Near-infrared emitting metal halide materials: Luminescence design and applications
Dongjie Liu, Peipei Dang, Guodong Zhang, Hongzhou Lian, Guogang Li, Jun Lin
Near-infrared emitting metal halide materials: Luminescence design and applications
Near-infrared (NIR) luminescent metal halide (LMH) materials have attracted great attention in various optoelectronic applications due to their low-temperature solution-processable synthesis, abundant crystallographic/electronic structures, and unique optoelectronic properties. However, some challenges still remain in their luminescence design, performance improvement, and application assignments. This review systematically summarizes the development of NIR LMHs through classifying NIR luminescent origins into four major categories: band-edge emission, self-trapped exciton (STE) emission, ion emission, and defect-related emission. The luminescence mechanisms of different types of NIR LMHs are discussed in detail by analyzing typical examples. Reasonable strategies for designing and optimizing luminescence/optoelectronic properties of NIR LMHs are summarized, including bandgap engineering, self-trapping state engineering, chemical composition modification, energy transfer, and other auxiliary strategies such as improvement of synthesis scheme and post-processing. Furthermore, application prospects based on the optoelectronic devices are revealed, including phosphor-converted light-emitting diodes (LEDs), electroluminescent LEDs, photodetectors, solar cells, and x-ray scintillators, as well as demonstrations of some related practical applications. Finally, the existing challenges and future perspectives on the development of NIR LMH materials are critically proposed. This review aims to provide general understanding and guidance for the design of high-performance NIR LMHs materials.
luminescence design / metal halides / near-infrared luminescent materials / optoelectronic applications / performance improvement
[1] |
Zhao X, Tan Z-K. Large-area near-infrared perovskite light-emitting diodes. Nat Photonics. 2020;14(4):215-218.
|
[2] |
Qiao J, Zhou G, Zhou Y, Zhang Q, Xia Z. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes. Nat Commun. 2019;10(1):5267.
|
[3] |
Minotto A, Bulut I, Rapidis AG, et al. Towards efficient near-infrared fluorescent organic light-emitting diodes. Light Sci Appl. 2021;10(1):18.
|
[4] |
Liu D, Li G, Dang P, et al. Highly efficient Fe3+-doped A2BB′O6 (A = Sr2+, Ca2+; B,B′ = In3+, Sb5+, Sn4+) broadband near-infrared-emitting phosphors for spectroscopic analysis. Light Sci Appl. 2022;11(1):112.
|
[5] |
Manley M. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials. Chem Soc Rev. 2014;43(24):8200-8214.
|
[6] |
Ma Y, Wang Z, Wang Y, Liu Z, Wang Y, Lv R. Coumarin derivative dye sensitized NaYGdF4:Yb,Er nanoparticles with enhanced NIR II luminescence for bio-vascular imaging. J Rare Earths. 2023;41(12):1843-1849.
|
[7] |
Gu Y, Guo Z, Yuan W, et al. High-sensitivity imaging of time-domain near-infrared light transducer. Nat Photonics. 2019;13(8):525-531.
|
[8] |
Xing P, Niu Y, Mu R, et al. A pocket-escaping design to prevent the common interference with near-infrared fluorescent probes in vivo. Nat Commun. 2020;11(1):1573.
|
[9] |
Xie R-J. Light-emitting diodes: brighter NIR-emitting phosphor making light sources smarter. Light Sci Appl. 2020;9(1):155.
|
[10] |
Cai H, Liu S, Song Z, Liu Q. Tuning luminescence from NIR-I to NIR-II in Cr3+-doped olivine phosphors for nondestructive analysis. J Mater Chem C. 2021;9(16):5469-5477.
|
[11] |
Rajendran V, Fang M-H, Guzman GND, et al. Super broadband near-infrared phosphors with high radiant flux as future light sources for spectroscopy applications. ACS Energy Lett. 2018;3(11):2679-2684.
|
[12] |
Rajendran V, Lesniewski T, Mahlik S, et al. Ultra-broadband phosphors converted near-infrared light emitting diode with efficient radiant power for spectroscopy applications. ACS Photonics. 2019;6(12):3215-3224.
|
[13] |
Zhang X, Wu X, Xu Y, et al. Tailoring Fe3+-activated broadband NIR phosphors: enhancing external quantum efficiency and spectrum adjustability through crystal field engineering in double perovskite antimonate structures. Adv Opt Mater. 2023;2302300.
