Polarization-directed nanophotonic routers based on two-dimensional inorganic molecular crystals

Jiacheng Yao , Xin Feng , Tingting Zhang , Fangqi Chen , Zhenglong Zhang , Hairong Zheng , Tianyou Zhai , Tao Ding

InfoMat ›› 2024, Vol. 6 ›› Issue (8) : e12548

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (8) : e12548 DOI: 10.1002/inf2.12548
RESEARCH ARTICLE

Polarization-directed nanophotonic routers based on two-dimensional inorganic molecular crystals

Author information +
History +
PDF

Abstract

Photonic and plasmonic hybrid nanostructures are the key solution for integrated nanophotonic circuits with ultracompact size but relative low loss. However, the poor tunability and modulability of conventional waveguides makes them cumbersome for optical multiplexing. Here we make use of two-dimensional molecular crystal, α-Sb2O3 as a dielectric waveguide via total internal reflection, which shows polarization-sensitive modulation of the propagating beams due to its large polarization mode dispersion. Both experiments and simulations are performed to verify such concept. These Sb2O3 nanoflakes can be coupled with plasmonic nanowires to form nanophotonic beam splitters and routers which can be easily modulated by changing the polarization of the incidence. It thus provides a robust, exploitable and tunable platform for on-chip nanophotonics.

Keywords

nanoflakes / plasmonics / polarization / Sb 2O 3 / waveguides

Cite this article

Download citation ▾
Jiacheng Yao, Xin Feng, Tingting Zhang, Fangqi Chen, Zhenglong Zhang, Hairong Zheng, Tianyou Zhai, Tao Ding. Polarization-directed nanophotonic routers based on two-dimensional inorganic molecular crystals. InfoMat, 2024, 6(8): e12548 DOI:10.1002/inf2.12548

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shen J, Fan Y, Xu Z, et al. Ultralow-power piezo-optomechanically tuning on CMOS-compatible integrated silicon-hafnium-oxide platform. Laser Photonics Rev. 2023; 17(2): 2200248.

[2]

Meng Y, Chen Y, Lu L, et al. Optical meta-waveguides for integrated photonics and beyond. Light Sci Appl. 2021; 10(1): 235.

[3]

Cheben P, Halir R, Schmid JH, Atwater HA, Smith DR. Subwavelength integrated photonics. Nature. 2018; 560(7720): 565-572.

[4]

Song T, Chu H, Luo J, et al. Ultracompact photonic circuits without cladding layers. Phys Rev X. 2022; 12(1): 011053.

[5]

Brongersma ML, Shalaev VM. The case for plasmonics. Science. 2010; 328(5977): 440-441.

[6]

Wei H, Pan D, Zhang S, et al. Plasmon waveguiding in nanowires. Chem Rev. 2018; 118(6): 2882-2926.

[7]

Kim S, Yan R. Recent developments in photonic, plasmonic and hybrid nanowire waveguides. J Mater Chem C. 2018; 6(44): 11795-11816.

[8]

Guo X, Qiu M, Bao J, et al. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett. 2009; 9(12): 4515-4519.

[9]

Yan R, Pausauskie P, Huang J, Yang P. Direct photonic–plasmonic coupling and routing in single nanowires. Proc Natl Acad Sci U S A. 2009; 106(50): 21045-21050.

[10]

Hentschel M, Koshelev K, Sterl F, et al. Dielectric mie voids: confining light in air. Light Sci Appl. 2023; 12(1): 3.

[11]

Hochberg M, Baehr-Jones T. Walker C, Scherer A. Integrated plasmon and dielectric waveguides. Opt Express. 2004; 12(22): 5481-5486.

[12]

Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics. 2008; 2(8): 496-500.

[13]

Vercruysse D, Neutens P, Lagae L, Verellen N, Van Dorpe P. Single asymmetric plasmonic antenna as a directional coupler to a dielectric waveguide. ACS Photonics. 2017; 4(6): 1398-1402.

[14]

Dabos G, Manolis A, Tsiokos D, et al. Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes. Sci Rep. 2018; 8(1): 13380.

[15]

Saha S, Dutta A, Kinsey N, Kildishev AV, Shalaev VM, Boltasseva A. On-chip hybrid photonic-plasmonic waveguides with ultrathin titanium nitride films. ACS Photonics. 2018; 5(11): 4423-4431.

