Emerging near-infrared luminescent materials for next-generation broadband optical communications

Beibei Xu , Chaoyuan Jin , Jae-Seong Park , Huiyun Liu , Xing Lin , Junjie Cui , Daoyuan Chen , Jianrong Qiu

InfoMat ›› 2024, Vol. 6 ›› Issue (8) : e12550

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (8) : e12550 DOI: 10.1002/inf2.12550
REVIEW ARTICLE

Emerging near-infrared luminescent materials for next-generation broadband optical communications

Author information +
History +
PDF

Abstract

The rapid development of emerging technologies observed in recent years, such as artificial intelligence, machine learning, mobile internet, big data, cloud computing, and the Internet of Everything, are generating escalating demands for expanding the capacity density, and speed in next-generation optical communications. This poses a significant challenge to existing communication techniques. Within this context, the integration of near-infrared broadband, tunable, and high-gain luminescent materials into silicon optical circuits or fiber architectures to transmit and modulate light shows enormous potential for advancing next-generation communication techniques. Here, this review provides an overview of the recent breakthroughs in near-infrared luminescent epitaxial/colloidal quantum dots, and metal-active-center-doped materials for broadband optical amplifiers and tunable lasers. We also expound on efforts to enhance the bandwidth and gain of these materials-based amplifiers and lasers, exploring the challenges associate with developing ultra-broadband and high-speed optical communication systems. Additionally, the potential applications in Fifth Generation Fixed Networks, integration with 5G and 6G wireless networks, compensation for current Si electronic based CMOS for high computing capability, and the prospects of these light sources for next-generation optoelectronic devices are discussed.

Keywords

laser / metal-active-center / next generation optical communication / optical amplifier / quantum dot

Cite this article

Download citation ▾
Beibei Xu, Chaoyuan Jin, Jae-Seong Park, Huiyun Liu, Xing Lin, Junjie Cui, Daoyuan Chen, Jianrong Qiu. Emerging near-infrared luminescent materials for next-generation broadband optical communications. InfoMat, 2024, 6(8): e12550 DOI:10.1002/inf2.12550

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ren A, Wang H, Zhang W, et al. Emerging light-emitting diodes for next-generation data communications. Nat Electron. 2021; 4(8): 559-572.

[2]

Puttnam BJ, Rademacher G, Luís RS. Space-division multiplexing for optical fiber communications. Optica. 2021; 8(9): 1186-1203.

[3]

Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photon. 2013; 7(5): 354-362.

[4]

Soma D, Wakayama Y, Beppu S, et al. 10.16-Peta-B/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C + L band. J Lightwave Technol. 2018; 36(6): 1362-1368.

[5]

Rademacher G, Puttnam BJ, Luís RS, et al. 10.66 Peta-bit/s transmission over a 38-core-three-mode fiber. Paper presented at the Optical Fiber Communications Conference and Exhibition (OFC); 8–12 March 2020; 2020. pp. 1–3.

[6]

Miyamoto Y. Sharing moments of “This is it!” with colleagues to research and develop optical communication technology for revolutionizing society. NTT Tech Rev. 2020; 18(9): 6-12.

[7]

Morioka T, Awaji Y, Enami K, et al. Introduction. In: Nakazawa M, Suzuki M, Awaji Y, Morioka T, eds. Space-Division Multiplexing in Optical Communication Systems: Extremely Advanced Optical Transmission with 3M Technologies. Springer International Publishing; 2022: 1-37.

[8]

Spyropoulou M, Kanakis G, Jiao Y, et al. The Path to 1Tb/s and Beyond Datacenter Interconnect Networks: Technologies, Components, and Subsystems. Vol 11712. SPIE; 2021.

[9]

Zhou X, Urata R, Liu H. Beyond 1Tb/s datacenter interconnect technology: challenges and solutions (invited). Optical Fiber Communication Conference (OFC) 2019. Optica Publishing Group; 2019 p. Tu2F.5.

[10]

Wang X, Shang C, Pan A, et al. Thin-film lithium niobate dual-polarization IQ modulator on a silicon substrate for single-carrier 1.6 Tb/s transmission. APL Photon. 2022; 7(7): 076101.

[11]

Isono H. Latest Standardization Trend for High-Speed Optical Transceivers with a View of beyond Tera Era. Vol 11308. SPIE; 2020.

[12]

Gangasani GR, Hanson DR, Storaska D, et al. A 1.6Tb/s chiplet over XSR-MCM channels using 113Gb/s PAM-4 transceiver with dynamic receiver-driven adaptation of TX-FFE and programmable roaming taps in 5 nm CMOS. IEEE International Solid-State Circuits Conference (ISSCC). Vol 65. IEEE 2022: 122-124.

[13]

Winzer PJ, Neilson DT, Chraplyvy AR. Fiber-optic transmission and networking: the previous 20 and the next 20 years [Invited]. Opt Express. 2018; 26(18): 24190-24239.

[14]

Đačanin Far L, Dramićanin MD. Luminescence thermometry with nanoparticles: a review. Nanomaterials. 2023; 13(21): 2904.

[15]

Geiregat P, Houtepen AJ, Sagar LK, et al. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots. Nat Mater. 2018; 17(1): 35-42.

[16]

Bayer M. Bridging two worlds: colloidal versus epitaxial quantum dots. Ann Phys. 2019; 531(6): 1900039.

[17]

Lv L, Li J, Wang Y, Shu Y, Peng X. Monodisperse CdSe quantum dots encased in six (100) facets via ligand-controlled nucleation and growth. J Am Chem Soc. 2020; 142(47): 19926-19935.

[18]

Efros AL, Efros AL. Interband absorption of light in a semiconductor sphere. Sov Phys Semicond. 1982; 16(7): 772-775.

[19]

Pu C, Peng X. To battle surface traps on CdSe/CdS core/shell nanocrystals: shell isolation versus surface treatment. J Am Chem Soc. 2016; 138(26): 8134-8142.

