6560): 1243-1247.

[138]

Tong X, Tian Z, Sun J, Tung V, Kaner RB, Shao Y. Self-healing flexible/stretchable energy storage devices. Mater Today. 2021; 44: 78-104.

[139]

Sun P, Liu J, Liu Q, et al. Nitrogen and sulfur co-doped MXene ink without additive for high-performance inkjet-printing micro-supercapacitors. Chem Eng J. 2022; 450: 138372.

[140]

Zhu J, Park JH, Vitale SA, et al. Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat Nanotechnol. 2023; 18(5): 456-463.

[141]

Mohamed NB, El-Kady MF. Kaner RB. Macroporous graphene frameworks for sensing and supercapacitor applications. Adv Funct Mater. 2022; 32(42): 2203101.

[142]

Zong H, Zhang A, Dong J, et al. Flexible asymmetric supercapacitor based on open-hollow nickel-MOFs/reduced graphene oxide aerogel electrodes. Chem Eng J. 2023; 475: 146088.

[143]

Guo H, Zhang A, Fu H, et al. In situ generation of CeCoSx bimetallic sulfide derived from “egg-box” seaweed biomass on S/N co-doped graphene aerogels for flexible all solid-state supercapacitors. Chem Eng J. 2023; 453: 139633.

[144]

Shi Z, Meng L, Shi X, et al. Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 2022; 14(1): 141.

[145]

Li M, Yin B, Gao C, et al. Graphene: preparation, tailoring, and modification. Exp Dermatol. 2023; 3(1): 20210233.

[146]

Inman A, Hryhorchuk T, Bi L, et al. Wearable energy storage with MXene textile supercapacitors for real world use. J Mater Chem A. 2023; 11(7): 3514-3523.

[147]

Wang Y, Chen N, Zhou B, et al. NH3-induced in situ etching strategy derived 3D-interconnected porous MXene/carbon dots films for high performance flexible supercapacitors. Nano-Micro Lett. 2023; 15(1): 231.

[148]

Huang X, Lyu X, Wu G, et al. Multilayer superlattices of monolayer mesoporous carbon framework-intercalated MXene for efficient capacitive energy storage. Adv Energy Mater. 2023; 14(4): 2303417.

[149]

Li C, Li X, Yu W, et al. Scalable fabrication of turbostratic graphene with high density and high ion conductivity for compact capacitive energy storage. Matter. 2023; 6(11): 4032-4049.

[150]

Zhou K, Shang G, Hsu HH, Han ST, Roy VAL, Zhou Y. Emerging 2D metal oxides: from synthesis to device integration. Adv Mater. 2023; 35(21): 2207774.

[151]

Ma Y, Li Y, Wang H, Wang M, Wang J. High performance flexible photodetector based on 0D-2D perovskite heterostructure. Chip. 2023; 2(1): 100032.

[152]

Qiu L, Wang M, Sun T, et al. An interfacial toughening strategy for high stability 2D/3D perovskite x-ray detectors with a carbon nanotube thin film electrode. Nanoscale. 2023; 15(35): 14574-14583.

[153]

Guo L, Qi Y, Wu Z, et al. A self-powered UV photodetector with ultrahigh responsivity based on 2D perovskite ferroelectric films with mixed spacer cations. Adv Mater. 2023; 35(47): 2301705.

[154]

Yang TH, Liang B-W, Hu H-C. et al. Ferroelectric transistors based on shear-transformation-mediated rhombohedral-stacked molybdenum disulfide. Nat Electron. 2023; 7(1): 29-38.

[155]

Hoang AT, Katiyar AK, Shin H, et al. Epitaxial growth of wafer-scale molybdenum disulfide/graphene heterostructures by metal–organic vapor-phase epitaxy and their application in photodetectors. ACS Appl Mater Interfaces. 2020; 12(39): 44335-44344.

[156]

Huang YL, Chen W, Wee ATS. Two-dimensional magnetic transition metal chalcogenides. SmartMat. 2021; 2(2): 139-153.

[157]

Wang Z, Li R, Su C, Loh KP. Intercalated phases of transition metal dichalcogenides. SmartMat. 2020; 1(1): e1013.

[158]

Chaturvedi A, Chen B, Zhang K, et al. A universal method for rapid and large-scale growth of layered crystals. SmartMat. 2020; 1(1): e1011.

[159]

Wu P, Reis D, Hu XS, Appenzeller J. Two-dimensional transistors with reconfigurable polarities for secure circuits. Nat Electron. 2020; 4(1): 45-53.

[160]

Dang Z, Guo F, Duan H, et al. Black phosphorus/ferroelectric P(VDF-TrFE) field-effect transistors with high mobility for energy-efficient artificial synapse in high-accuracy neuromorphic computing. Nano Lett. 2023; 23(14): 6752-6759.

[161]

Huh W, Lee D, Jang S, et al. Heterosynaptic MoS2 memtransistors emulating biological neuromodulation for energy-efficient neuromorphic electronics. Adv Mater. 2023; 35(24): 2211525.

[162]

Li S, Zhang Y, Wen W, et al. A high-sensitivity thermal analysis immunochromatographic sensor based on au nanoparticle-enhanced two-dimensional black phosphorus photothermal-sensing materials. Biosens Bioelectron. 2019; 133: 223-229.

[163]

Park H, Sen A, Kaniselvan M, et al. A wafer-scale nanoporous 2D active pixel image sensor matrix with high uniformity, high sensitivity, and rapid switching. Adv Mater. 2023; 35(14): 2210715.

[164]

Wang Z, Liu L, Zhai K, et al. An ultrasensitive plasmonic sensor based on 2D ferroelectric Bi2O2Se. Small. 2023; 19(45): 2303026.

[165]

Qi L, Ruan S, Zeng YJ. Review on recent developments in 2D ferroelectrics: theories and applications. Adv Mater. 2021; 33(13): 2005098.

[166]

Chen R, Luo F, Liu Y, et al. Tunable room-temperature ferromagnetism in Co-doped two-dimensional van der Waals ZnO. Nat Commun. 2021; 12(1): 3952.

[167]

Zhang D, Pan W, Tang M, et al. Diversiform gas sensors based on two-dimensional nanomaterials. Nano Res. 2023; 16(10): 11959-11991.

[168]

Hong S, Zagni N, Choo S, et al. Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nat Commun. 2021; 12(1): 3559.

[169]

Zhang Q, Li E, Wang Y, et al. Ultralow-power vertical transistors for multilevel decoding modes. Adv Mater. 2023; 35(3): 2208600.

[170]

Jiang J, Xu L, Qiu C, Peng LM. Ballistic two-dimensional InSe transistors. Nature. 2023; 616(7957): 470-475.

[171]

Zheng S, Zhao W, Chen J, Zhao X, Pan Z, Yang X. 2D materials boost advanced Zn anodes: principles, advances, and challenges. Nano-Micro Lett. 2023; 15(1): 46.

[172]

Ma Q, Zheng Y, Luo D, et al. 2D materials for all-solid-state lithium batteries. Adv Mater. 2022; 34(16): 2108079.

[173]

Xie Z, Peng Y-P, Yu L, et al. Solar-inspired water purification based on emerging 2D materials: status and challenges. Sol RRL. 2020; 4(3): 1900400.

[174]

Pescetelli S, Agresti A, Viskadouros G, et al. Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm. Nat Energy. 2022; 7(7): 597-607.

[175]

Lu B, Zhu Z, Ma B, Wang W, Zhu R, Zhang J. 2D MXene nanomaterials for versatile biomedical applications: current trends and future prospects. Small. 2021; 17(46): 2100946.

[176]

Fu Z, Ni D, Cai S, et al. Versatile BP/Pd-FPEI-CpG nanocomposite for “three-in-one” multimodal tumor therapy. Nano Today. 2022; 46: 101590.

[177]

Cheng L, Wang X, Gong F, Liu T, Liu Z. 2D nanomaterials for cancer theranostic applications. Adv Mater. 2020; 32(13): 1902333.

[178]

Lei ZL, Guo B. 2D material-based optical biosensor: status and prospect. Adv Sci. 2022; 9(4): 2102924.

[179]

Zhu S, Wang D, Li M, Zhou C, Yu D, Lin Y. Recent advances in flexible and wearable chemo-and bio-sensors based on two-dimensional transition metal carbides and nitrides (MXenes). J Mater Chem B. 2022; 10(13): 2113-2125.

[180]

Ye H, Yin C, Wang J, Zheng Y. Controllable and gradient wettability of bilayer two-dimensional materials regulated by interlayer distance. ACS Appl Mater Interfaces. 2022; 14(36): 41489-41498.

[181]

Tu Z, Guday G, Adeli M, Haag R. Multivalent interactions between 2D nanomaterials and biointerfaces. Adv Mater. 2018; 30(33): 1706709.

[182]

Pan W, Liu C, Li Y, et al. Ultrathin tellurium nanosheets for simultaneous cancer thermo-chemotherapy. Bioact Mater. 2022; 13: 96-104.

