Broad-range, high-linearity, and fast-response pressure sensing enabled by nanomechanical resonators based on 2D non-layered material: β-In2S3

Junzhi Zhu , Song Wu , Luming Wang , Jiaqi Wu , Jiankai Zhu , Luwei Zou , Fei Xiao , Ziluo Su , Chenyin Jiao , Shenghai Pei , Zejuan Zhang , Jiaze Qin , Bo Xu , Yu Zhou , Juan Xia , Zenghui Wang

InfoMat ›› 2024, Vol. 6 ›› Issue (8) : e12553

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (8) :e12553 DOI: 10.1002/inf2.12553
RESEARCH ARTICLE

Broad-range, high-linearity, and fast-response pressure sensing enabled by nanomechanical resonators based on 2D non-layered material: β-In2S3

Author information +
History +
PDF

Abstract

Two-dimensional (2D) non-layered materials, along with their unique surface properties, offer intriguing prospects for sensing applications. Introducing mechanical degrees of freedom is expected to enrich the sensing performances of 2D non-layered devices, such as high frequency, high tunability, and large dynamic range, which could lead to new types of high performance nanosensors. Here, we demonstrate 2D non-layered nanomechanical resonant sensors based on β-In2S3, where the devices exhibit robust nanomechanical vibrations up to the very high frequency (VHF) band. We show that such device can operate as pressure sensor with broad range (from 10–3 Torr to atmospheric pressure), high linearity (with a nonlinearity factor as low as 0.0071), and fast response (with an intrinsic response time less than 1 µs). We further unveil the frequency scaling law in these β-In2S3 nanomechanical sensors and successfully extract both the Young’s modulus and pretension for the crystal. Our work paves the way towards future wafer-scale design and integrated sensors based on 2D non-layered materials.

Keywords

2D non-layered materials / frequency scaling / nanomechanical resonators / pressure sensing

Cite this article

Download citation ▾
Junzhi Zhu, Song Wu, Luming Wang, Jiaqi Wu, Jiankai Zhu, Luwei Zou, Fei Xiao, Ziluo Su, Chenyin Jiao, Shenghai Pei, Zejuan Zhang, Jiaze Qin, Bo Xu, Yu Zhou, Juan Xia, Zenghui Wang. Broad-range, high-linearity, and fast-response pressure sensing enabled by nanomechanical resonators based on 2D non-layered material: β-In2S3. InfoMat, 2024, 6(8): e12553 DOI:10.1002/inf2.12553

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu Y, Zheng J, Li Q, et al. Synthesis of superconducting two-dimensional non-layered PdTe by interfacial reactions. Nat Synth. 2022; 1(11): 908-914.

[2]

Tan J, Zhang Z, Zeng S, et al. Dual-metal precursors for the universal growth of non-layered 2D transition metal chalcogenides with ordered cation vacancies. Sci Bull. 2022; 67(16): 1649-1658.

[3]

Gong C, Chu J, Yin C, et al. Self-confined growth of ultrathin 2D nonlayered wide-bandgap semiconductor CuBr flakes. Adv Mater. 2019; 3: 1903580.

[4]

Peng C, Qin G, Zhang L, et al. Dependence of phonon transport properties with stacking thickness in layered ZnO. J Phys D Appl Phys. 2018; 51(31): 315303.

[5]

Lu J, Zheng Z, Gao W, et al. Epitaxial growth of large-scale In2S3 nanoflakes and the construction of a high performance In2S3/Si photodetector. J Mater Chem C. 2019; 7(39): 12104-12113.

[6]

Chen Y, Liu K, Liu J, et al. Growth of 2D GaN single crystals on liquid metals. J Am Chem Soc. 2018; 140(48): 16392-16395.

[7]

Gao S, Sun Y, Lei F, et al. Ultrahigh energy density realized by a single-layer β-Co(OH)2 all-solid-state asymmetric supercapacitor. Angew Chem Int Ed. 2014; 53(47): 12789-12793.

[8]

Sun Z, Liao T, Dou Y, et al. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat Commun. 2014; 5(1): 3813.

[9]

Bielewicz T, Dogan S, Klinke C. Tailoring the height of ultrathin PbS nanosheets and their application as field-effect transistors. Small. 2015; 11(7): 826-833.

[10]

Hu X, Huang P, Jin B, et al. Halide-induced self-limited growth of ultrathin nonlayered Ge flakes for high-performance phototransistors. J Am Chem Soc. 2018; 140(40): 12909-12914.