[20]

Lee T, Kim BJ, Lee H, et al. Bright and stable quantum dot light-emitting diodes. Adv Mater. 2022; 34(4): 2106276.

[21]

Xie W, Stöferle T, Rainò G, et al. On-chip integrated quantum-dot–silicon-nitride microdisk lasers. Adv Mater. 2017; 29(16): 1604866.

[22]

Elsinger L, Petit R, Van Acker F, et al. Waveguide-coupled colloidal quantum dot light emitting diodes and detectors on a silicon nitride platform. Laser Photon Rev. 2021; 15(7): 2000230.

[23]

Klimov VI, Mikhailovsky AA, McBranch DW, Leatherdale CA, Bawendi MG. Quantization of multiparticle auger rates in semiconductor quantum dots. Science. 2000; 287(5455): 1011-1013.

[24]

Park YS, Bae WK, Baker T, Lim J, Klimov VI. Effect of auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett. 2015; 15(11): 7319-7328.

[25]

Ishida M, Hatori N, Akiyama T, et al. Photon lifetime dependence of modulation efficiency and K factor in 1.3µm self-assembled InAs/GaAs quantum-dot lasers: impact of capture time and maximum modal gain on modulation bandwidth. Appl Phys Lett. 2004; 85(18): 4145-4147.

[26]

Yao Z, Jiang C, Wang X, et al. Recent developments of quantum dot materials for high speed and ultrafast lasers. Nanomaterials. 2022; 12(7): 1058.

[27]

Kayhani K, Rajaei E. Investigation of dynamical characteristics and modulation response function of InAs/InP (311)B quantum dot lasers with different QD size. Photonics Nanostruct. 2017; 25: 1-8.

[28]

Asryan LV, Suris RA. Upper limit for the modulation bandwidth of a quantum dot laser. Appl Phys Lett. 2010; 96(22): 221112.

[29]

Fathpour S, Mi Z, Bhattacharya P. High-speed quantum dot lasers. J Phys D. 2005; 38(13): 2103-2111.

[30]

Park J-S, Tang M, Chen S, Liu H. Monolithic III–V quantum dot lasers on silicon. Front Nanosci. 2021; 20: 353-388.

[31]

Norman JC, Jung D, Zhang ZY, et al. A review of high-performance quantum dot lasers on silicon. IEEE J Quantum Electron. 2019; 55(2): 2000511.

[32]

Bimberg D, Grundmann M, Heinrichsdorff F, et al. Quantum dot lasers: breakthrough in optoelectronics. Thin Solid Films. 2000; 367(1–2): 235-249.

[33]

Mawst LJ, Kim H, Smith G, Sun W, Tansu N. Strained-layer quantum well materials grown by MOCVD for diode laser application. Prog Quantum Electron. 2021; 75: 100303.

[34]

Chen SM, Li W, Wu J, et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photon. 2016; 10(5): 307-311.

[35]

Jiang C, Liu H, Wang J, et al. Demonstration of room-temperature continuous-wave operation of InGaAs/AlGaAs quantum well lasers directly grown on on-axis silicon (001). Appl Phys Lett. 2022; 121(6): 061102.

[36]

Windhorn TH, Metze GM. Room-temperature operation of Gaas/Algaas diode-lasers fabricated on a monolithic Gaas/Si substrate. Appl Phys Lett. 1985; 47(10): 1031-1033.

[37]

Sakai S, Soga T, Takeyasu M, Umeno M. Room-temperature laser operation of Aigaas Gaas double heterostructures fabricated on Si substrates by metalorganic chemical vapor-deposition. Appl Phys Lett. 1986; 48(6): 413-414.

[38]

Fischer R, Kopp W, Morkoc H, et al. Low threshold laser operation at room temperature in GaAs/(Al, Ga)As structures grown directly on (100) Si. Appl Phys Lett. 1986; 48(20): 1360-1361.

[39]

Vanderziel JP, Dupuis RD, Logan RA, Mikulyak RM, Pinzone CJ, Savage A. Low threshold pulsed and continuous laser oscillation from Algaas/Gaas double heterostructures grown by metalorganic chemical vapor-deposition on Si substrates. Appl Phys Lett. 1987; 50(8): 454-456.

[40]

Dupuis RD, Vanderziel JP, Logan RA, Brown JM, Pinzone CJ. Low-threshold high-efficiency Algaas-Gaas double-heterostructure injection-lasers grown on Si substrates by metalorganic chemical vapor-deposition. Appl Phys Lett. 1987; 50(7): 407-409.

[41]

Deppe DG, Nam DW, Holonyak N, et al. Stability of 300-K continuous operation of P-N Alxga1-Xas-Gaas quantum-well lasers grown on Si. Appl Phys Lett. 1987; 51(16): 1271-1273.

[42]

Egawa T, Tada H, Kobayashi Y, Soga T, Jimbo T, Umeno M. Low-threshold continuous-wave room-temperature operation of Alxga1-Xas/Gaas single quantum-well lasers grown by metalorganic chemical vapor-deposition on Si substrates with SiO2 Back coating. Appl Phys Lett. 1990; 57(12): 1179-1181.

[43]

Chong TC, Fonstad CG. Low-threshold operation of Algaas/Gaas multiple quantum-well lasers grown on Si substrates by molecular-beam epitaxy. Appl Phys Lett. 1987; 51(4): 221-223.

[44]

Razeghi M, Defour M, Omnes F, Maurel P, Chazelas J, Brillouet F. 1st Gainasp-Inp double-heterostructure laser emitting at 1.27 mu-M on a silicon substrate. Appl Phys Lett. 1988; 53(9): 725-727.

[45]

Sugo M, Mori H, Sakai Y, Itoh Y. Stable Cw operation at room-temperature of a 1.5-mu-M wavelength multiple quantum-well laser on a Si substrate. Appl Phys Lett. 1992; 60(4): 472-473.

[46]

Huang X, Song Y, Masuda T, Jung D, Lee M. InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001). Electron Lett. 2014; 50(17): 1226-1227.