|
[14] |
Liu B-M, Guo X-X, Cao L-Y, et al. A high-efficiency blue-led-excitable NIR-II-emitting MgO:Cr3+,Ni2+ phosphor for future broadband light source toward multifunctional NIR spectroscopy applications. Chem Eng J. 2023;452:139313.
|
[15] |
Zhao F, Shao Y, Song Z, Liu Q. Structural confinement toward suppressing concentration and thermal quenching for improving near-infrared luminescence of Fe3+. Inorg Chem Front. 2023;10(22):6701-6710.
|
[16] |
Qiao J, Zhang S, Zhou X, Chen W, Gautier R, Xia Z. Near-infrared light-emitting diodes utilizing a europium-activated calcium oxide phosphor with external quantum efficiency of up to 54.7%. Adv Mater. 2022;34(26):2201887.
|
[17] |
Zhang Y, Miao S, Liang Y, et al. Blue LED-pumped intense short-wave infrared luminescence based on Cr3+–Yb3+-co-doped phosphors. Light Sci Appl. 2022;11(1):136.
|
[18] |
Li M, Xia Z. Recent progress of zero-dimensional luminescent metal halides. Chem Soc Rev. 2021;50(4):2626-2662.
|
[19] |
Sun Y, Fernández-Carrión AJ, Liu Y, et al. Bismuth-based halide double perovskite Cs2LiBiCl6: crystal structure, luminescence, and stability. Chem Mater. 2021;33(15):5905-5916.
|
[20] |
Zhang F, Liang W, Wang L, et al. Moisture-induced reversible phase conversion of cesium copper iodine nanocrystals enables advanced anti-counterfeiting. Adv Funct Mater. 2021;31(47):2105771.
|
[21] |
Zhou L, Liao JF, Huang ZG, et al. A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection. Angew Chem Int Ed. 2019;58(16):5277-5281.
|
[22] |
Jin S, Yuan H, Pang T, et al. Highly bright and stable lead-free double perovskite white light-emitting diodes. Adv Mater. 2024;36(4):2308487.
|
[23] |
Adjokatse S, Fang H-H, Loi MA. Broadly tunable metal halide perovskites for solid-state light-emission applications. Mater Today. 2017;20(8):413-424.
|
[24] |
Su B, Li M, Song E, Xia Z. Sb3+-doping in cesium zinc halides single crystals enabling high-efficiency near-infrared emission. Adv Funct Mater. 2021;31(40):2105316.
|
[25] |
Xu MX, Li XY, Liu SH, Zhang LT, Xie WF. Near-infrared organic light-emitting materials, devices and applications. Mater Chem Front. 2023;7(20):4744-4767.
|
[26] |
Ding N, Wu Y, Xu W, et al. A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared. Light Sci Appl. 2022;11(1):91.
|
[27] |
Worku M, Ben-Akacha A, Blessed Shonde T, Liu H, Ma B. The past, present, and future of metal halide perovskite light-emitting diodes. Small Sci. 2021;1(8):2000072.
|
[28] |
Lin R, Xu J, Wei M, et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature. 2022;603(7899):73-78.
|
[29] |
Fu Y, Zhu H, Chen J, Hautzinger MP, Zhu XY, Jin S. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat Rev Mater. 2019;4(3):169-188.
|
[30] |
Jiang Q, Zhao Y, Zhang X, et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics. 2019;13(7):460-466.
|
[31] |
Lin K, Xing J, Quan LN, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature. 2018;562(7726):245-248.
|
[32] |
Carolan AN, Cockrell GM, Williams NJ, et al. Selectivity of the highly preorganized tetradentate ligand 2,9-di(pyrid-2-yl)-1,10-phenanthroline for metal ions in aqueous solution, including lanthanide(III) ions and the uranyl(VI) cation. Inorg Chem. 2013;52(1):15-27.
|
[33] |
Lai ML, Tay TY, Sadhanala A, et al. Tunable near-infrared luminescence in tin halide perovskite devices. J Phys Chem Lett. 2016;7(14):2653-2658.
|
[34] |
Liu Z, Qin X, Chen Q, et al. Highly stable lead-free perovskite single crystals with NIR emission beyond 1100 nm. Adv Opt Mater. 2022;10(21):2201254.