[16]

Song Y, Wang J, Li Q, Yan M, Qiu M. Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. Opt Express. 2010; 18(12): 13173-13179.

[17]

Ma Y, Zong Y, Yin H, Lin H, Chen S, Wang X-D. 2D optical waveguides based on hierarchical organic semiconductor single crystals. Adv Opt Mater. 2021; 9(22): 2101481.

[18]

Lu C, Liu Z, Wu Y, et al. Nanophotonic polarization routers based on an intelligent algorithm. Adv Opt Mater. 2020; 8(10): 1902018.

[19]

Zhang Z, Zhang Y, Hong B, Wang G. Optical waveguide in curved and welded perovskite nanowires. Sci China Technol Sci. 2023; 66(5): 1471-1479.

[20]

Liu F, Zhang T, Mondal D, et al. Light-emitting metal–organic halide 1D and 2D structures: near-unity quantum efficiency, low-loss optica. waveguide and highly polarized emission. Angew Chem Int Ed. 2021; 60(24): 13548-13553.

[21]

Zhang J, Yang D, Zhang C, Zhao Z. A single chip LiNbO3 photonic 2D electric field sensor using two perpendicular electrodes. IEEE Photon Technol Lett. 2020; 32(23): 1501-1504.

[22]

Boller K-J, van Rees A, Fan Y, et al. Hybrid integrated semiconductor lasers with silicon nitride feedback circuits. Photonics. 2020; 7(1): 4.

[23]

Okamoto K. Progress and technical challenge for planar waveguide devices: silica and silicon waveguides. Laser Photonics Rev. 2012; 6(1): 14-23.

[24]

Han W, Huang P, Li L, et al. Two-dimensional inorganic molecular crystals. Nat Commun. 2019; 10(1): 4728.

[25]

Feng X, Bu K, Liu T, et al. Giant tunability of charge transport in 2D inorganic molecular crystals by pressure engineering. Angew Chem Int Ed. 2023; 62(9): e202217238.

[26]

Liu K, Liu L, Zhai T. Emerging two-dimensional inorganic molecular crystals: the concept and beyond. J Phys Chem Lett. 2022; 13(9): 2173-2179.

[27]

Zhang J, Liu L, Luo X, Lu W, Zhai T. Thermally robust optical properties of the wafer-scale α-Sb2O3 films. Appl Surf Sci. 2023; 612(1): 155793.

[28]

Xu Y, Liu T, Liu K, et al. Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors. Nat Mater. 2023; 22(9): 1078-1084.

[29]

Pi L, Wang P, Liang S-J, et al. Broadband convolutional processing using band-alignment-tunable heterostructures. Nat Electron. 2022; 5(4): 248-254.

[30]

Zhang T, Wang C, Chen H, et al. Controlled multichannel surface plasmon polaritons transmission on atomic smooth silver triangular waveguide. Adv Opt Mater. 2019; 7(21): 1900930.

[31]

Chen H, Sun M, Ma J, et al. Multiplasmons-pumped excited-state absorption and energy transfer upconversion of rare-earth-doped luminescence beyond the diffraction limit. ACS Photonics. 2021; 8(5): 1335-1343.

[32]

Dimitrov V, Sakka S. Electronic oxide polarizability and optical basicity of simple oxides. J Appl Phys. 1996; 79(3): 1736-1740.

[33]

Kim DW, Lee MH, Kim Y, Kim KH. Planar-type polarization beam splitter based on a bridged silicon waveguide coupler. Opt Express. 2015; 23(2): 998-1004.

[34]

Yariv A. Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron Lett. 2000; 36(4): 321-322.

[35]

Zhang S, Gu C, Xu H. Single nanoparticle couplers for plasmonic waveguides. Small. 2014; 10(21): 4264-4269.

[36]

Fang Y, Li Z, Huang Y, et al. Branched silver nanowires as controllable plasmon routers. Nano Lett. 2010; 10(5): 1950-1954.

[37]

Briggs RM, Grandidier J, Burgos SP, Feigenbaum E, Atwater HA. Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. Nano Lett. 2010; 10(12): 4851-4857.

[38]

Fang Y, Sun M. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci Appl. 2015; 4(6): e294.

[39]

Zhang X, Chung CJ, Wang S, et al. Integrated broadband bowtie antenna on transparent silica substrate. IEEE Antennas Wirel Propag Lett. 2016; 15: 1377-1381.

RIGHTS & PERMISSIONS

2024 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/