[47]

Aleshkin VY, Baidus NV, Dubinov AA, et al. Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si(001) substrate. Appl Phys Lett. 2016; 109(6): 061111.

[48]

Shi B, Zhao HW, Wang L, Song BW, Brunelli STS, Klamkin J. Continuous-wave electrically pumped 1550 nm lasers epitaxially grown on on-axis (001) silicon. Optica. 2019; 6(12): 1507-1514.

[49]

Egawa T, Ogawa A, Jimbo T, Umeno M. AlGaAs/GaAs laser diodes with GaAs islands active regions on Si grown by droplet epitaxy. Jpn J Appl Phys. 1998; 37(3b): 1552-1555.

[50]

Li KS, Yang JJ, Lu Y, et al. Inversion boundary annihilation in GaAs monolithically grown on on-axis silicon (001). Adv Opt Mater. 2020; 8(22): 2000970.

[51]

Yang JJ, Liu ZZ, Jurczak P, et al. All-MBE grown InAs/GaAs quantum dot lasers with thin Ge buffer layer on Si substrates. J Phys D Appl Phys. 2021; 54(3): 035103.

[52]

Kazi ZI, Egawa T, Umeno M, Jimbo T. Growth of InxGa1-xAs quantum dots by metal-organic chemical vapor deposition on Si substrates and in GaAs-based lasers. J Appl Phys. 2001; 90(11): 5463-5468.

[53]

Mi Z, Bhattacharya R, Yang J, Pipe KP. Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon. Electron Lett. 2005; 41(13): 742-744.

[54]

Wang T, Liu HY, Lee A, Pozzi F, Seeds A. 1.3-um InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express. 2011; 19(12): 11381-11386.

[55]

Lee A, Jiang Q, Tang MC, Seeds A, Liu HY. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt Express. 2012; 20(20): 22181-22187.

[56]

Wang Y, Chen S, Yu Y, et al. Monolithic quantum-dot distributed feedback laser array on silicon. Optica. 2018; 5(5): 528-533.

[57]

Akiyama T, Ekawa M, Sugawara M, et al. An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots. IEEE Photon Technol Lett. 2005; 17(8): 1614-1616.

[58]

Uvin S, Kumari S, De Groote A, et al. 1.3 um InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt Express. 2018; 26(14): 18302-18309.

[59]

Arakawa Y, Sakaki H. Multidimensional quantum well laser and temperature-dependence of its threshold current. Appl Phys Lett. 1982; 40(11): 939-941.

[60]

Asada M, Miyamoto Y, Suematsu Y. Gain and the threshold of 3-dimensional quantum-box lasers. IEEE J Quantum Electron. 1986; 22(9): 1915-1921.

[61]

Goldstein L, Glas F, Marzin JY, Charasse MN, Leroux G. Growth by molecular-beam epitaxy and characterization of Inas/Gaas strained-layer superlattices. Appl Phys Lett. 1985; 47(10): 1099-1101.

[62]

Leonard D, Krishnamurthy M, Reaves CM, Denbaars SP, Petroff PM. Direct formation of quantum-sized dots from uniform coherent islands of Ingaas on Gaas-surfaces. Appl Phys Lett. 1993; 63(23): 3203-3205.

[63]

Grundmann M. The present status of quantum dot lasers. Phys E Low Dimens. 1999; 5(3): 167-184.

[64]

Deppe DG, Holonyak N, Nam DW, et al. Room-temperature continuous operation of P-N AlxGa1-XAs-GaAs quantum-well heterostructure lasers grown on Si. Appl Phys Lett. 1987; 51(9): 637-639.

[65]

Shi B, Pinna S, Zhao HW, Zhu S, Klamkin J. Lasing characteristics and reliability of 1550 nm laser diodes monolithically grown on silicon. Phys Status Solidi A. 2021; 218(3): 2000374.

[66]

Liu AY, Zhang C, Norman J, et al. High performance continuous wave 1.3 um quantum dot lasers on silicon. Appl Phys Lett. 2014; 104(4): 041104.

[67]

Tang MC, Chen SM, Wu J, et al. 1.3 um InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt Express. 2014; 22(10): 11528-11535.

[68]

Jung D, Norman J, Kennedy MJ, et al. High efficiency low threshold current 1.3 um InAs quantum dot lasers on on-axis (001) GaP/Si. Appl Phys Lett. 2017; 111(12): 122107.

[69]

Liu ZZ, Martin M, Baron T, et al. Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon. J Lightwave Technol. 2020; 38(2): 240-248.

[70]

Liu ST, Wu XR, Jung DW, et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity. Optica. 2019; 6(2): 128-134.

[71]

Zhou TJ, Tang MC, Xiang GH, et al. Continuous-wave quantum dot photonic crystal lasers grown on on-axis Si (001). Nat Commun. 2020; 11(1): 977.

[72]

Wan YT, Norman J, Li Q, et al. 1.3 um submilliamp threshold quantum dot micro-lasers on Si. Optica. 2017; 4(8): 940-944.

[73]

Akiyama T, Sugawara M, Arakawa Y. Quantum-dot semiconductor optical amplifiers. Proc IEEE. 2007; 95(9): 1757-1766.

[74]

Liu ST, Norman J, Dumont M, et al. High-performance O-band quantum-dot semiconductor optical amplifiers directly grown on a CMOS compatible silicon substrate. ACS Photon. 2019; 6(10): 2523-2529.

[75]

Jones R, Doussiere P, Driscoll JB, et al. Heterogeneously integrated InP/silicon photonics fabricating fully functional transceivers. IEEE Nanotechnol Mag. 2019; 13(2): 17-26.

[76]

Park JS, Tang MC, Chen SM, Liu HY. Heteroepitaxial growth of III–V semiconductors on silicon. Crystals. 2020; 10(12): 1163.

[77]

Kawabe M, Ueda T. Molecular-beam epitaxy of controlled single domain Gaas on Si (100). Jpn J Appl Phys. 1986; 25(4): L285-L287.