[183]

Jiao F, Chen Y, Jin H, He P, Chen CL, De Yoreo JJ. Self-repair and patterning of 2D membrane-like peptoid materials. Adv Funct Mater. 2016; 26(48): 8960-8967.

[184]

Hu W-w, Shi X-y, Gao M-h. et al. Light-actuated shape memory and self-healing phase change composites supported by MXene/waterborne polyurethane aerogel for superior solar-thermal energy storage. Compos Commun. 2021; 28: 100980.

[185]

Sun G, Wang P, Jiang Y, et al. Bioinspired flexible, breathable, waterproof and self-cleaning iontronic tactile sensors for special underwater sensing applications. Nano Energy. 2023; 110: 108367.

[186]

Huang Y, Zhang J, An L, et al. Synergetic effect of MXene/MoS2 heterostructure and gradient multilayer for highly sensitive flexible piezoelectric sensor. Polymer. 2023; 286(3): 126399.

[187]

Zhang Y, Ren H, Chen H, et al. Cotton fabrics decorated with conductive graphene nanosheet inks for flexible wearable heaters and strain sensors. ACS Appl Nano Mater. 2021; 4(9): 9709-9720.

[188]

He Z, Qi Z, Liu H, et al. Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials. Natl Sci Rev. 2022; 9(4): nwab184.

[189]

Gao FL, Liu J, Li XP, et al. Ti3C2Tx MXene-based multifunctional tactile sensors for precisely detecting and distinguishing temperature and pressure stimuli. ACS Nano. 2023; 17(16): 16036-16047.

[190]

Kim S, Shin H, Lee J, et al. Three-dimensional MoS2/MXene heterostructure aerogel for chemical gas sensors with superior sensitivity and stability. ACS Nano. 2023; 17(19): 19387-19397.

[191]

Sun J, Xiu K, Wang Z, et al. Multifunctional wearable humidity and pressure sensors based on biocompatible graphene/bacterial cellulose bioaerogel for wireless monitoring and early warning of sleep apnea syndrome. Nano Energy. 2023; 108: 108215.

[192]

Tian X, Cui X, Xiao Y, Chen T, Xiao X, Wang Y. Pt/MoS2/polyaniline nanocomposite as a highly effective room temperature flexible gas sensor for ammonia detection. ACS Appl Mater Interfaces. 2023; 15(7): 9604-9617.

[193]

Waheed W, Anwer S, Khan MU, Sajjad M, Alazzam A. 2D Ti3C2Tx-MXene nanosheets and graphene oxide based highly sensitive humidity sensor for wearable and flexible electronics. Chem Eng J. 2024; 480: 147981.

[194]

Peng Z, Cheng Z, Ke S, et al. Flexible memristor constructed by 2D cadmium phosphorus trichalcogenide for artificial synapse and logic operation. Adv Funct Mater. 2022; 33(9): 2211269.

[195]

Daus A, Jaikissoon M, Khan AI, et al. Fast-response flexible temperature sensors with atomically thin molybdenum disulfide. Nano Lett. 2022; 22(15): 6135-6140.

[196]

Guo S, Wu K, Li C, et al. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter. 2021; 4(3): 969-985.

[197]

Wang W, Jiang Y, Zhong D, et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science. 2023; 380(6646): 735-742.

[198]

Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater. 2019; 31(48): 1904765.

[199]

Duan S, Shi Q, Hong J, et al. Water-modulated biomimetic hyper-attribute-gel electronic skin for robotics and skin-attachable wearables. ACS Nano. 2023; 17(2): 1355-1371.

[200]

Lin M, Zheng Z, Yang L, et al. A high-performance, sensitive, wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection. Adv Mater. 2022; 34(1): 2107309.

[201]

Chen L, Xu Y, Liu Y, et al. Flexible and transparent electronic skin sensor with sensing capabilities for pressure, temperature, and humidity. ACS Appl Mater Interfaces. 2023; 15(20): 24923-24932.

[202]

Lin X, Li F, Bing Y, et al. Biocompatible multifunctional E-skins with excellent self-healing ability enabled by clean and scalable fabrication. Nano-Micro Lett. 2021; 13(1): 200.

[203]

Kim Y, Suh JM, Shin J, et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science. 2022; 377(6608): 859-864.

[204]

Duan S, Yang H, Hong J, et al. A skin-beyond tactile sensor as interfaces between the prosthetics and biological systems. Nano Energy. 2022; 102: 107665.

[205]

Wang M, Tu J, Huang Z, et al. Tactile near-sensor analogue computing for ultrafast responsive artificial skin. Adv Mater. 2022; 34(34): 2201962.

[206]

Zhou X, Li A, Mi X, et al. Hyperexcited limbic neurons represent sexual satiety and reduce mating motivation. Science. 2023; 379(6634): 820-825.

[207]

Tee BC, Chortos A, Berndt A, et al. A skin-inspired organic digital mechanoreceptor. Science. 2015; 350(6258): 313-316.

[208]

Kim Y, Chortos A, Xu W, et al. A bioinspired flexible organic artificial afferent nerve. Science. 2018; 360(6392): 998-1003.

[209]

Chun S, Kim J-S, Yoo Y, et al. An artificial neural tactile sensing system. Nat Electron. 2021; 4(6): 429-438.

[210]

Wang S, Wang X, Wang Q, et al. Flexible optoelectronic multimodal proximity/pressure/temperature sensors with low signal interference. Adv Mater. 2023; 35(49): 2304701.

[211]

Ge X, Gao Z, Zhang L, et al. Flexible microfluidic triboelectric sensor for gesture recognition and information encoding. Nano Energy. 2023; 113: 108541.

[212]

Guo P, Tian B, Liang J, et al. An all-printed, fast-response flexibl. humidity sensor based on hexagonal-WO3 nanowires for multifunctional applications. Adv Mater. 2023; 35(41): 2304420.

[213]

Yu H, Wang C, Meng F, et al. Microwave humidity sensor based on carbon dots-decorated MOF-derived porous Co3O4 for breath monitoring and finger moisture detection. Carbon. 2021; 183: 578-589.

[214]

Lubken RM, de Jong AM, Prins MWJ. Multiplexed continuous biosensing by single-molecule encoded nanoswitches. Nano Lett. 2020; 20(4): 2296-2302.

[215]

Tian G, Shi Y, Deng J, et al. Low-cost, scalable fabrication of all-fabric piezoresistive sensors via binder-free, in-situ weldin. of carbon nanotubes on bicomponent nonwovens. Adv Fiber Mater. 2023; 6(1): 120-132.

[216]

Li Z, Feng D, Li B, et al. Ultra-wide range, high sensitivity piezoresistive sensor based on triple periodic minimum surface construction. Small. 2023; 19(36): 2301378.

[217]

Han Y, Wei H, Du Y, et al. Ultrasensitive flexible thermal sensor arrays based on high-thermopower ionic thermoelectric hydrogel. Adv Sci. 2023; 10(25): 2302685.

[218]

Duan S, Wei X, Zhao F, et al. Bioinspired Young’s modulus-hierarchical E-skin with decoupling multimodality and neuromorphic encoding outputs to biosystems. Adv Sci. 2023; 10(31): 2304121.

[219]

Xie Y, Cheng Y, Ma Y, et al. 3D MXene-based flexible network for high-performance pressure sensor with a wide temperature range. Adv Sci. 2023; 10(6): 2205303.

[220]

Peng J, Cheng H, Liu J, et al. Superhydrophobic MXene-based fabric with electromagnetic interference shielding and thermal management ability for flexible sensors. Adv Fiber Mater. 2023; 5(6): 2099-2113.

[221]

Cui T, Qiao Y, Li D, et al. Multifunctional, breathable MXene-P. mesh electronic skin for wearable intelligent 12-lead ECG monitoring system. Chem Eng J. 2023; 455(1): 140690.

[222]

Sun Q, Zhang X, Gu P, et al. Highly stretchable MXene-based meta-aerogels with near-zero and negative Poisson’s ratios. Adv Funct Mater. 2023; 34(7): 2308537.

[223]

Huang C, Hao Z, Wang Z, Wang H, Zhao X, Pan Y. An Ultraflexible and transparent graphene-based wearable sensor for biofluid biomarkers detection. Adv Mater Technol. 2022; 7(6): 2101131.

[224]

Chao M, He L, Gong M, et al. Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano. 2021; 15(6): 9746-9758.

[225]

Zhu X, Zhang Y, Man Z, et al. Microfluidic-assembled covalent organic frameworks@Ti3C2Tx MXene vertical fibers for high-performance electrochemical supercapacitors. Adv Mater. 2023; 35(46): 2307186.

[226]

Xu R, She M, Liu J, et al. Skin-friendly and wearable Iontronic touch panel for virtual-real handwriting interaction. ACS Nano. 2023; 17(9): 8293-8302.

[227]

Wang B, Gao M, Fu X, et al. 3D printing deep-trap hierarchical architecture-based non-contact sensor for multi-direction motion monitoring. Nano Energy. 2023; 107: 108135.

[228]

Zhang C, Peng Z, Huang C, et al. High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems. Nano Energy. 2021; 81: 105609.