|
[35] |
Zhu F, Gao Y, Zhao C, Pi J, Qiu J. Achieving broadband NIR-I to NIR-II emission in an all-inorganic halide double-perovskite Cs2NaYCl6:Cr3+ phosphor for night vision imaging. ACS Appl Mater Interfaces. 2023;15(33):39550-39558.
|
[36] |
Han S, Tu D, Xie Z, et al. Unveiling local electronic structure of lanthanide-doped Cs2NaInCl6 double perovskites for realizing efficient near-infrared luminescence. Adv Sci. 2022;9(32):2203735.
|
[37] |
Zhou Y, Yong Z-J, Zhang W, et al. Ultra-broadband optical amplification at telecommunication wavelengths achieved by bismuth-activated lead iodide perovskites. J Mater Chem C. 2017;5(10):2591-2596.
|
[38] |
Zhou L, Liao JF, Kuang DB. An overview for zero-dimensional broadband emissive metal-halide single crystals. Adv Opt Mater. 2021;9(17):2100544.
|
[39] |
Li X, Gao X, Zhang X, et al. Lead-free halide perovskites for light emission: recent advances and perspectives. Adv Sci. 2021;8(4):2003334.
|
[40] |
Li S, Luo J, Liu J, Tang J. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. J Phys Chem Lett. 2019;10(8):1999-2007.
|
[41] |
Protesescu L, Yakunin S, Bodnarchuk MI, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015;15(6):3692-3696.
|
[42] |
Smith MD, Karunadasa HI. White-light emission from layered halide perovskites. Acc Chem Res. 2018;51(3):619-627.
|
[43] |
Stoumpos CC, Cao DH, Clark DJ, et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem Mater. 2016;28(8):2852-2867.
|
[44] |
Lin H, Zhou C, Tian Y, Siegrist T, Ma B. Low-dimensional organometal halide perovskites. ACS Energy Lett. 2017;3(1):54-62.
|
[45] |
Iwanaga M, Azuma J, Shirai M, Tanaka K, Hayashi T. Self-trapped electrons and holes in PbBr2 crystals. Phys Rev B. 2002;65(21):214306.
|
[46] |
Scholz R, Kobitski AY, Zahn DRT, Schreiber M. Investigation of molecular dimers in α-PTCDA by ab initio methods: binding energies, gas-to-crystal shift, and self-trapped excitons. Phys Rev B. 2005;72(24):245208.
|
[47] |
Matsui A, Nishimura H. Luminescence of free and self trapped excitons in pyrene. J Physical Soc Japan. 1980;49(2):657-663.
|
[48] |
Williams RT, Song KS, Faust WL, Leung CH. Off-center self-trapped excitons and creation of lattice-defects in alkali-halide crystals. Phys Rev B. 1986;33(10):7232-7240.
|
[49] |
Liu X, Zhang Z, Lin F, Cheng Y. Structural modulation and assembling of metal halide perovskites for solar cells and light-emitting diodes. InfoMat. 2021;3(11):1218-1250.
|
[50] |
Smith MD, Connor BA, Karunadasa HI. Tuning the luminescence of layered halide perovskites. Chem Rev. 2019;119(5):3104-3139.
|
[51] |
Zhou C, Lin H, He Q, et al. Low dimensional metal halide perovskites and hybrids. Mater Sci Eng R Rep. 2019;137:38-65.
|
[52] |
Zhao C, Gao Y, Qiu J. Synthesis and photoluminescence modulation of Cs4Cd1–xMnxBi2Cl12-based two-dimensional layered double perovskites. Inorg Chem. 2023;62(42):17382-17389.
|
[53] |
Guo X-X, Wei J-H, Luo J-B, et al. All inorganic Sb3+–Ln3+-codoped Cs2NaYCl6 for highly efficient single-source white-light emission and ratiometric optical thermometer applications. Adv Opt Mater. 2023;12(7):2301914.
|
[54] |
Wen X, Prusa P, Vladimir L, et al. Near-infrared emitting of zero-dimensional europium(II) halide scintillators: energy transfer engineering via Sm3+ doping. ACS Appl Electron Mater. 2023;5(6):3507-3514.
|
[55] |
Vtyurina DN, Eistrikh-Geller PA, Kuz'micheva GM, et al. Influence of monovalent Bi+ doping on real composition, point defects, and photoluminescence in TlCdCl3 and TlCdI3 single crystals. Sci China Mater. 2017;60(12):1253-1263.
|
[56] |
Wang Y, Dang P, Li G, Lian H, Lin J. Eu2+-doped halide perovskite(quasi-) luminescent materials and their research progress. J Chin Soc Rare Earths. 2023;41(1):39-53.