[78]

Volz K, Beyer A, Witte W, et al. GaP-nucleation on exact Si (001) substrates for III/V device integration. J Cryst Growth. 2011; 315(1): 37-47.

[79]

Alcotte R, Martin M, Moeyaert J, et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility. Appl Mater. 2016; 4(4): 046101.

[80]

Li Q, Ng KW, Lau KM. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl Phys Lett. 2015; 106(7): 072105.

[81]

Jung DH, Zhang ZY, Norman J, et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photon. 2018; 5(3): 1094-1100.

[82]

Akiyama M, Kawarada Y, Kaminishi K. Growth of single domain Gaas layer on (100)-oriented Si substrate by MOCVD. Jpn J Appl Phys. 1984; 23(11): L843-L845.

[83]

Bolkhovityanov YB, Pchelyakov OP. GaAs epitaxy on Si substrates: modern status of research and engineering. Phys USP. 2008; 51(5): 437-456.

[84]

Zhu S, Shi B, Li Q, Lau KM. 1.5 um quantum-dot diode lasers directly grown on CMOS-standard (001) silicon. Appl Phys Lett. 2018; 113(22): 221103.

[85]

Shi B, Klamkin J. Defect engineering for high quality InP epitaxially grown on on-axis (001) Si. J Appl Phys. 2020; 127(3): 033102.

[86]

Chen SM, Liao MY, Tang MC, et al. Electrically pumped continuous-wave 1.3 um InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt Express. 2017; 25(5): 4632-4639.

[87]

Norman J, Kennedy MJ, Selvidge J, et al. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. Opt Express. 2017; 25(4): 3927-3934.

[88]

Liu AY, Peters J, Huang X, et al. Electrically pumped continuous-wave 1.3 um quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt Lett. 2017; 42(2): 338-341.

[89]

Kwoen J, Jang BY, Lee J, Kageyama T, Watanabe K, Arakawa Y. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt Express. 2018; 26(9): 11568-11576.

[90]

Li KS, Liu ZZ, Tang MC, et al. O-band InAs/GaAs quantum dot laser monolithically integrated on exact (001) Si substrate. J Cryst Growth. 2019; 511: 56-60.

[91]

Kwoen J, Jang B, Watanabe K, Arakawa Y. High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt Express. 2019; 27(3): 2681-2688.

[92]

Shang C, Wang YT, Norman JC, et al. Low-threshold epitaxially grown 1.3 um InAs quantum dot lasers on patterned (001) Si. IEEE J Sel Top Quantum Electron. 2019; 25(6): 1-7.

[93]

Wan YT, Shang C, Norman J, et al. Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si. IEEE J Sel Top Quantum Electron. 2020; 26(2): 1900409.

[94]

Linder KK, Phillips J, Qasaimeh O, et al. Self-organized In0.4Ga0.6 As quantum-dot lasers grown on Si substrates. Appl Phys Lett. 1999; 74(10): 1355-1357.

[95]

Yang J, Mi Z, Bhattacharya P. Quantum dot lasers and integrated guided wave devices on Si. Novel In—Plane Semiconductor Lasers IV. Vol 6485. SPIE; 2007.

[96]

Chen SM, Tang MC, Wu J, et al. 1.3 um InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 degrees C. Electron Lett. 2014; 50(20): 1467-1468.

[97]

Fang AW, Park H, Cohen O, Jones R, Paniccia MJ, Bowers JE. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt Express. 2006; 14(20): 9203-9210.

[98]

Wang ZC, Tian B, Pantouvaki M, et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat Photon. 2015; 9(12): 837-842.

[99]

Zhang YJ, Su YM, Bi Y, et al. Inclined emitting slotted single-mode laser with 1.7 degrees vertical divergence angle for PIC applications. Opt Lett. 2018; 43(1): 86-89.

[100]

Wei WQ, He A, Yang B, et al. Monolithic integration of embedded III–V lasers on SOI. Light Sci Appl. 2023; 12(1): 84.

[101]

Cao V, Park J-S, Tang M, et al. Recent Progress of quantum dot lasers monolithically integrated on Si platform. Front Phys. 2022; 10: 839953.

[102]

Jung H, Ahn N, Klimov VI. Prospects and challenges of colloidal quantum dot laser diodes. Nat Photon. 2021; 15(9): 643-655.

[103]

Park Y-S, Roh J, Diroll BT, Schaller RD, Klimov VI. Colloidal quantum dot lasers. Nat Rev Mater. 2021; 6(5): 382-401.

[104]

Lim J, Park YS, Klimov VI. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat Mater. 2018; 17(1): 42-49.

[105]

Park Y-S, Lim J, Klimov VI. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat Mater. 2019; 18(3): 249-255.

[106]

Wu K, Park YS, Lim J, Klimov VI. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat Nanotechnol. 2017; 12(12): 1140-1147.

[107]

Kozlov OV, Park Y-S, Roh J, Fedin I, Nakotte T, Klimov VI. Sub-single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity. Science. 2019; 365(6454): 672-675.

[108]

Christodoulou S, Ramiro I, Othonos A, et al. Single-exciton gain and stimulated emission across the infrared telecom band from robust heavily doped PbS colloidal quantum dots. Nano Lett. 2020; 20(8): 5909-5915.

[109]

Whitworth GL, Dalmases M, Taghipour N, Konstantatos G. Solution-processed PbS quantum dot infrared laser with room-temperature tunable emission in the optical telecommunications window. Nat Photon. 2021; 15(10): 738-742.

[110]

Roh J, Park YS, Lim J, Klimov VI. Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity. Nat Commun. 2020; 11(1): 271.

[111]

Klimov VI, Ivanov SA, Nanda J, et al. Single-exciton optical gain in semiconductor nanocrystals. Nature. 2007; 447(7143): 441-446.

[112]

Fan F, Voznyy O, Sabatini RP, et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature. 2017; 544(7648): 75-79.