[229]

Li F, Shen T, Wang C, Zhang Y, Qi J, Zhang H. Recent advances in strain-induced piezoelectric and piezoresistive effect-engineered 2D semiconductors for adaptive electronics and optoelectronics. Nano-Micro Lett. 2020; 12(1): 106.

[230]

Manzeli S, Allain A, Ghadimi A, Kis A. Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett. 2015; 15(8): 5330-5335.

[231]

Riyajuddin S, Kumar S, Gaur SP, et al. Linear piezoresistive strain sensor based on graphene/g-C3N4/PDMS heterostructure. Nanotechnology. 2020; 31(29): 295501.

[232]

Wagner S, Yim C, McEvoy N, et al. Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films. Nano Lett. 2018; 18(6): 3738-3745.

[233]

Ma Y, Liu N, Li L, et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat Commun. 2017; 8(1): 1207.

[234]

Wang Y, Yue Y, Cheng F, et al. Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano. 2022; 16(2): 1734-1758.

[235]

Cao X, Zhang J, Chen S, Varley RJ, Pan K. 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor. Adv Funct Mater. 2020; 30(35): 2003618.

[236]

Zhu M, Du X, Liu S, Li J, Wang Z, Ono T. A review of strain sensors based on two-dimensional molybdenum disulfide. J Mater Chem C. 2021; 9(29): 9083-9101.

[237]

Li X, Li S, Tian J, Lyu F, Liao J, Chen Q. Multi-functional platform for in-memory computing and sensing based on 2D ferroelectric semiconductor α-In2Se3. Adv Funct Mater. 2023; 34(3): 2306486.

[238]

Wang S, Deng W, Yang T, et al. Bioinspired MXene-based piezoresistive sensor with two-stage enhancement for motion capture. Adv Funct Mater. 2023; 33(18): 2214503.

[239]

Sun W, Wu FG. Two-dimensional materials for antimicrobial applications: graphene materials and beyond. Chem Asian J. 2018; 13(22): 3378-3410.

[240]

Chen Z, Chen P, Zhu Y, et al. 2D cobalt oxyhydroxide nanozymes inhibit inflammation by targeting the NLRP3 inflammasome. Adv Funct Mater. 2023; 33(27): 2214693.

[241]

Vaghasiya JV, Mayorga-Martinez CC. Pumera M. Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. npj Flexible Electron. 2023; 7(1): 26.

[242]

Mostafavi E, Iravani S. MXene-graphene composites: a perspective on biomedical potentials. Nano-Micro Lett. 2022; 14(1): 130.

[243]

Fang X, Wu X, Li Z, et al. Biomimetic anti-PD-1 peptide-loaded 2D FePSe3 nanosheets for efficient photothermal and enhanced immune therapy with multimodal MR/PA/thermal imaging. Adv Sci. 2021; 8(2): 2003041.

[244]

Tao W, Kong N, Ji X, et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem Soc Rev. 2019; 48(11): 2891-2912.

[245]

Li Q, Wu X, Mu S, et al. Microenvironment restruction of emerging 2D materials and their roles in therapeutic and diagnostic nano-bio-platforms. Adv Sci. 2023; 10(20): 2207759.

[246]

Chen Y, Wu Y, Sun B, Liu S, Liu H. Two-dimensional nanomaterials for cancer nanotheranostics. Small. 2017; 13(10): 1603446.

[247]

Qi Y, Zhang G, Yang L, et al. High-precision intelligent cancer diagnosis method: 2D Raman figures combined with deep learning. Anal Chem. 2022; 94(17): 6491-6501.

[248]

Zhao Y, Guo J. Development of flexible Li-ion batteries for flexible electronics. InfoMat. 2020; 2(5): 866-878.

[249]

Zhang Z, Zhu Z, Zhou P, et al. Soft bioelectronics for therapeutics. ACS Nano. 2023; 17(18): 17634-17667.

[250]

Han S, Kim J, Won SM, et al. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci Transl Med. 2018; 10(435): eaan4950.

[251]

Trung TQ, Le HS, Dang TML, Ju S, Park SY, Lee NE. Freestanding, fiber-based, wearable temperature sensor with tunable thermal index for healthcare monitoring. Adv Healthc Mater. 2018; 7(12): 1800074.

[252]

Qian L, Jin F, Wei Z, et al. Wearable, self-powered, drug-loaded electroni. microneedles for accelerated tissue repair of inflammatory skin disorders. Adv Funct Mater. 2023; 33(27): 2209407.

[253]

Li P, Zhang Z. Self-powered 2D material-based pH sensor and photodetector driven by monolayer MoSe2 piezoelectric nanogenerator. ACS Appl Mater Interfaces. 2020; 12(52): 58132-58139.

[254]

Hong Y, Wang B, Lin W, et al. Highly anisotropic and flexible piezoceramic kirigami for preventing joint disorders. Sci Adv. 2021; 7(11): eabf0795.

[255]

Lin P, Pan C, Wang ZL. Two-dimensional nanomaterials for novel piezotronics and piezophototronics. Mater Today Nano. 2018; 4: 17-31.

[256]

Zhang Q, Zuo S, Chen P, Pan C. Piezotronics in two-dimensional materials. InfoMat. 2021; 3(9): 987-1007.

[257]

Gao Y, Yan C, Huang H, et al. Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv Funct Mater. 2020; 30(11): 1909603.

[258]

Su M, Fu J, Liu Z, et al. All-fabric capacitive pressure sensors with piezoelectric nanofibers for wearable electronics and robotic sensing. ACS Appl Mater Interfaces. 2023; 15(41): 48683-48694.

[259]

Yan W, Fuh HR, Lv Y, et al. Giant gauge factor of Van der Waals material based strain sensors. Nat Commun. 2021; 12(1): 2018.

[260]

Huang X, Qin Q, Wang X, et al. Piezoelectric nanogenerator for highly sensitive and synchronous multi-stimuli sensing. ACS Nano. 2021; 15(12): 19783-19792.

[261]

Fu X, Li J, Li D, et al. MXene/ZIF-67/PAN nanofiber film for ultra-sensitive pressure sensors. ACS Appl Mater Interfaces. 2022; 14(10): 12367-12374.

[262]

Jiang X, Zhang X, Niu R, et al. Strong piezoelectricity and improved rectifier properties in mono-and multilayered CuInP2S6. Adv Funct Mater. 2023; 33(40): 2213561.

[263]

Cheng Y, Xie Y, Liu Z, et al. Maximizing electron channels enabled by MXene aerogel for high-performance self-healable flexible electronic skin. ACS Nano. 2023; 17(2): 1393-1402.

[264]

Liu J, Tian G, Yang W, Deng W. Recent progress in flexible piezoelectric devices toward human–machine interactions. Soft Sci. 2022; 2(4): 22.

[265]

Puneetha P, Mallem SPR, Im K-S, et al. Strain-engineered piezotronic effects in flexible monolayer MoS2 continuous thin films. Nano Energy. 2022; 103: 107863.

[266]

Guo Y, Zhong M, Fang Z, Wan P, Yu G. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human–machine interfacing. Nano Lett. 2019; 19(2): 1143-1150.

[267]

Li G, Yin S, Tan C, et al. Fast photothermoelectric response in CVD-grown PdSe2 photodetectors with in-plane anisotropy. Adv Funct Mater. 2021; 31(40): 2104787.

[268]

Raval D, Gupta SK, Gajjar PN, Ahuja R. Strain modulating electronic band gaps and SQ efficiencies of semiconductor 2D PdQ2 (Q = S, Se) monolayer. Sci Rep. 2022; 12(1): 2964.

[269]

Meng J, Wang T, Zhu H, et al. Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 2022; 22(1): 81-89.

[270]

Huang S, Croy A, Bierling AL, et al. Machine learning-enabled graphene-based electronic olfaction sensors and their olfactory performance assessment. Appl Phys Rev. 2023; 10(2): 021406.

[271]

Lee M, Park J, Choe G, et al. A conductive and adhesive hydrogel composed of MXene nanoflakes as a paintable cardiac patch for infarcted heart repair. ACS Nano. 2023; 17(13): 12290-12304.

[272]

Zhang Z, Gao S, Hu YN, et al. Ti3C2Tx MXene composite 3D hydrogel potentiates mTOR signaling to promote the generation of functional hair cells in cochlea organoids. Adv Sci. 2022; 9(32): 2203557.

[273]

Gou GY, Li XS, Jian JM, et al. Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Sci Adv. 2022; 8(13): eabn2156.

[274]

Song D, Ye G, Zhao Y, Zhang Y, Hou X, Liu N. An all-in-one, bioderived, air-permeable, and sweat-stabl. MXene epidermal electrode for muscle theranostics. ACS Nano. 2022; 16(10): 17168-17178.

[275]

Zhi C, Shi S, Meng S, et al. A biocompatible and antibacterial all-textile structured triboelectric nanogenerator for self-powered tactile sensing. Nano Energy. 2023; 115: 108734.

[276]

Guan S, Yang Y, Wang Y, et al. A dual-functional MXene-based bioanode for wearable self-charging biosupercapacitors. Adv Mater. 2024; 36(1): 2305854.