|
[57] |
Akkerman QA, Park S, Radicchi E, et al. Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett. 2017;17(3):1924-1930.
|
[58] |
Chen Y-M, Zhou Y, Zhao Q, et al. Cs4PbBr6/CsPbBr3 perovskite composites with near-unity luminescence quantum yield: large-scale synthesis, luminescence and formation mechanism, and white light-emitting diode application. ACS Appl Mater Interfaces. 2018;10(18):15905-15912.
|
[59] |
Qin Z, Dai S, Hadjiev VG, et al. Revealing the origin of luminescence center in 0D Cs4PbBr6 perovskite. Chem Mater. 2019;31(21):9098-9104.
|
[60] |
Quan LN, Quintero-Bermudez R, Voznyy O, et al. Highly emissive green perovskite nanocrystals in a solid state crystalline matrix. Adv Mater. 2017;29(21):1605945.
|
[61] |
Tan Z, Li J, Zhang C, et al. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Adv Funct Mater. 2018;28(29):1801131.
|
[62] |
Zhou J, Li M, Ning L, et al. Broad-band emission in a zero-dimensional hybrid organic [PbBr6] trimer with intrinsic vacancies. J Phys Chem Lett. 2019;10(6):1337-1341.
|
[63] |
Wu S, Zhou B, Yan D. Low-dimensional organic metal halide hybrids with excitation-dependent optical waveguides from visible to near-infrared emission. ACS Appl Mater Interfaces. 2021;13(22):26451-26460.
|
[64] |
Samet A, Pillet S, Abid Y. Sensitizer-free photon up conversion in (HQ)2ZnCl4 and HQCl crystals: systems involving resonant energy transfer and triplet–triplet annihilation. Phys Chem Chem Phys. 2020;22(3):1575-1582.
|
[65] |
Jun T, Sim K, Iimura S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv Mater. 2018;30(43):1804547.
|
[66] |
Sun S, Lu M, Gao X, et al. 0D perovskites: unique properties, synthesis, and their applications. Adv Sci. 2021;8(24):2102689.
|
[67] |
Zhou C, Tian Y, Wang M, et al. Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation. Angew Chem Int Ed. 2017;56(31):9018-9022.
|
[68] |
Zhou L, Liao J-F, Huang Z-G, et al. Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal. Angew Chem Int Ed. 2019;58(43):15435-15440.
|
[69] |
Zhou C, Lin H, Shi H, et al. A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly stokes-shifted deep-red emission. Angew Chem Int Ed. 2018;57(4):1021-1024.
|
[70] |
Jin J-C, Shen N-N, Wang Z-P, Peng Y-C, Huang X-Y. Photoluminescent ionic metal halides based on s2 typed ions and aprotic ionic liquid cations. Coord Chem Rev. 2021;448:214185.
|
[71] |
Wang Y-N, Tong L, Min W, et al. Band gap modulation of organic-inorganic Sb(III) halide by molecular design. CrstEngComm. 2022;24(7):1352-1357.
|
[72] |
Deng C, Hao S, Liu K, et al. Broadband light emitting zero-dimensional antimony and bismuth-based hybrid halides with diverse structures. J Mater Chem C. 2021;9(44):15942-15948.
|
[73] |
Xing G, Wu B, Wu X, et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat Commun. 2017;8(1):14558.
|
[74] |
Benin BM, Dirin DN, Morad V, et al. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides. Angew Chem Int Ed. 2018;57(35):11329-11333.
|
[75] |
Qian J, Guo Q, Liu L, Xu B, Tian W. A theoretical study of hybrid lead iodide perovskite homologous semiconductors with 0D, 1D, 2D and 3D structures. J Mater Chem A. 2017;5(32):16786-16795.
|
[76] |
Xiao Z, Meng W, Wang J, Mitzi DB, Yan Y. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Mater Horiz. 2017;4(2):206-216.
|
[77] |
Han D, Shi H, Ming W, et al. Unraveling luminescence mechanisms in zero-dimensional halide perovskites. J Mater Chem C. 2018;6(24):6398-6405.
|
[78] |
Wang X, Meng W, Liao W, Wang J, Xiong R-G, Yan Y. Atomistic mechanism of broadband emission in metal halide perovskites. J Phys Chem Lett. 2019;10(3):501-506.