[113]

Cragg GE, Efros AL. Suppression of auger processes in confined structures. Nano Lett. 2010; 10(1): 313-317.

[114]

Qin Z, Zhang C, Chen L, Yu T, Wang X, Xiao M. Electrical switching of optical gain in perovskite semiconductor nanocrystals. Nano Lett. 2021; 21(18): 7831-7838.

[115]

Lin J, Hu Y, Lv Y, Guo X, Liu X. Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping. Sci Bull. 2017; 62(24): 1637-1638.

[116]

Ahn N, Livache C, Pinchetti V, et al. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature. 2023; 617(7959): 79-85.

[117]

Jung H, Park Y-S, Ahn N, et al. Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1000 A cm–2. Nat Commun. 2022; 13(1): 3734.

[118]

Huang X, Peng Z, Guo Q, Song X, Qiu J, Dong G. Energy transfer process and temperature-dependent photoluminescence of PbS quantum dot-doped glasses. J Am Ceram. 2019; 102(6): 3391-3401.

[119]

Shao X, Wang J, Han J, Liu C, Ruan J, Zhao X. Growth kinetics and optical properties of PbSe quantum dots in dual-phase lithium-aluminum-silicate glass ceramic. J Eur Ceram Soc. 2020; 40(12): 4122-4128.

[120]

Barnes WL, Laming RI, Tarbox EJ, Morkel PR. Absorption and emission cross section of Er3+ doped silica fibers. IEEE J Quantum Electron. 1991; 27(4): 1004-1010.

[121]

Osborne SW, Blood P, Smowton PM, et al. Optical absorption cross section of quantum dots. J Phys Condens Mater. 2004; 16(35): S3749-S3756.

[122]

Liu Y, Kim D, Morris OP, Zhitomirsky D, Grossman JC. Origins of the stokes shift in PbS quantum dots: impact of polydispersity, ligands, and defects. ACS Nano. 2018; 12(3): 2838-2845.

[123]

Krishnamurthy S, Singh A, Hu Z, et al. PbS/CdS quantum dot room-temperature single-emitter spectroscopy reaches the telecom O and S bands via an engineered stability. ACS Nano. 2021; 15(1): 575-587.

[124]

Huang X, Fang Z, Peng Z, et al. Formation, element-migration an. broadband luminescence in quantum dot-doped glass fibers. Opt Express. 2017; 25(17): 19691-19700.

[125]

Yang J, Xu L, Shang Y, et al. c. Paper presented at the ACP; 2–5 November 2019; 2019. pp. 1–3.

[126]

Huang X, Fang Z, Kang S, et al. Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission. J Mater Chem C. 2017; 5(31): 7927-7934.

[127]

Chen D, Xu B, Fang Z, et al. Broadband optical amplification of PbS quantum-dot-doped glass fibers. Adv Photon Res. 2022; 3(9): 2200097.

[128]

Dianov EM. Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers. Light Sci Appl. 2012; 1(5): e12.

[129]

Xu B, Zhou S, Tan D, Hong Z, Hao J, Qiu J. Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germanate glasses. J Appl Phys. 2013; 113(8): 083503.

[130]

Firstov S, Alyshev S, Melkumov M, Riumkin K, Shubin A, Dianov E. Bismuth-doped optical fibers and fiber lasers for a spectral region of 1600–1800 nm. Opt Lett. 2014; 39(24): 6927-6930.

[131]

Thipparapu NK, Wang Y, Umnikov AA, Barua P, Richardson DJ, Sahu JK. 40 dB gain all fiber bismuth-doped amplifier operating in the O-band. Opt Lett. 2019; 44(9): 2248-2251.

[132]

Chapman BH, Kelleher EJR, Golant KM, Popov SV, Taylor JR. Amplification of picosecond pulses and gigahertz signals in bismuth-doped fiber amplifiers. Opt Lett. 2011; 36(8): 1446-1448.

[133]

Thipparapu NK, Jain S, Umnikov AA, Barua P, Sahu JK. 1120 nm diode-pumped Bi-doped fiber amplifier. Opt Lett. 2015; 40(10): 2441-2444.

[134]

Mikhailov V, Melkumov MA, Inniss D, et al. Simple broadband bismuth doped fiber amplifier (BDFA) to extend O-band transmission reach and capacity. Paper presented at the OFC; 3–7 March 2019; 2019. pp. 1–3.

[135]

Thipparapu NK, Umnikov AA, Barua P, Sahu JK. Bi-doped fiber amplifier with a flat gain of 25 dB operating in the wavelength band 1320–1360 nm. Opt Lett. 2016; 41(7): 1518-1521.

[136]

Khegai A, Ososkov Y, Firstov S, et al. O-band bismuth-doped fiber amplifier with 67 nm bandwidth. Paper presented at the OFC; 8–12 March 2020; 2020. pp. 1–3.

[137]

Firstov SV, Alyshev SV, Riumkin KE, et al. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band. Sci Rep. 2016; 6(1): 28939.

[138]

Dvoyrin VV, Mashinsky VM, Turitsyn SK. Bismuth-doped fiber amplifier operating in the spectrally adjacent to EDFA range of 1425–1500 nm. Paper presented at the OFC; 8–12 March 2020; 2020. pp. 1–3.

[139]

Seo Y-S, Lim C-H, Fujimoto Y, Nakatsuka M. 9.6 dB gain at a 1310 nm wavelength for a bismuth-doped fiber amplifier. J Opt Soc Korea. 2007; 11(2): 63-66.

[140]

Norizan SF, Chong WY, Harun SW, Ahmad H. O-band bismuth-doped fiber amplifier with double-pass configuration. IEEE Photon Technol Lett. 2011; 23(24): 1860-1862.

[141]

Bufetov I, Melkumov M, Khopin V, et al. Efficient Bi-Doped Fiber Lasers and Amplifiers for the Spectral Region 1300–1500 nm. Vol 7580. SPIE; 2010.