[277]

Li C, Xiong Z, Zhou L, et al. Interfacing perforated eardrums with graphene-based membranes for broadband hearing recovery. Adv Healthc Mater. 2022; 11(20): 2201471.

[278]

Yin R, Xu Z, Mei M, et al. Soft transparent graphene contact lens electrodes for conformal full-cornea recording of electroretinogram. Nat Commun. 2018; 9(1): 2334.

[279]

Lu Y, Yang R, Dai Y, et al. Infrared radiation of graphene electrothermal film triggered alpha and theta brainwaves. Small Sci. 2022; 2(12): 2200064.

[280]

Wang Q, Ling S, Liang X, Wang H, Lu H, Zhang Y. Self-healable multifunctional electronic tattoos based on silk and graphene. Adv Funct Mater. 2019; 29(16): 1808695.

[281]

Hauck M, Saure LM, Zeller-Plumhoff B. et al. Overcoming water diffusion limitations in hydrogels via microtubular graphene networks for soft actuators. Adv Mater. 2023; 35(41): 2302816.

[282]

Zhang X, Song C, Nong H, et al. Development of an asymmetric hydrophobic/hydrophilic ultrathin graphene oxide membrane as actuator and conformable patch for heart repair. Adv Funct Mater. 2023; 33(32): 2300866.

[283]

Choi C, Choi MK, Liu S, et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat Commun. 2017; 8(1): 1664.

[284]

You CW, Fu T, Li CB, et al. A latent-fire-detecting olfactory system enabled by ultra-fast and sub-ppm ammonia-responsive Ti3C2Tx MXene/MoS2 sensors. Adv Funct Mater. 2022; 32(44): 2208131.

[285]

Wen C, Li X, Zanotti T, et al. Advanced data encryption using 2D materials. Adv Mater. 2021; 33(27): 2100185.

[286]

Yu J, Wang H, Zhuge F, et al. Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts. Nat Commun. 2023; 14(1): 5662.

[287]

Yang S, Liu K, Xu Y, Liu L, Li H, Zhai T. Gate dielectrics integration for 2D electronics: challenges, advances, and outlook. Adv Mater. 2023; 35(18): 2207901.

[288]

Gong F, Deng W, Wu Y, et al. Reconfigurable logic and in-sensor encryption operations in an asymmetrically tunable van der Waals heterostructure. Nano Res. 2023; 17(4): 3113-3119.

[289]

Chen P, Feng X, Li D, et al. Programmable polarization of 2D anisotropic rare earth material for images transmission and encryption. Adv Opt Mater. 2021; 10(5): 2102512.

[290]

Resisi S, Popoff SM, Bromberg Y. Image transmission through a dynamically perturbed multimode fiber by deep learning. Laser Photonics Rev. 2021; 15(10): 2000553.

[291]

Wang SY, Li DK, Zha MJ, Yan XQ, Liu Z, Tian J. Tunable optical activity in twisted anisotropic two-dimensional materials. ACS Nano. 2023; 17(16): 16230-16238.

[292]

Li J, Zhuang Y, Chen J, et al. Two-dimensional materials for electrochromic applications. EnergyChem. 2021; 3(5): 100060.

[293]

Zhao F, Feng Y, Wang Y, et al. Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2 evolution and CO2 photoreduction to CO. Nat Commun. 2020; 11(1): 1443.

[294]

Shi Z, Ge Y, Yun Q, Zhang H. Two-dimensional nanomaterial-templated composites. Acc Chem Res. 2022; 55(24): 3581-3593.

[295]

Zhong S, Ju S, Shao Y, et al. Magnesium hydride nanoparticles anchored on MXene sheets as high capacity anode for lithium-ion batteries. J Energy Chem. 2021; 62: 431-439.

[296]

Zhao Y, Gobbi M, Hueso LE, Samori P. Molecular approach to engineer two-dimensional devices for CMOS and beyond-CMOS applications. Chem Rev. 2022; 122(1): 50-131.

[297]

Fan FR, Wang R, Zhang H, Wu W. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem Soc Rev. 2021; 50(19): 10983-11031.

[298]

Zhang Y, Yu J, Zhu R, et al. A single-crystalline native dielectric for two-dimensional semiconductors with an equivalent oxide thickness below 0.5 nm. Nat Electron. 2022; 5(10): 643-649.

[299]

Luo S, Peng L, Xie Y, et al. Flexible large-area graphene films of 50–600 nm thickness with high carrier mobility. Nano-Micro Lett. 2023; 15(1): 61.

[300]

Zheng X, Chen S, Li J, et al. Two-dimensional carbon graphdiyne: advances in fundamental and application research. ACS Nano. 2023; 17(15): 14309-14346.

[301]

Fan S, Cao R, Wang L, et al. Quantum tunneling in two-dimensional van der Waals heterostructures and devices. Sci China Mater. 2021; 64(10): 2359-2387.

[302]

Wang L, Papadopoulos S, Iyikanat F, et al. Exciton-assisted electron tunnelling in van der Waals heterostructures. Nat Mater. 2023; 22(9): 1094-1099.

[303]

Mi M, Xiao H, Yu L, et al. Two-dimensional magnetic materials for spintronic devices. Mater Today Nano. 2023; 24: 100408.

[304]

Klein DR, MacNeill D, Lado JL, et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science. 2018; 360(6394): 1218-1222.

[305]

Shao B, Wan T, Liao F, et al. Highly trustworthy in-sensor cryptography for image encryption and authentication. ACS Nano. 2023; 17(11): 10291-10299.

[306]

Lee S, Pekdemir S, Kayaci N, Kalay M, Onses MS, Ye J. Graphene-based physically unclonable functions with dual source of randomness. ACS Appl Mater Interfaces. 2023; 15(28): 33878-33889.

[307]

Wang S, Pan X, Lyu L, et al. Nonvolatile van der Waals heterostructure phototransistor for encrypted optoelectronic logic circuit. ACS Nano. 2022; 16(3): 4528-4535.

[308]

Sun T, Feng B, Huo J, et al. Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano-Micro Lett. 2023; 16(1): 14.

[309]

Sekitani T. A photocurable bioelectronics–tissue interface. Nat Mater. 2021; 20(11): 1460-1461.

[310]

Sim K, Rao Z, Zou Z, et al. Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for wearable human–machine interfaces. Sci Adv. 2019; 5(8): eaav9653.

[311]

Wan W, Kubendran R, Schaefer C, et al. A compute-in-memory chip based on resistive random-access memory. Nature. 2022; 608(7923): 504-512.

[312]

Lee GS, Kim JG, Kim JT, et al. 2D materials beyond post-AI era: smart fibers, soft robotics, and single atom catalysts. Adv Mater. 2023; 36(11): 2307689.

[313]

Liu W, Duo Y, Liu J, et al. Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces. Nat Commun. 2022; 13(1): 5030.

[314]

Jung YH, Yoo J-Y, Vázquez-Guardado A, et al. A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nat Electron. 2022; 5(6): 374-385.

[315]

Ge J, Wang X, Drack M, et al. A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat Commun. 2019; 10(1): 4405.

[316]

Cui T, Li D, Hirtz T, et al. Graphene-based sensors for human–machine interaction. Carbon Future. 2023; 1(1): 9200005.

[317]

Lu L, Jiang C, Hu G, Liu J, Yang B. Flexible noncontact sensing for human–machine interaction. Adv Mater. 2021; 33(16): 2100218.

[318]

Guo X, Lu X, Jiang P, Bao X. SrTiO3/CuNi-heterostructure-based thermopile for sensitive human radiation detection and noncontact human–machine interaction. Adv Mater. 2022; 34(35): 2204355.

[319]

Zhou H, Huang W, Xiao Z, et al. Deep-learning-assisted noncontact gesture-recognition system for touchless human–machine interfaces. Adv Funct Mater. 2022; 32(49): 2208271.

[320]

Li Z, Ran W, Yan Y, Li L, Lou Z, Shen G. High-performance optical noncontact controlling system based on broadband PtTex/Si heterojunction photodetectors for human–machine interaction. InfoMat. 2021; 4(1): e12261.

[321]

Li N, Zhang S, Peng Y, et al. 2D semiconductor-based optoelectronics for artificial vision. Adv Funct Mater. 2023; 33(52): 2305589.

[322]

Wu P, He T, Zhu H, et al. Next-generation machine vision systems incorporating two-dimensional materials: progress and perspectives. InfoMat. 2021; 4(1): e12275.

[323]

Wang CY, Liang SJ, Wang S, et al. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci Adv. 2020; 6(26): eaba6173.

[324]

Pan X, Shi J, Wang P, et al. Parallel perception of visual motion using light-tunable memory matrix. Sci Adv. 2023; 9(39): eadi4083.

[325]

Zhang F, Li C, Li Z, Dong L, Zhao J. Recent progress in three-terminal artificial synapses based on 2D materials: from mechanisms to applications. Microsyst Nanoeng. 2023; 9(1): 16.

[326]

Mennel L, Symonowicz J, Wachter S, Polyushkin DK, Molina-Mendoza AJ. Mueller T. Ultrafast machine vision with 2D material neural network image sensors. Nature. 2020; 579(7797): 62-66.