|
[79] |
Yuan Z, Zhou C, Tian Y, et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat Commun. 2017;8(1):14051.
|
[80] |
Hu T, Smith MD, Dohner ER, et al. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites. J Phys Chem Lett. 2016;7(12):2258-2263.
|
[81] |
Wei Q, Chang T, Zeng R, et al. Self-trapped exciton emission in a zero-dimensional (TMA)2SbCl5·DMF single crystal and molecular dynamics simulation of structural stability. J Phys Chem Lett. 2021;12(30):7091-7099.
|
[82] |
Zeng R, Zhang L, Xue Y, et al. Highly efficient blue emission from self-trapped excitons in stable Sb3+-doped Cs2NaInCl6 double perovskites. J Phys Chem Lett. 2020;11(6):2053-2061.
|
[83] |
Zhang G, Wang D, Ren J, Zhou X, Wang Y. Highly efficient broadband near-infrared emission from Sn2+ alloyed lead-free cesium zinc halides. Laser Photonics Rev. 2023;17(10):2300158.
|
[84] |
Zhang Y, Zhou L, Li D, et al. Realizing efficient emission in three-dimensional CsCdCl3 single crystals by introducing separated emitting centers. Inorg Chem. 2022;61(44):17902-17910.
|
[85] |
Liu S, Yang B, Chen J, et al. Colloidal synthesis and tunable multicolor emission of vacancy-ordered Cs2HfCl6 perovskite nanocrystals. Laser Photonics Rev. 2021;16(2):2100439.
|
[86] |
Zeng H, Zhou T, Wang L, Xie R-J. Two-site occupation for exploring ultra-broadband near-infrared phosphor-double-perovskite La2MgZrO6:Cr3+. Chem Mater. 2019;31(14):5245-5253.
|
[87] |
Dramicanin MD, Marciniak L, Kuzman S, et al. Mn5+-activated Ca6Ba(PO4)4O near-infrared phosphor and its application in luminescence thermometry. Light Sci Appl. 2022;11(1):279.
|
[88] |
Hu J, Cui R, Zhang J, Ling H, Shi Y, Guo X. Thermally-stable novel single-phase phosphor of Ca2InTaO6:Dy3+ for NUV-excited white LEDs. J Rare Earths. (In press).
|
[89] |
Morad V, Shynkarenko Y, Yakunin S, Brumberg A, Schaller RD, Kovalenko MV. Disphenoidal zero-dimensional lead, tin, and germanium halides: highly emissive singlet and triplet self-trapped excitons and X-ray scintillation. J Am Chem Soc. 2019;141(25):9764-9768.
|
[90] |
Chen P, Bai Y, Lyu M, Yun J-H, Hao M, Wang L. Progress and perspective in low-dimensional metal halide perovskites for optoelectronic applications. Sol RRL. 2018;2(3):1700186.
|
[91] |
Ke WJ, Stoumpos CC, Zhu MH, et al. Enhanced photovoltaic performance and stability with a new type of hollow 3d perovskite {en}FASnI3. Sci Adv. 2017;3(8):e1701293.
|
[92] |
Hong WL, Huang YC, Chang CY, et al. Efficient low-temperature solution-processed lead-free perovskite infrared light-emitting diodes. Adv Mater. 2016;28(36):8029-8036.
|
[93] |
Kumawat NK, Gupta D, Kabra D. Recent advances in metal halide-based perovskite light-emitting diodes. Energy Technol Ger. 2017;5(10):1734-1749.
|
[94] |
Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci. 2014;7(3):982-988.
|
[95] |
Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat Photonics. 2014;8(6):489-494.
|
[96] |
Sakai N, Haghighirad AA, Filip MR, et al. Solution-processed cesium hexabromopalladate(IV), Cs2PdBr6, for optoelectronic applications. J Am Chem Soc. 2017;139(17):6030-6033.
|
[97] |
Lin H, Wei Q, Ke B, Lin W, Zhao H, Zou B. Excitation-wavelength-dependent emission behavior in (NH4)2SnCl6 via Sb3+ dopant. J Phys Chem Lett. 2023;14(6):1460-1469.
|
[98] |
Stroyuk O, Raievska O, Hauch J, Brabec CJ. Doping/alloying pathways to lead-free halide perovskites with ultimate photoluminescence quantum yields. Angew Chem Int Ed. 2023;62(3):e202212668.