[11]

Sun Y, Sun Z, Gao S, et al. Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat Commun. 2012; 3(1): 1057.

[12]

Sun Y, Liu Q, Gao S, et al. Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide oxidation. Nat Commun. 2013; 4(1): 2899.

[13]

Du Y, Yin Z, Zhu J, et al. A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat Commun. 2012; 3(1): 1177.

[14]

Huang W, Gan L, Yang H, et al. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition. Adv Funct Mater. 2017; 27(36): 1702448.

[15]

Xu B, Zhang P, Zhu J, et al. Nanomechanical resonators: toward atomic scale. ACS Nano. 2022; 16(10): 15545-15585.

[16]

Zhu J, Xu B, Xiao F, et al. Frequency scaling, elastic transition, and broad-rang. frequency tuning in WSe2 nanomechanical resonators. Nano Lett. 2022; 22(13): 5107-5113.

[17]

Lee J, Wang Z, He K, Yang R, Shan J, Feng PX-L. Electrically tunable single-and few-layer MoS2 nanoelectromechanical systems with broad dynamic range. Sci Adv. 2018; 4: eaao6653.

[18]

Harn V, Klingler W, Anorg Z. Röntgenographische Beiträge zu den Systemen Thallium/Schwefel, Thallium/Selen und Thallium/Tellur. Allg Chem. 1949; 260(1-3): 97-119.

[19]

Jannat A, Yao Q, Zavabeti A, et al. Ordered-vacancy-enabled indium sulphide printed in wafer-scale with enhanced electron mobility. Mater Horiz. 2020; 7(3): 827-834.

[20]

Li X, Han Y, Shi Z, et al. β-In2S3 nanoplates for ultrafast photonics. ACS Appl Nano Mater. 2022; 5(3): 3229-3236.

[21]

Zhao Y, Yu D, Lu J, et al. Thickness-dependent optical properties and in-plane anisotropic Raman response of the 2D β-In2S3. Adv Opt Mater. 2019; 7(22): 1901085.

[22]

Hou Y, Chen X, Yang S, et al. Low-temperature processed In2S3 electron transport layer for efficient hybrid perovskite solar cells. Nano Energy. 2017; 36: 102-109.

[23]

Xie X, Shen G. Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse. Nanoscale. 2015; 7(11): 5046-5052.

[24]

Brus LE. Electron–electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys. 1984; 80(9): 4403-4409.

[25]

Ueda N, Hosono H, Waseda R, Kawazoe H. Anisotropy of electrical and optical properties in β-Ga2O3 single crystals. Appl Phys Lett. 1997; 71(7): 933-935.

[26]

Wort C, Balmer R. Diamond as an electronic material. Mater Today. 2008; 11(1-2): 22-28.

[27]

Zheng X, Lee J, Rafique S, et al. Ultrawide band gap β-Ga2O3 nanomechanical resonators with spatially visualized multimode motion. ACS Appl Mater Interfaces. 2017; 9(49): 43090-43097.

[28]

Bube R, McCarroll W. Photoconductivity in indium sulfide powders and crystals. J Phys Chem Solid. 1959; 10(4): 333-335.

[29]

Wah T. Vibration of circular plates. J Acoust Soc Am. 1962; 34(3): 275-281.

[30]

Suzuki H, Yamaguchi N, Izumi H. Theoretical and experimental studies on the resonance frequencies of a stretched circular plate: application to Japanese drum diaphragms. Acoust Sci Technol. 2009; 30(5): 348-354.

[31]

Xu B, Zhu J, Xiao F, et al. Electrically tunable MXene nanomechanical resonators vibrating at very high frequencies. ACS Nano. 2022; 16(12): 20229-20237.

[32]

Xu B, Zhu J, Xiao F, et al. Identifying, resolving, and quantifying anisotropy in ReS2 nanomechanical resonators. Small. 2023; 19(24): 2300631.

[33]

Yang R, Zheng X-Q, Wang Z, Miller CJ, Feng PX-L. Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing. J Vac Sci Technol B. 2014; 32(6): 061203.

[34]

Liang Y, Zhu J, Xiao F, et al. Two-dimensional inverters based on MoS2-hBN-graphene heterostructures enabled by a layer-by-layer dry-transfer method. IEEE J Electron Devices Soc. 2021; 9: 1269-1274.