[142]

Melkumov MA, Bufetov IA, Shubin AV, et al. Laser diode pumped bismuth-doped optical fiber amplifier for 1430 nm band. Opt Lett. 2011; 36(13): 2408-2410.

[143]

Bufetov IA, Firstov SV, Khopin VF, Medvedkov OI, Guryanov AN, Dianov EM. Bi-doped fiber lasers and amplifiers for a spectral region of 1300–1470 nm. Opt Lett. 2008; 33(19): 2227-2229.

[144]

Wang Y, Thipparapu NK, Richardson DJ, Sahu JK. Ultra-broadband bismuth-doped fiber amplifier covering a 115-nm bandwidth in the O and E bands. J Lightwave Technol. 2021; 39(3): 795-800.

[145]

Dianov EM, Semjonov SL, Bufetov IA. New generation of optical fibres. Quantum Electron. 2016; 46(1): 1-10.

[146]

Dianov EM, Shubin AV, Melkumov MA, Medvedkov OI, Bufetov IA. High-power cw bismuth fiber laser: first results and prospects. Paper presented at the OFC/NFOEC 2007–2007; 25–29 March 2007; 2007. pp. 1–3.

[147]

Rulkov AB, Ferin AA, Popov SV, et al. Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling. Opt Express. 2007; 15(9): 5473-5476.

[148]

Dvoyrin VV, Mashinsky VM, Dianov EM. Efficient bismuth-doped fiber lasers. IEEE J Quantum Electron. 2008; 44(9): 834-840.

[149]

Shubin AV, Bufetov IA, Melkumov MA, et al. Bismuth-doped silica-based fiber lasers operating between 1389 and 1538 nm with output power of up to 22 W. Opt Lett. 2012; 37(13): 2589-2591.

[150]

Yu Y, Fang Z, Ma C, et al. Mesoscale engineering of photonic glass for tunable luminescence. NPG Asia Mater. 2016; 8(10): e318.

[151]

Fan W, Kim BH, Htein L, Han W-T. Linear and nonlinear optical properties of bi-doped germano-silicate optical fiber. J Opt. 2012; 14(12): 125201.

[152]

Thipparapu NK, Wang Y, Wang S, Umnikov AA, Barua P, Sahu JK. Bi-doped fiber amplifiers and lasers [Invited]. Opt Mater Express. 2019; 9(6): 2446-2465.

[153]

Firstov SV, Riumkin KE, Khegai AM, et al. Wideband bismuth-and erbium-codoped optical fiber amplifier for C + L + U-telecommunication band. Laser Phys Lett. 2017; 14(11): 110001.

[154]

Sun H-T, Zhou J, Qiu J. Recent advances in bismuth activated photonic materials. Prog Mater Sci. 2014; 64: 1-72.

[155]

Meng X-g, Qiu J-r, Peng M-y. et al. Near infrared broadband emission of bismuth-doped aluminophosphate glass. Opt Express. 2005; 13(5): 1628-1634.

[156]

Hughes MA, Akada T, Suzuki T, Ohishi Y, Hewak DW. Ultrabroad emission from a bismuth doped chalcogenide glass. Opt Express. 2009; 17(22): 19345-19355.

[157]

Sun H-T, Sakka Y, Gao H, et al. Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal. J Mater Chem. 2011; 21(12): 4060-4063.

[158]

Su L, Yu J, Zhou P, et al. Broadband near-infrared luminescence in γ-irradiated Bi-doped α-BaB2O4 single crystals. Opt Lett. 2009; 34(16): 2504-2506.

[159]

Han L, Qin G, Wang F, et al. Influence of the monovalent bismuth on optical properties in Bi-doped silica optical fiber. Opt Mater. 2022; 131: 112720.

[160]

Peng M, Zhang N, Wondraczek L, Qiu J, Yang Z, Zhang Q. Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses. Opt Express. 2011; 19(21): 20799-20807.

[161]

Yushi C, Xinghu F, Yanhua L, et al. Additive manufacturing fiber preforms for structured silica fibers with bismuth and erbium dopants. Light Adv Manuf. 2022; 3(2): 358-364.

[162]

Kück S. Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers. Appl Phys B. 2001; 72(5): 515-562.

[163]

Lai C-C, Tsai H-J, Huang K-Y. et al. Cr4+:YAG double-clad crystal fiber laser. Opt Lett. 2008; 33(24): 2919-2921.

[164]

Lai C-C, Ke C-P, Liu S-K. et al. Efficient and low-threshold Cr4+:YAG double-clad crystal fiber laser. Opt Lett. 2011; 36(6): 784-786.

[165]

Jheng DY, Hsu KY, Liang YC, Huang SL. Broadly tunable and low-threshold Cr4+:YAG crystal fiber laser. IEEE J Sel Top Quantum Electron. 2015; 21(1): 16-23.

[166]

Sennaroglu A. Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible. Prog Quant Electron. 2002; 26(6): 287-352.

[167]

Paramonov VM, Belovolov MI, Khopin VF, et al. Bismuth-doped fibre laser continuously tunable within the range from 1.36 to 1.51 µm. Quantum Electron. 2016; 46(12): 1068-1070.

[168]

Liu CN, Wang TH, Rou TS, Chen NK, Huang SL, Cheng WH. Higher gain of single-mode Cr-doped fibers employing optimized molten-zone growth. J Lightwave Technol. 2017; 35(22): 4930-4936.

[169]

Chang K-C, Cheng W-C, Liu C-N. et al. Record gain of 300-nm broadband single-model Cr-doped crystalline fiber employing novel growth of smaller core. Vol 12028. SPIE; 2022.

[170]

Liu CN, Liu CM, Huang SL, Cheng WH. Broadband single-mode Cr-doped crystalline core fiber with record 11-dB net gain by precise laser-heated pedestal growth and tetrahedral chromium optimization. J Lightwave Technol. 2021; 39(11): 3531-3538.

[171]

Jiang C. Ultra-broadband amplification properties of Ni2+-doped glass-ceramics amplifiers. Opt Express. 2009; 17(8): 6759-6769.