|
[99] |
Wei Y, Wang W, Wang Z, et al. Recent progress of bismuth effect on all-inorganic lead-free metal halide derivatives: crystals structure, luminescence properties, and applications. Adv Funct Mater. 2022;33(2):2205829.
|
[100] |
Liu Y, Nag A, Manna L, Xia Z. Lead-free double perovskite Cs2AgInCl6. Angew Chem Int Ed. 2021;60(21):11592-11603.
|
[101] |
Dave K, Fang MH, Bao Z, Fu HT, Liu RS. Recent developments in lead-free double perovskites: structure, doping, and applications. Chem Asian J. 2020;15(2):242-252.
|
[102] |
Arfin H, Kaur J, Sheikh T, Chakraborty S, Nag A. Bi3+–Er3+ and Bi3+–Yb3+ codoped Cs2AgInCl6 double perovskite near-infrared emitters. Angew Chem Int Ed. 2020;59(28):11307-11311.
|
[103] |
Wang C-Y, Liang P, Xie R-J, et al. Highly efficient lead-free (Bi,Ce)-codoped Cs2Ag0.4Na0.6InCl6 double perovskites for white light-emitting diodes. Chem Mater. 2020;32(18):7814-7821.
|
[104] |
Zhou Y, Yong ZJ, Zhang KC, et al. Ultrabroad photoluminescence and electroluminescence at new wavelengths from doped organometal halide perovskites. J Phys Chem Lett. 2016;7(14):2735-2741.
|
[105] |
Han X, Liang J, Yang JH, et al. Lead-free double perovskite Cs2SnX6: facile solution synthesis and excellent stability. Small. 2019;15(39):1901650.
|
[106] |
Liu F, Ding C, Zhang Y, et al. Colloidal synthesis of air-stable alloyed CsSn1–xPbxI3 perovskite nanocrystals for use in solar cells. J Am Chem Soc. 2017;139(46):16708-16719.
|
[107] |
Liu F, Jiang J, Zhang Y, et al. Near-infrared emission from tin–lead (Sn–Pb) alloyed perovskite quantum dots by sodium doping. Angew Chem Int Ed. 2020;59(22):8421-8424.
|
[108] |
Wang T, Lian G, Huang L, et al. MAPbI3 quasi-single-crystal films composed of large- sized grains with deep boundary fusion for sensitive vis–NIR photodetectors. ACS Appl Mater Interfaces. 2020;12(34):38314-38324.
|
[109] |
Liu H, Shi G, Khan R, et al. Large-area flexible perovskite light-emitting diodes enabled by inkjet printing. Adv Mater. 2023;36(8):2309921.
|
[110] |
Huang W-L, Liao W-H, Chu S-Y. Application of a perovskite NIR-LED with highly stable FAPbI3@SiO2 core–shell nanocomposites in a SPR sensing platform. ACS Appl Mater Interfaces. 2023;15(34):41151-41161.
|
[111] |
Gil B, Kim J, Park B. Phenyltrimethylammonium-alloying strategy for efficient and durable formamidinium-based perovskite solar cells. Sol RRL. 2023;8(3):202300881.
|
[112] |
Liu M, Zhao R, Sun F, et al. Wavelength-tuneable near-infrared luminescence in mixed tin–lead halide perovskites. Front Chem. 2022;10:887983.
|
[113] |
Jellicoe TC, Richter JM, Glass HFJ, et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J Am Chem Soc. 2016;138(9):2941-2944.
|
[114] |
Meng X, Lin J, Liu X, et al. Highly stable and efficient FASnI3-based perovskite solar cells by introducing hydrogen bonding. Adv Mater. 2019;31(42):1903721.
|
[115] |
Yu J, Kong J, Hao W, et al. Broadband extrinsic self-trapped exciton emission in Sn-doped 2D lead-halide perovskites. Adv Mater. 2019;31(7):1806385.
|
[116] |
Shi H, Han D, Chen S, Du M-H. Impact of metal ns2 lone pair on luminescence quantum efficiency in low-dimensional halide perovskites. Phys Rev Mater. 2019;3(3):034604.
|
[117] |
Gillespie RJ. Fifty years of the vsepr model. Coordin Chem Rev. 2008;252(12-14):1315-1327.
|
[118] |
McCall KM, Morad V, Benin BM, Kovalenko MV. Efficient lone-pair-driven luminescence: structure-property relationships in emissive 5s2 metal halides. ACS Mater Lett. 2020;2(9):1218-1232.