[327]

Kumar D, Joharji L, Li H, Rezk A, Nayfeh A, El-Atab N. Artificial visual perception neural system using a solution-processable MoS2-based in-memory light sensor. Light Sci Appl. 2023; 12(1): 109.

[328]

Chen H, Cai Y, Han Y, Huang H. Towards artificial visual sensory system: organic optoelectronic synaptic materials and devices. Angew Chem Int Ed Engl. 2023; 63(1): e202313634.

[329]

Zhang HS, Dong XM, Zhang ZC, et al. Co-assembled perylene/graphene oxide photosensitive heterobilayer for efficient neuromorphics. Nat Commun. 2022; 13(1): 4996.

[330]

Zhang N, Wang F, Li P, et al. Two-dimensional vertical-lateral hybrid heterostructure for ultrasensitive photodetection and image sensing. Mater Today. 2023; 69: 79-87.

[331]

Chen L, Chen S, Wu J, et al. A two-dimensional MoS2 array based on artificial neural network learning for high-quality imaging. Nano Res. 2023; 16(7): 10139-10147.

[332]

Dodda A, Jayachandran D, Pannone A, et al. Active pixel sensor matrix based on monolayer MoS2 phototransistor array. Nat Mater. 2022; 21(12): 1379-1387.

[333]

He H, Wang Y, Qi Y, Xu Z, Li Y, Wang Y. From prediction to design: recent advances in machine learning for the study of 2D materials. Nano Energy. 2023; 118: 108965.

[334]

Ryu B, Wang L, Pu H, Chan MKY, Chen J. Understanding, discovery, and synthesis of 2D materials enabled by machine learning. Chem Soc Rev. 2022; 51(6): 1899-1925.

[335]

Schottle M, Tran T, Oberhofer H, Retsch M. Machine learning enabled image analysis of time-temperature sensing colloidal arrays. Adv Sci. 2023; 10(8): 2205512.

[336]

Lu Y, Kong D, Yang G, et al. Machine learning-enabled tactile sensor design for dynamic touch decoding. Adv Sci. 2023; 10(32): 2303949.

[337]

Han B, Lin Y, Yang Y, et al. Deep-learning-enabled fast optical identification and characterization of 2D materials. Adv Mater. 2020; 32(29): 2000953.

[338]

Gao J, Zheng Y, Yu W, et al. Intrinsic polarization coupling in 2D α-In2Se3 toward artificial synapse with multimode operations. SmartMat. 2021; 2(1): 88-98.

[339]

Xue X, Patra B, van Dijk JPG, et al. CMOS-based cryogenic control of silicon quantum circuits. Nature. 2021; 593(7858): 205-210.

[340]

Huang PY, Jiang BY, Chen HJ, et al. Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction. Nat Commun. 2023; 14(1): 6736.

[341]

Liao F, Zhou Z, Kim BJ, et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat Electron. 2022; 5(2): 84-91.

[342]

Cho SW, Jo C, Kim YH, Park SK. Progress of materials and devices for neuromorphic vision sensors. Nano-Micro Lett. 2022; 14(1): 203.

[343]

Han J, Wang F, Han S, et al. Recent progress in 2D inorganic/organic charge transfer heterojunction photodetectors. Adv Funct Mater. 2022; 32(34): 2205150.

[344]

Zhang GX, Zhang ZC, Chen XD, et al. Broadband sensory networks with locally stored responsivities for neuromorphic machine vision. Sci Adv. 2023; 9(37): eadi5104.

[345]

Wu J, Wang M, Dong L, et al. A trimode thermoregulatory flexible fibrous membrane designed with hierarchical core-sheath fiber structure for wearable personal thermal management. ACS Nano. 2022; 16(8): 12801-12812.

[346]

Liu Z, Zhu T, Wang J, et al. Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 2022; 14(1): 61.

[347]

Rong M, Chen D, Hu H, et al. Stretchable and self-healable fiber-shaped conductors suitable for harsh environments. Small. 2023; 19(50): 2304353.

[348]

Rafique A, Ferreira I, Abbas G, Baptista AC. Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nano-Micro Lett. 2023; 15(1): 40.

[349]

Qiu Y, Ren Y, Jia X, Li H, Zhang M. Microfluidic construction of polypyrrole-coated core–sheath polyaniline/graphene hybrid fibers with excellent properties for wearable supercapacitors. ACS Appl Energy Mater. 2023; 6(21): 11189-11198.

[350]

Mo F, Liang G, Huang Z, Li H, Wang D, Zhi C. An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Adv Mater. 2020; 32(5): 1902151.

[351]

Sadri B, Gao W. Fibrous wearable and implantable bioelectronics. Appl Phys Rev. 2023; 10(3): 031303.

[352]

Wang X, Zhou Z, Sun Z, et al. Atomic modulation of 3D conductive frameworks boost performance of MnO2 for coaxial fiber-shaped supercapacitors. Nano-Micro Lett. 2020; 13(1): 4.

[353]

Li Y, Yang W, Yang W, et al. Towards high-energy and anti-self-discharge Zn-ion hybrid supercapacitors with new understanding of the electrochemistry. Nano-Micro Lett. 2021; 13(1): 95.

[354]

Wang Y, Wang Y. Recent progress in MXene layers materials for supercapacitors: high-performance electrodes. SmartMat. 2022; 4(1): e1130.

[355]

Wang L, Zhang Y, Bruce PG. Batteries for wearables. Natl Sci Rev. 2023; 10(1): nwac062.

[356]

Qiu J, Zhao H, Lei Y. Emerging smart design of electrodes for micro-supercapacitors: a review. SmartMat. 2022; 3(3): 447-473.

[357]

Xu X, Zhang Z, Xiong R, et al. Bending resistance covalent organic framework superlattice: “nano-hourglass”-induced charge accumulation for flexible in-plane micro-supercapacitors. Nano-Micro Lett. 2022; 15(1): 25.

[358]

Khumujam DD, Kshetri T, Singh TI, Kim NH, Lee JH. Hierarchical integrated hybrid structural electrodes based on Co-N/C and Mo-doped NiCo-LDH@Co-N/C anchored on MX/CF for high energy density fiber-shaped supercapacitor. Adv Funct Mater. 2023; 33(40): 2302388.

[359]

Zheng Y, Wang Y, Zhao J, Li Y. Electrostatic interfacial cross-linking and structurally oriented fiber constructed by surface-modified 2D MXene for high-performance flexible pseudocapacitive storage. ACS Nano. 2023; 17(3): 2487-2496.

[360]

Wang G-F, Qin H, Gao X, et al. Graphene thin films by noncovalent-interaction-driven assembly of graphene monolayers for flexible supercapacitors. Chem. 2018; 4(4): 896-910.

[361]

Song Y, Zhang Y, Yang H, et al. Lightweight flexible solid-state supercapacitor based on metal–graphene–textile composite electrodes. ACS Appl Energy Mater. 2023; 6(17): 8707-8716.

[362]

Liu B, Zhang Q, Zhang L, et al. Electrochemically exfoliated chlorine-doped graphene for flexible all-solid-state micro-supercapacitors with high volumetric energy density. Adv Mater. 2022; 34(19): 2106309.

[363]

Liu C, Wu H, Wang X, et al. Flexible solid-state supercapacitor integrated by methanesulfonic acid/polyvinyl acetate hydrogel and Ti3C2Tx. Energy Storage Mater. 2023; 54: 164-171.

[364]

Shi X, Guo F, Hou K, et al. Highly flexible all-solid-state supercapacitors based on MXene/CNT composites. Energy Fuel. 2023; 37(13): 9704-9712.

[365]

Wang H, Wang Y, Chang J, et al. Nacre-inspired strong MXene/cellulose fiber with superior supercapacitive performance via synergizing the interfacial bonding and interlayer spacing. Nano Lett. 2023; 23(12): 5663-5672.

[366]

Xiang G-T, Chen N, Lu B, et al. Flexible solid-state Zn-Co MOFs@MXene supercapacitors and organic ion hydrogel sensors for self-powered smart sensing applications. Nano Energy. 2023; 118: 108936.

[367]

Liu S, Zeng T, Zhang Y, Wan Q, Yang N. Coupling W18O49/Ti3C2Tx MXene pseudocapacitive electrodes with redox electrolytes to construct high-performance asymmetric supercapacitors. Small. 2022; 18(52): 2204829.

[368]

Kang L, Liu S, Zhang Q, et al. Hierarchical spatial confinement unlocking the storage limit of MoS2 for flexible high-energy supercapacitors. ACS Nano. 2024; 18(3): 2149-2161.

[369]

Yan Z, Luo S, Li Q, Wu ZS, Liu SF. Recent advances in flexible wearable supercapacitors: properties, fabrication, and applications. Adv Sci. 2023; 11(8): 2302172.

[370]

Wang J, Ma Q, Sun S, et al. Highly aligned lithiophilic electrospun nanofiber membrane for the multiscale suppression of Li dendrite growth. eScience. 2022; 2(6): 655-665.