[172]

Zhou S, Li C, Yang G, et al. Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid. Adv Funct. 2013; 23(43): 5436-5443.

[173]

Loiko PA, Dymshits OS, Vitkin VV, et al. Glass-ceramics with γ-Ga2O3:Co2+ nanocrystals: saturable absorber for 1.5–1.7 µm Er lasers. Laser Phys Lett. 2015; 12(3): 035803.

[174]

Loiko P, Dymshits OS, Vitkin VV, et al. Saturable absorber: transparent glass-ceramics based on a mixture of Co3B2;-Zn2SiO4 and Co:ZnO nanocrystals. Appl Optics. 2016; 55(21): 5505-5512.

[175]

Lin L, Wang Y, Lan B, et al. Coordination geometry engineering in a doped disordered matrix for tunable optical response. J Phys Chem C. 2019; 123(48): 29343-29352.

[176]

Malyarevich AM, Yumashev KV. Saturable absorbers based on tetrahedrally coordinated transition-metal ions in crystals (Review). J Appl Spectrosc. 2009; 76(1): 1-43.

[177]

Judd BR. Optical absorption intensities of rare-earth ions. Phys Rev. 1962; 127(3): 750-761.

[178]

Ofelt GS. Intensities of crystal spectra of rare-earth ions. J Chem Phys. 1962; 37(3): 511-520.

[179]

Feng X, Yue Y, Qiu J, Jain H, Zhou S. Entropy engineering in inorganic non-metallic glass. Fundam Res. 2022; 2(5): 783-793.

[180]

Tanabe S. Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication. C R Chim. 2002; 5(12): 815-824.

[181]

Sugimoto N, Tanabe S. Correlation between emission bandwidth of Er3+: 1.5 µm band and optical basicity of host oxide glasses. J Cerma Soc Jpn. 2005; 113(1313): 120-122.

[182]

Liu Y, Qiu Z, Ji X, et al. A photonic integrated circuit based erbium-doped amplifier. Science. 2022; 376(6599): 1309-1313.

[183]

Chen Z, Wan L, Gao S, et al. On-Chip waveguide amplifiers for multi-band optical communications: a review and challenge. J Lightwave Technol. 2022; 40(11): 3364-3373.

[184]

Vienne GG, Caplen JE, Liang D, Minelly JD, Nilsson J, Payne DN. Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers. J Lightwave Technol. 1998; 16(11): 1990-2001.

[185]

Liu T, Yang ZM, Xu SH. 3-Dimensional heat analysis in short-length Er3+/Yb3+ co-doped phosphate fiber laser with upconversion. Opt Express. 2009; 17(1): 235-247.

[186]

Lin A, Zhang A, Bushong EJ, Toulouse J. Solid-core tellurite glass fiber for infrared and nonlinear applications. Opt Express. 2009; 17(19): 16716-16721.

[187]

Dhar A, Paul MC, Pal M, Bhadra SK, Maiti HS, Sen R. An improved method of controlling rare earth incorporation in optical fiber. Opt Commun. 2007; 277(2): 329-334.

[188]

Zhou Z, Li Y, Jiang Y, et al. Broadband near-infrared luminescence in erbium ion single-doped tellurite glass for optical amplification. Opt Lett. 2023; 48(3): 815-818.

[189]

Jia Z, Li H, Meng X, Liu L, Qin G, Qin W. Broadband amplification and highly efficient lasing in erbium-doped tellurite microstructured fibers. Opt Lett. 2013; 38(7): 1049-1051.

[190]

Huang X, Cheng H, Luo W, et al. Er-activated hybridized glass fiber for laser and sensor in the extended wavebands. Adv Opt Mater. 2021; 9(24): 2101394.

[191]

Wang S, Liu Y, Zhang D, et al. Tailoring of communication band luminescence for super broadband optical amplifier based on Er3+/Yb3+/P5+ co-doped nanoporous silica glass. Ceram Int. 2021; 47(13): 18913-18919.

[192]

Chu Y, Ren J, Zhang J, et al. Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers. Sci Rep. 2016; 6(1): 33865.

[193]

Ohishi Y, Kanamori T, Kitagawa T, Takahashi S, Snitzer E, Sigel GH. Pr3+-doped fluoride fiber amplifier operating at 1.31 µm. Opt Lett. 1991; 16(22): 1747-1749.

[194]

Tawarayama H, Ishikawa E, Itoh K, et al. Efficient amplification at 1.3 µm in a Pr3+-doped Ga-Na-S fiber. In: Zervas MWA, Sasaki S, eds. Optical amplifiers and their applications. Optica Publishing Group; 1997: FAW19.

[195]

Merkle LD, Fleischman Z, Brown EE, Allen JL, Hommerich U, Dubinskii M. Enhanced mid-infrared emission of Pr3+ ions in solids through a “3-for-1” excitation process—quantified. Opt Express. 2021; 29(24): 39001-39015.

[196]

Herrera A, Jacinto C, Becerra AR, Franzen PL, Balzaretti NM. Multichannel emission from Pr3+ doped heavy-metal oxide glass B2O3–PbO–GeO2–Bi2O3 for broadband signal amplification. JOL. 2016; 180: 341-347.

[197]

Lakshminarayana G, Meza-Rocha AN. Soriano-Romero O, et al. Pr3+-doped B2O3–Bi2O3–ZnO–NaF glasses comprising alkali/mixed alkali oxides for potential warm white light generation, blue laser, and E-+ S-+ C-optical bands amplification applications. J Mater Res Technol. 2021; 13: 2501-2526.

[198]

Zhou B, Tao L, Tsang YH, Jin W, Pun EY-B. Superbroadband near-IR photoluminescence from Pr3+-doped fluorotellurite glasses. Opt Express. 2012; 20(4): 3803-3813.