[35]

Lee J, Wang Z, He K, Shan J, Feng PX. Air damping of atomically thin MoS2 nanomechanical resonators. Appl Phys Lett. 2014; 105(2): 023104.

[36]

Liang Y, Zhu J, Xiao F, et al. Presented at 2021 5th IEEE Electron Devices Technology and Manufacturing Conference (EDTM), Chengdu, China, April, 2021.

[37]

Wang Z, Lee J, He K, Shan J, Feng PX. Embracing structural nonidealities and asymmetries in two-dimensional nanomechanical resonators. Sci Rep. 2014; 4(1): 3919.

[38]

Zhu J, Zhang P, Yang R, Wang Z. Analyzing electrostatic modulation of signal transduction efficiency in MoS2 nanoelectromechanical resonators with interferometric readout. Sci China Inf Sci. 2022; 65(2): 122409.

[39]

Zhu J, Wang L, Wu J, et al. Achieving 1.2 fm/Hz1/2 displacement sensitivity with laser interferometry in two-dimensional nanomechanical resonators: pathways towards quantum-noise-limited measurement at room temperature. Chinese Phys Lett. 2023; 40(3): 038102.

[40]

Wang L, Zhang P, Liu Z, Wang Z, Yang R. On-chip mechanical computing: status, challenges, and opportunities. Chip. 2023; 2(1): 100038.

[41]

Lee M, Robin M, Guis R, et al. Self-sealing complex oxide resonators. Nano Lett. 2022; 22(4): 1475-1482.

[42]

Shandilya PK, Fröch JE, Mitchell M, et al. Hexagonal boron nitride cavity optomechanics. Nano Lett. 2022; 19(2): 1343-1350.

[43]

Liu YJ, Li C, Shi XD, et al. High-sensitivity graphene MOEMS resonant pressure sensor. ACS Appl Mater Interfaces. 2022; 15(25): 30479-30485.

[44]

Dolleman RJ, Davidovikj D, Cartamil-Bueno SJ. van der Zant HSJ, Steeneken PG. Graphene squeeze-film pressure sensors. Nano Lett. 2016; 16(1): 568-571.

[45]

Lee M, Davidovikj D, Sajadi B, et al. Sealing graphene nanodrums. Nano Lett. 2019; 19(8): 5313-5318.

[46]

Lee J, Wang Z, He K, Shan J, Feng PX-L. High frequency MoS2 nanomechanical resonators. ACS Nano. 2013; 7(7): 6086-6091.

[47]

Dolleman RJ, Chakraborty D, Ladiges D, van der Zant H, Sader J, Steeneken P. Squeeze-film effect on atomically thin resonators in the high-pressure limit. Nano Lett. 2021; 21(18): 7617-7624.

[48]

Bao MH. Micro Mechanical Transducers: Pressure Sensors, Accelerometers and Gyroscopes. Elsevier; 2020.

[49]

Liu F, Xiao M, Ning Y, et al. Toward practical gas sensing with rapid recovery semiconducting carbon nanotube film sensors. Sci China Inf Sci. 2022; 65(6): 162402.

[50]

Weaver JW, Timoshenko SP, Young DH. Vibration Problems in Engineering. 5th ed. Wiley; 1991.

[51]

Small J, Arif MS, Fruehling A, Peroulis D. Electrostatic fringing-field actuation for pull-in free RF-MEMS analogue tunable resonators. J Micromech Microeng. 2012; 22(9): 395.

[52]

King G. The space group of β-In2S3. Acta Crystallogr. 1962; 15(5): 512.

[53]

Mohanty P, Harrington D, Ekinci K, Yang Y, Murphy M, Roukes M. Intrinsic dissipation in high-frequency micromechanical resonators. Phys Rev B. 2002; 66(8): 085416.

[54]

Peng Z, Lin R, Li Z, et al. Two-dimensional materials-based integrated hardware. Sci China Inf Sci. 2023; 66(6): 160401.

[55]

Senani R, Singh V. Novel single-resistance-controlled-oscillator configuration using current feedback amplifiers. IEEE Trans Circuits Syst I Fundam Theory Appl. 1996; 43(8): 698-700.

[56]

Bhaskar D, Senani R. New CFOA-based single-element-controlled sinusoidal oscillators. IEEE Trans Instrum Meas. 2006; 55(6): 2014-2021.

RIGHTS & PERMISSIONS

2024 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

251

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/