[371]

Guo Y, Wu S, He Y-B, et al. Solid-state lithium batteries: safety and prospects. eScience. 2022; 2(2): 138-163.

[372]

Mu K, Wang D, Dong W, et al. Hybrid crosslinked solid polymer electrolyte via in-situ solidification enables high-performance solid-state lithium metal batteries. Adv Mater. 2023; 35(47): 2304686.

[373]

Wang Z, Xia J, Ji X, et al. Lithium anode interlayer design for all-solid-state lithium-metal batteries. Nat Energy. 2024; 9(3): 251-262.

[374]

Wu N, Shi YR, Lang SY, et al. Self-healable solid polymeric electrolytes for stable and flexible lithium metal batteries. Angew Chem Int Ed Engl. 2019; 58(50): 18146-18149.

[375]

Reisecker V, Flatscher F, Porz L, et al. Effect of pulse-current-based protocols on the lithium dendrite formation and evolution in all-solid-state batteries. Nat Commun. 2023; 14(1): 2432.

[376]

Zhai P, Yang Z, Wei Y, Guo X, Gong Y. Two-dimensional fluorinated graphene reinforced solid polymer electrolytes for high-performance solid-state lithium batteries. Adv Energy Mater. 2022; 12(42): 2200967.

[377]

Hu Z, Bao W, Zhang Y, et al. Single-ion conductors functionalized graphene oxide enabling solid polymer electrolytes with uniform Li-ion transport toward stable and dendrite-free lithium metal batteries. Chem Eng J. 2023; 472: 144932.

[378]

Zhu J, Cai D, Li J, et al. In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries. Energy Storage Mater. 2022; 49: 546-554.

[379]

Liu W, Zhang X, Xu Y, et al. 2D graphene/MnO heterostructure with strongly stable Interface enabling high-performance flexible solid-state lithium-ion capacitors. Adv Funct Mater. 2022; 32(30): 2202342.

[380]

Xu Z, Huang H, Tang Q, et al. Coaxially MXene-confined solid-state electrolyte for flexible high-rate lithium metal battery. Nano Energy. 2024; 122: 109312.

[381]

Pan Q, Zheng Y, Kota S, et al. 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries. Nanoscale Adv. 2019; 1(1): 395-402.

[382]

Shi Y, Li B, Zhu Q, et al. MXene-based mesoporous nanosheets toward superior lithium ion conductors. Adv Energy Mater. 2020; 10(9): 1903534.

[383]

Chen Z, Ma X, Hou Y, et al. Grafted MXenes based electrolytes for 5V-class solid-state batteries. Adv Funct Mater. 2023; 33(23): 2214539.

[384]

Wei X, Lin CC, Wu C, et al. Three-dimensional hierarchically porous MoS2 foam as high-rate and stable lithium-ion battery anode. Nat Commun. 2022; 13(1): 6006.

[385]

Kim KN, Chun J, Kim JW, et al. Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano. 2015; 9(6): 6394-6400.

[386]

Khandelwal G, Maria Joseph Raj NP, Kim SJ. Materials beyond conventional triboelectric series for fabrication and applications of triboelectric nanogenerators. Adv Energy Mater. 2021; 11(33): 2101170.

[387]

Qin H, Cheng G, Zi Y, et al. High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Adv Funct Mater. 2018; 28(51): 1805216.

[388]

Bhavya AS, Varghese H, Chandran A, Surendran KP. Massive enhancement in power output of BoPET-paper triboelectric nanogenerator using 2D-hexagonal boron nitride nanosheets. Nano Energy. 2021; 90: 106628.

[389]

Han SA, Lee J, Lin J, Kim S-W, Kim JH. Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials. Nano Energy. 2019; 57: 680-691.

[390]

Cheng X, Miao L, Song Y, et al. High efficiency power management and charge boosting strategy for a triboelectric nanogenerator. Nano Energy. 2017; 38: 438-446.

[391]

Gajula P, Yoon JU, Woo I, Oh S-J, Bae JW. Triboelectric touch sensor array system for energy generation and self-powered human–machine interfaces based on chemically functionalized, electrospun rGO/Nylon-12 and micro-patterned Ecoflex/MoS2 films. Nano Energy. 2024; 121: 109278.

[392]

Xia S-Y, Long Y, Huang Z, et al. Laser-induced graphene (LIG)-based pressure sensor and triboelectric nanogenerator towards high-performance self-powered measurement-control combined system. Nano Energy. 2022; 96: 107099.

[393]

Qiao W, Zhao Z, Zhou L, et al. Simultaneously enhancing direct-current density and lifetime of tribovotaic nanogenerator via interface lubrication. Adv Funct Mater. 2022; 32(46): 2208544.

[394]

Shi L, Jin H, Dong S, et al. High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting. Nano Energy. 2021; 80: 105599.

[395]

Hasan MM, Sadeque MSB, Albasar I, et al. Scalable fabrication of MXene-PVDF nanocomposite triboelectric fibers via thermal drawing. Small. 2023; 19(6): 2206107.

[396]

Li J, Jia H, Zhou J, et al. Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure. Nat Commun. 2023; 14(1): 5009.

[397]

Zhou Y, Li J, Tan Q, Wang Y, Zeng N, Lai P. Soft electronics go for three-dimensional health monitoring in deep tissue. Innovation Mater. 2023; 1(2): 100022.

[398]

Yuan J, Zhang Y, Wei C, Zhu R. A fully self-powered wearable leg movement sensing system for human health monitoring. Adv Sci. 2023; 10(29): 2303114.

[399]

Sheng F, Zhang B, Cheng R, et al. Wearable energy harvesting-storage hybrid textiles as on-body self-charging power systems. Nano Res Energy. 2023; 2: e9120079.

[400]

Galli V, Sailapu SK, Cuthbert TJ, Ahmadizadeh C, Hannigan BC, Menon C. Passive and wireless all-textile wearable sensor system. Adv Sci. 2023; 10(22): 2206665.

[401]

Yang H, Li J, Xiao X, et al. Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nat Commun. 2022; 13(1): 5311.

[402]

Rajappan A, Jumet B, Shveda RA, et al. Logic-enabled textiles. Proc Natl Acad Sci U S A. 2022; 119(35): e2202118119.

[403]

Shi X, Zuo Y, Zhai P, et al. Large-area display textiles integrated with functional systems. Nature. 2021; 591(7849): 240-245.

[404]

He Y, Liu Q, Tian M, et al. Highly conductive and elastic multi-responsive phase change smart fiber and textile. Compos Commun. 2023; 44: 101772.

[405]

Hong S, Gu Y, Seo JK, et al. Wearable thermoelectrics for personalized thermoregulation. Sci Adv. 2019; 5(5): eaaw0536.

[406]

Sun Z, Hu Y, Wei W, et al. Hyperstable eutectic core-spun fiber enabled wearable energy harvesting and personal thermal management fabric. Adv Mater. 2023; 36(4): 2310102.

[407]

Niu Y, Liu H, He R, et al. The new generation of soft and wearable electronics for health monitoring in varying environment: from normal to extreme conditions. Mater Today. 2020; 41: 219-242.

[408]

Jiang S, Zhang T, Zhou Y, Lai P, Huang Y. Wearable ultrasound bioelectronics for healthcare monitoring. Innovation. 2023; 4(4): 100447.

[409]

Chen A, Zeng Q, Tan L, et al. A novel hybrid triboelectric nanogenerator based on the mutual boosting effect of electrostatic induction and electrostatic breakdown. Energy Environ Sci. 2023; 16(8): 3486-3496.

[410]

He W, Shan C, Wu H, et al. Capturing dissipation charge in charge space accumulation area for enhancing output performance of sliding triboelectric nanogenerator. Adv Energy Mater. 2022; 12(31): 2201454.

[411]

Luo B, Cai C, Liu T, et al. Multiscale structural nanocellulosic triboelectric aerogels induced by Hofmeister effect. Adv Funct Mater. 2023; 33(42): 2306810.

[412]

Zhu D, Lu J, Zheng M, et al. Self-powered bionic antenna based on triboelectric nanogenerator for micro-robotic tactile sensing. Nano Energy. 2023; 114: 108644.

[413]

Zhang C, Chen J, Xuan W, et al. Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors. Nat Commun. 2020; 11(1): 58.

[414]

Chen M, Wang Z, Zhang Q, et al. Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing. Nat Commun. 2021; 12(1): 1416.

[415]

Zhou L, Liu L, Qiao W, et al. Improving degradation efficiency of organic pollutants through a self-powered alternating current electrocoagulation system. ACS Nano. 2021; 15(12): 19684-19691.

[416]

Qin J, Yang X, Shen C, et al. Carbon nanodot-based humidity sensor for self-powered respiratory monitoring. Nano Energy. 2022; 101: 107549.

[417]

Li C, Xu Z, Xu S, et al. Miniaturized retractable thin-film sensor for wearable multifunctional respiratory monitoring. Nano Res. 2023; 16(9): 11846-11854.

[418]

Xia X, Wang H, Zi Y. Field-assisted thermionic emission toward quantitative modeling of charge-transfer mechanisms in contact electrification. SmartMat. 2022; 3(4): 619-631.