[199]

Liu X, Chen BJ, Pun EYB, Lin H. Ultra-broadband near-infrared emission in praseodymium ion doped germanium tellurite glasses for optical fiber amplifier operating at E-, S-, C-, and L-band. J Appl Phys. 2012; 111(11): 116101.

[200]

Yang JX, Chen BJ, Pun EYB, Lin H. Praseodymium ion doped K+-Na+ thermal ion-exchangeable waveguide-adaptive aluminum germanate glasses. Appl Optics. 2018; 57(30): 9022-9031.

[201]

Naresh V, Ham BS. Influence of multiphonon and cross relaxations on 3P0 and 1D2 emission levels of Pr3+ doped borosilicate glasses for broad band signal amplification. J Alloy Compd. 2016; 664: 321-330.

[202]

Pisarska J, Kowal M, Kochanowicz M, et al. Influence of BaF2 and activator concentration on broadband near-infrared luminescence of Pr3+ ions in gallo-germanate glasses. Opt Express. 2016; 24(3): 2427-2435.

[203]

Ohara S, Sugimoto N, Kondo Y, et al. Bi2O3-Based Glass for S-Band Amplification. Vol 4645. SPIE; 2002.

[204]

Roy F, Baniel P, Fages C, Girard JJ, Sauze AL, Bayart D. Optimal pumping schemes for gain-band management of thulium-doped fiber amplifiers. Paper presented at the OFC; 17–22 March 2001; 2001. p. TuQ7.

[205]

Nykolak G, Haner M, Becker PC, Shmulovich J, Wong YH. Systems evaluation of an Er3+-doped planar waveguide amplifier. IEEE Photon Technol Lett. 1993; 5(10): 1185-1187.

[206]

Kik PG, Polman A. Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers. J Appl Phys. 2003; 93(9): 5008-5012.

[207]

Balda R, Fernández J, Fernández-Navarro JM. Study of broadband near-infrared emission in Tm3+–Er3+ codoped TeO2–WO3–PbO glasses. Opt Express. 2009; 17(11): 8781-8788.

[208]

Huang C, Geng J, Luo T, et al. Rare earth doped optical fibers with multi-section core. iScience. 2019; 22: 423-429.

[209]

Chu Y, Yang Y, Liao L, et al. 3D nanoporous silica rods for extra-large-core high-power fiber lasers. ACS Photon. 2018; 5(10): 4014-4021.

[210]

Freeman J, Conradi J. Gain modulation response of erbium-doped fiber amplifiers. IEEE Photon Technol Lett. 1993; 5(2): 224-226.

[211]

Takahashi N, Akashi H, Sasaki T. Modulation frequency characteristics of erbium-doped fiber amplifier. Opt Rev. 1999; 6(4): 321-329.

[212]

Philippe C, Becker NAO, Jay RS. Erbium-Doped Fiber Amplifiers Fundamentals and Technology. Elsevier; 1999.

[213]

Pisarchik AN, Kir’yanov AV, Barmenkov YO, Jaimes-Reátegui R. Dynamics of an erbium-doped fiber laser with pump modulation: theory and experiment. J Opt Soc Am B. 2005; 22(10): 2107-2114.

[214]

Chowdhury MZ, Shahjalal M, Hasan MK, Jang YM. The role of optical wireless communication technologies in 5G/6G and IoT solutions: prospects, directions, and challenges. Appl Sci. 2019; 9(20): 4367.

[215]

Dong B, Dumont M, Terra O, Wang H, Netherton A, Bowers JE. Broadband quantum-dot frequency-modulated comb laser. Light Sci Appl. 2023; 12(1): 182.

[216]

Ciaramella E, Arimoto Y, Contestabile G, et al. 1.28 terabit/s (32 × 40 Gbit/s) wdm transmission system for free space optical communications. IEEE J Sel Area Commun. 2009; 27(9): 1639-1645.

[217]

Khan MZM. Towards InAs/InP quantum-dash laser-based ultra-high capacity heterogeneous optical networks: a review. IEEE Access. 2022; 10: 9960-9988.

[218]

Lu ZG, Liu JR, Raymond S, Poole PJ, Barrios PJ, Poitras D. 312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser. Opt Express. 2008; 16(14): 10835-10840.

[219]

Rosales R, Merghem K, Martinez A, et al. InAs/InP quantum-dot passively mode-locked lasers for 1.55-µm applications. IEEE J Sel Top Quantum Electron. 2011; 17(5): 1292-1301.

[220]

Liu W, Li M, Guzzon RS, et al. A fully reconfigurable photonic integrated signal processor. Nat Photon. 2016; 10(3): 190-195.

[221]

Feldmann J, Youngblood N, Karpov M, et al. Parallel convolutional processing using an integrated photonic tensor core. Nature. 2021; 589(7840): 52-58.

[222]

Chang L, Liu S, Bowers JE. Integrated optical frequency comb technologies. Nat Photon. 2022; 16(2): 95-108.

[223]

Raja AS, Voloshin AS, Guo H, et al. Electrically pumped photonic integrated soliton microcomb. Nat Commun. 2019; 10(1): 680.

[224]

Winzer PJ. Making spatial multiplexing a reality. Nat Photon. 2014; 8(5): 345-348.

[225]

Xie Z, Lei T, Li F, et al. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci Appl. 2018; 7(4): 18001.

[226]

Liu J, Zhang J, Liu J, et al. 1-Pbps orbital angular momentum fibre-optic transmission. Light Sci Appl. 2022; 11(1): 202.

[227]

Yu J, Zhu S, Gutterman CL, Zussman G, Kilper DC. Machine-learning-based EDFA gain estimation [Invited]. J Opt Commun Netw. 2021; 13(4): B83-B91.

[228]

Shields AJ. Semiconductor quantum light sources, Nat. Photon. 2007; 1: 215–223.

[229]

Lu H, Carroll GM, Neale NR, Beard MC. Infrared Quantum Dots: Progress, Challenges, and Opportunities, ACS Nano. 2019; 13(2): 939–953.

RIGHTS & PERMISSIONS

2024 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/