[419]

Wang B, Wei X, Zhou H, et al. Viscoelastic blood coagulation testing system enabled by a non-contact triboelectric angle sensor. Exp Dermatol. 2023; 4(1): 20230073.

[420]

Liao W, Liu X, Li Y, et al. Transparent, stretchable, temperature-stable an. self-healing ionogel-based triboelectric nanogenerator for biomechanical energy collection. Nano Res. 2021; 15(3): 2060-2068.

[421]

Liang X, Liu S, Ren Z, Jiang T, Wang ZL. Self-powered intelligent buoy based on triboelectric nanogenerator for water level alarming. Adv Funct Mater. 2022; 32(35): 2205313.

[422]

Zhao J, Wang D, Zhang F, et al. Self-powered, long-durable, and highly selective oil-solid triboelectric nanogenerator for energy harvesting and intelligent monitoring. Nano-Micro Lett. 2022; 14(1): 160.

[423]

Zhao D, Li H, Wang J, et al. A drawstring triboelectric nanogenerator with modular electrodes for harvesting wave energy. Nano Res. 2023; 16(8): 10931-10937.

[424]

Liu W, Duo Y, Chen X, et al. An intelligent robotic system capable of sensing and describing objects based on bimodal, self-powered flexibl. sensors. Adv Funct Mater. 2023; 33(41): 2306368.

[425]

Sun Q, Ren G, He S, et al. Charge dispersion strategy for high-performance and rain-proof triboelectric nanogenerator. Adv Mater. 2023; 36(8): 2307918.

[426]

Fu X, Pan X, Liu Y, et al. Non-contact triboelectric nanogenerator. Adv Funct Mater. 2023; 33(52): 2306749.

[427]

Yuan F, Liu S, Zhou J, et al. Smart touchless triboelectric nanogenerator towards safeguard and 3D morphological awareness. Nano Energy. 2021; 86: 106071.

[428]

Li S, Zhang Y, Liang X, et al. Humidity-sensitive chemoelectric flexible sensors based on metal–air redox reaction for health management. Nat Commun. 2022; 13(1): 5416.

[429]

Qin Y, Zhang W, Liu Y, et al. Cellulosic gel-based triboelectric nanogenerators for energy harvesting and emerging applications. Nano Energy. 2023; 106: 108079.

[430]

Li T, Zhao T, Tian X, et al. A high-performance humidity sensor based on alkalized MXenes and poly(dopamine) for touchless sensing and respiration monitoring. J Mater Chem C. 2022; 10(6): 2281-2289.

[431]

Lee JW, Jung S, Jo J, et al. Sustainable highly charged C60-functionalized polyimide in a non-contact mode triboelectric nanogenerator. Energy Environ Sci. 2021; 14(2): 1004-1015.

[432]

Zhang X-Y, Liu H, Ma X-Y, et al. Deep learning enabled high-performance speech command recognition on graphene flexible microphones. ACS Appl Electron. 2022; 4(5): 2306-2312.

[433]

Ravenscroft D, Prattis I, Kandukuri T, Samad YA, Mallia G, Occhipinti LG. Machine learning methods for automatic silent speech recognition using a wearable graphene strain gauge sensor. Sensors. 2021; 22(1): 299.

[434]

Luo H, Du J, Yang P, et al. Human-machine interaction via dual modes of voice and gesture enabled by triboelectric nanogenerator and machine learning. ACS Appl Mater Interfaces. 2023; 15(13): 17009-17018.

[435]

Yang Q, Jin W, Zhang Q, et al. Mixed-modality speech recognition and interaction using a wearable artificial throat. Nat Mach Intell. 2023; 5(2): 169-180.

[436]

Wei Y, Qiao Y, Jiang G, et al. A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano. 2019; 13(8): 8639-8647.

[437]

Tao LQ, Tian H, Liu Y, et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat Commun. 2017; 8(1): 14579.

[438]

Yang Y, Wei Y, Guo Z, et al. From materials to devices: graphene toward practical applications. Small Methods. 2022; 6(10): 2200671.

[439]

Hu X, Huang T, Liu Z, et al. Conductive graphene-based E-textile for highly sensitive, breathable, and water-resistan. multimodal gesture-distinguishable sensors. J Mater Chem A. 2020; 8(29): 14778-14787.

[440]

Xiang Z, Li L, Lu Z, et al. High-performance microcone-array flexible piezoelectric acoustic sensor based on multicomponent lead-free perovskite rods. Matter. 2023; 6(2): 554-569.

[441]

Wang HS, Hong SK, Han JH, et al. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci Adv. 2021; 7(7): eabe5683.

[442]

Lin Z, Zhang G, Xiao X, et al. A personalized acoustic Interface for wearable human–machine interaction. Adv Funct Mater. 2021; 32(9): 2109430.

[443]

Park J, Kang DH, Chae H, et al. Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human–machine interface. Sci Adv. 2022; 8(12): eabj9220.

[444]

Lee JH, Cho KH, Cho K. Emerging trends in soft electronics: integrating machine intelligence with soft acoustic/vibration sensors. Adv Mater. 2023; 35(32): 2209673.

[445]

Fan C, Cheng X, Xu L, et al. Monolithic three-dimensional integration of aligned carbon nanotube transistors for high-performance integrated circuits. InfoMat. 2023; 5(7): e12420.

[446]

Tong L, Wan J, Xiao K, et al. Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide. Nat Electron. 2022; 6: 37-44.

[447]

Wang S, Liu X, Zhou P. The road for 2D semiconductors in the silicon age. Adv Mater. 2022; 34(48): 2106886.

[448]

Fang Z, Chen R, Zheng J, et al. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nat Nanotechnol. 2022; 17(8): 842-848.

[449]

An J, Zhao X, Zhang Y, et al. Perspectives of 2D materials for optoelectronic integration. Adv Funct Mater. 2021; 32(14): 2110119.

[450]

Li X, Yang J, Sun H, Huang L, Li H, Shi J. Controlled synthesis and accurate doping of wafer-scale 2D semiconducting transition metal dichalcogenides. Adv Mater. 2023;2305115.

[451]

Miao J, Leblanc C, Wang J, et al. Heterojunction tunnel triodes based on two-dimensional metal selenide and three-dimensional silicon. Nat Electron. 2022; 5(11): 744-751.

[452]

Li S, Ouyang D, Zhang N, et al. Substrate engineering for chemical vapor deposition growth of large-scale 2D transition metal dichalcogenides. Adv Mater. 2023; 35(52): 2211855.

[453]

Akinwande D, Huyghebaert C, Wang CH, et al. Graphene and two-dimensional materials for silicon technology. Nature. 2019; 573(7775): 507-518.

[454]

Han SJ, Garcia AV, Oida S, Jenkins KA, Haensch W. Graphene radio frequency receiver integrated circuit. Nat Commun. 2014; 5(1): 3086.

[455]

Sun X, Zhang X, Xie Y. Surface defects in two-dimensional photocatalysts for efficient organic synthesis. Matter. 2020; 2(4): 842-861.

[456]

Huang TX, Dong B, Filbrun SL, et al. Single-molecule photocatalytic dynamics at individual defects in two-dimensional layered materials. Sci Adv. 2021; 7(40): eabj4452.

[457]

Lin Y, Cao Y, Ding S, et al. Scaling aligned carbon nanotube transistors to a sub-10 nm node. Nat Electron. 2023; 6(7): 506-515.

[458]

Yang Q, Hu J, Fang YW, et al. Ferroelectricity in layered bismuth oxide down to 1 nanometer. Science. 2023; 379(6638): 1218-1224.

[459]

Huang W, Chen J, Yao Y, et al. Vertical organic electrochemical transistors for complementary circuits. Nature. 2023; 613(7944): 496-502.

[460]

Wang J, Ilyas N, Ren Y, et al. Technology and integration roadmap for optoelectronic memristor. Adv Mater. 2023; 36(9): 2307393.

[461]

Zhang W, Yao P, Gao B, et al. Edge learning using a fully integrated neuro-inspired memristor chip. Science. 2023; 381(6663): 1205-1211.

[462]

Lanza M, Sebastian A, Lu WD, et al. Memristive technologies for data storage, computation, encryption, and radio-frequenc. communication. Science. 2022; 376(6597): eabj9979.

[463]

Huh W, Lee D, Lee CH. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv Mater. 2020; 32(51): 2002092.

[464]

Rao M, Tang H, Wu J, et al. Thousands of conductance levels in memristors integrated on CMOS. Nature. 2023; 615(7954): 823-829.

[465]

Li S, Pam ME, Li Y, et al. Wafer-scale 2D hafnium diselenide based memristor crossbar array for energy-efficient neural network hardware. Adv Mater. 2022; 34(25): 2103376.

[466]

Chen P, Liu F, Lin P, et al. Open-loop analog programmable electrochemical memory array. Nat Commun. 2023; 14(1): 6184.

[467]

Aguilar J, Monaenkova D, Linevich V, et al. Collective clog control: optimizing traffic flow in confined biological and robophysical excavation. Science. 2018; 361(6403): 672-677.

[468]

Liu Y, Tian H, Wu F, et al. Cellular automata imbedded memristor-based recirculated logic in-memory computing. Nat Commun. 2023; 14(1): 2695.

[469]

Chen L, Li R, Yuan S, et al. Fiber-shaped artificial optoelectronic synapses for wearable visual-memory systems. Matter. 2023; 6(3): 925-939.

[470]

Wei Y, Liu Y, Lin Q, et al. Organic optoelectronic synapses for sound perception. Nano-Micro Lett. 2023; 15(1): 133.

[471]

Cao Y, Sha X, Bai X, et al. Ultralow light-power consuming photonic synapses based on ultrasensitive perovskite/indium-gallium-zinc-oxide heterojunction phototransistors. Adv Electron Mater. 2021; 8(3): 2100902.

[472]

Yu J, Gao G, Huang J, et al. Contact-electrification-activated artificial afferents at femtojoule energy. Nat Commun. 2021; 12(1): 1581.

[473]

Shang J, Tang L, Guo K, et al. Electronic exoneuron based on liquid metal for the quantitative sensing of the augmented somatosensory system. Microsyst Nanoeng. 2023; 9(1): 112.

[474]

Chen J, Zhou Z, Kim BJ, et al. Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat Nanotechnol. 2023; 18(8): 882-888.

[475]

Sarkar T, Lieberth K, Pavlou A, et al. An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat Electron. 2022; 5(11): 774-783.

[476]

He K, Wang C, He Y, Su J, Chen X. Artificial neuron devices. Chem Rev. 2023; 123(23): 13796-13865.

[477]

Sebastian A, Pendurthi R, Kozhakhmetov A, et al. Two-dimensional materials-based probabilistic synapses and reconfigurable neurons for measuring inference uncertainty using Bayesian neural networks. Nat Commun. 2022; 13(1): 6139.

[478]

van de Ven GM, Siegelmann HT, Tolias AS. Brain-inspired replay for continual learning with artificial neural networks. Nat Commun. 2020; 11(1): 4069.

[479]

Zhao Z, Zhu H, Li X, et al. Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents. Nat Biomed Eng. 2023; 7(4): 520-532.

[480]

Chen K, Hu H, Song I, et al. Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat Photonics. 2023; 17(7): 629-637.

[481]

Guo Y, Duan W, Liu X, et al. Generative complex networks within a dynamic memristor with intrinsic variability. Nat Commun. 2023; 14(1): 6134.

[482]

Zhou X, Wang Z, Xiong T, et al. Fiber crossbars: an emerging architecture of smart electronic textiles. Adv Mater. 2023; 35(51): 2300576.

[483]

Ni Y, Yang L, Feng J, Liu J, Sun L, Xu W. Flexible optoelectronic neural transistors with broadband spectrum sensing and instant electrical processing for multimodal neuromorphic computing. SmartMat. 2022; 4(2): e1154.

[484]

Bian J, Cao Z, Zhou P. Neuromorphic computing: devices, hardware, and system application facilitated by two-dimensional materials. Appl Phys Rev. 2021; 8(4): 041313.

[485]

Lee S, Choi HW, Figueiredo CL, et al. Truly form-factor-free industrially scalable system integration for electronic textile architectures with multifunctional fiber devices. Sci Adv. 2023; 9(16): eadf4049.

[486]

Zavabeti A, Jannat A, Zhong L, Haidry AA, Yao Z, Ou JZ. Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett. 2020; 12(1): 66.

[487]

Choi SH, Yun SJ, Won YS, et al. Large-scale synthesis of graphene and other 2D materials towards industrialization. Nat Commun. 2022; 13(1): 1484.

[488]

Xu X, Guo T, Kim H, et al. Growth of 2D materials at the wafer scale. Adv Mater. 2022; 34(14): 2108258.

[489]

Peng Z, Chen X, Fan Y, Srolovitz DJ, Lei D. Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light Sci Appl. 2020; 9(1): 190.

[490]

Xu X, Liang T, Kong D, Wang B, Zhi L. Strain engineering of two-dimensional materials for advanced electrocatalysts. Mater Today Nano. 2021; 14: 100111.

[491]

Hoang AT, Hu L, Kim BJ, et al. Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat Nanotechnol. 2023; 18(12): 1439-1447.

[492]

Qin B, Ma H, Hossain M, et al. Substrates in the synthesis of two-dimensional materials via chemical vapor deposition. Chem Mater. 2020; 32(24): 10321-10347.

[493]

Zhang L, Wang H, Zong X, et al. Probing interlayer shear thermal deformation in atomically-thin van der Waals layered materials. Nat Commun. 2022; 13(1): 3996.

[494]

Dang X, Zhao H. Graphdiyne: a promising 2D all-carbon nanomaterial for sensing and biosensing. TrAC Trends Anal Chem. 2021; 137: 116194.

[495]

Muñoz J. Rational design of stimuli-responsive inorganic 2D materials via molecular engineering: toward molecule-programmable nanoelectronics. Adv Mater. 2023; 36(8): 2305546.

[496]

Kou Y, Sun K, Luo J, et al. An intrinsically flexible phase change film for wearable thermal managements. Energy Storage Mater. 2021; 34: 508-514.

[497]

Lee Y, Chung JW, Lee GH, et al. Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Sci Adv. 2021; 7(23): eabg9180.

[498]

Joo H, Lee Y, Kim J, et al. Soft implantable drug delivery device integrated wirelessly with wearable devices to treat fatal seizures. Sci Adv. 2021; 7(1): eabd4639.

[499]

Han WB, Ko GJ, Lee KG, et al. Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat Commun. 2023; 14(1): 2263.

[500]

Wu Y, Li D, Wu C-L, Hwang HY, Cui Y. Electrostatic gating and intercalation in 2D materials. Nat Rev Mater. 2022; 8(1): 41-53.

[501]

Kidambi PR, Chaturvedi P, Moehring NK. Subatomic species transport through atomically thin membranes: present and future applications. Science. 2021; 374(6568): eabd7687.

[502]

Li T, Guo W, Ma L, et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat Nanotechnol. 2021; 16(11): 1201-1207.

[503]

Ding LP, Shao P, Ding F. Mechanism of 2D materials’ seamless coalescence on a liquid substrate. ACS Nano. 2021; 15(12): 19387-19393.

[504]

Zhang P, Li J, Yang D, Soomro RA, Xu B. Flexible carbon dots-intercalated MXene film electrode with outstanding volumetric performance for supercapacitors. Adv Funct Mater. 2022; 33(1): 2209918.

[505]

Kong L, Tang C, Peng HJ, Huang JQ, Zhang Q. Advanced energy materials for flexible batteries in energy storage: a review. SmartMat. 2020; 1(1): e1007.

[506]

Ling J, Kunwar R, Li L, et al. Self-rechargeable energizers for sustainability. eScience. 2022; 2(4): 347-364.

[507]

Zhang X, Grajal J, Vazquez-Roy JL. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature. 2019; 566(7744): 368-372.

[508]

Lin Z, Duan S, Liu M, et al. Insights into materials, physics, and applications in flexible and wearable acoustic sensing technology. Adv Mater. 2023; 36(9): 2306880.

[509]

Zeng K, Shi X, Tang C, Liu T, Peng H. Design, fabrication and assembly considerations for electronic systems made of fibre devices. Nat Rev Mater. 2023; 8(8): 552-561.

[510]

Liu S, Zhang W, He J, Lu Y, Wu Q, Xing M. Fabrication techniques and sensing mechanisms of textile-based strain sensors: from spatial 1D and 2D perspectives. Adv Fiber Mater. 2023; 6(1): 36-67.

[511]

Park H, Kim S, Lee J, et al. Organic flexible electronics with closed-loop recycling for sustainable wearable technology. Nat Electron. 2023; 7(1): 39-50.

[512]

Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-driven soft wearable bioelectronics for connected healthcare. Chem Rev. 2024; 124(2): 455-553.

[513]

Kwon K, Kim JU, Won SM, et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat Biomed Eng. 2023; 7(10): 1215-1228.

[514]

Parihar A, Singhal A, Kumar N, Khan R, Khan MA, Srivastava AK. Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics. Nano-Micro Lett. 2022; 14(1): 100.

[515]

Lin C, Liang S, Peng Y, et al. Visualized SERS imaging of single molecule by Ag/black phosphorus nanosheets. Nano-Micro Lett. 2022; 14(1): 75.

[516]

Zhang Y, Liu F, Zhang Y, et al. Self-powered, light-controlled, bioresorbable platforms for programmed drug delivery. Proc Natl Acad Sci U S A. 2023; 120(11): e2217734120.

[517]

Liu J, Zhou Y, Lyu Q, Yao X, Wang W. Targeted protein delivery based on stimuli-triggered nanomedicine. Exp Dermatol. 2023; 1(1): 20230025.

[518]

Kim J, Yoo S, Liu C, et al. Skin-interfaced wireless biosensors for perinatal and paediatric health. Nat Rev Bioeng. 2023; 1(9): 631-647.

RIGHTS & PERMISSIONS

2024 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

181

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/