|
[119] |
Zhang G, Dang P, Lian H, et al. Assembling two self-trapped exciton emissions in 0D metal halides with near-unity quantum yield and zero thermal-quenching photoluminescence. Laser Photonics Rev. 2023;18(1):2300599.
|
[120] |
Zhao C, Gao Y, Qiu J. Achieving multicolor emitting of antimony-doped indium-based halide perovskite via monovalent metal induced phase engineering. ACS Appl Mater Interfaces. 2023;15(51):59610-59617.
|
[121] |
Liang Y, Jiang Y, Du K-Z, et al. A high-rigidity organic–inorganic metal halide hybrid enabling reversible and enhanced self-trapped exciton emission under high pressure. Nano Lett. 2023;23(16):7599-7606.
|
[122] |
Hou A, Fan L, Xiong Y, et al. Zero-dimensional halides with ns2 electron (Sb3+) activation to generate broad photoluminescence. Inorg Chem. 2023;62(31):12501-12509.
|
[123] |
Takahashi Y, Obara R, Lin Z-Z, et al. Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 2011;40(20):5563-5568.
|
[124] |
Cheng X, Li R, Zheng W, et al. Tailoring the broadband emission in all-inorganic lead-free 0D in-based halides through Sb3+ doping. Adv Opt Mater. 2021;9(12):2100434.
|
[125] |
Wang C, Ma X, Zhao L. Ultra wideband NIR emission in all-inorganic lead-free metal halides through Sb3+ doping. Ceram Int. 2023;49(16):26267-26273.
|
[126] |
Su B, Geng S, Xiao Z, Xia Z. Highly distorted antimony(III) chloride [Sb2Cl8]2− dimers for near-infrared luminescence up to 1070 nm. Angew Chem Int Ed. 2022;61(33):e202208881.
|
[127] |
Li Z, Xu M, Liu W, et al. Broadband near-infrared luminescence from Mo4+ in zero-dimensional perovskite Cs2Zr(Cl,Br)6 with an exceptionally high quantum efficiency and thermal stability. Chem Mater. 2024;36(2):901-910.
|
[128] |
Bai T, Wang X, He Y, Wei H, Su Y, Chen J. Turning self-trapped exciton emission to near-infrared region in thermochromism zero-dimensional hybrid metal halides. Adv Opt Mater. 2023;11(20):2301110.
|
[129] |
Li B, Jin J, Yin M, et al. Sequential and reversible phase transformations in zero-dimensional organic-inorganic hybrid Sb-based halides towards multiple emissions. Angew Chem Int Ed. 2022;61(49):e202212741.
|
[130] |
Zhang G, Wang D, Lou B, Ma CG, Meijerink A, Wang Y. Efficient broadband near-infrared emission from lead-free halide double perovskite single crystal. Angew Chem Int Ed. 2022;61(33):e202207454.
|
[131] |
Benayas A, del Rosal B, Perez-Delgado A, et al. Nd:Yag near-infrared luminescent nanothermometers. Adv Opt Mater. 2015;3(5):687-694.
|
[132] |
Shao W, Chen G, Kuzmin A, et al. Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window. J Am Chem Soc. 2016;138(50):16192-16195.
|
[133] |
Talewar RA, Mahamuda S, Rao AS, Joshi CP, Moharil SV. Sensitization of Nd3+ by 4f-5d transition of Ce3+ in Ba2Y(BO3)2Cl phosphor for the prospective NIR applications. JOL. 2018;202:1-6.
|
[134] |
Li X, Shen X, Lu M, et al. Wide-coverage and efficient NIR emission from single-component nanophosphors through shaping multiple metal-halide packages. Angew Chem Int Ed. 2023;62(14):e202217832.
|
[135] |
Wang Y, Dang P, Qiu L, et al. Multimode luminescence tailoring and improvement of Cs2NaHoCl6 cryolite crystals via sb3+/Yb3+ alloying for versatile photoelectric applications. Angew Chem Int Ed. 2023;135(45):e202311699.
|
[136] |
Jin S, Li R, Huang H, et al. Compact ultrabroadband light-emitting diodes based on lanthanide-doped lead-free double perovskites. Light Sci Appl. 2022;11(1):52.
|
[137] |
Zeng M, Locardi F, Mara D, Hens Z, Van Deun R, Artizzu F. Switching on near-infrared light in lanthanide-doped CsPbCl3 perovskite nanocrystals. Nanoscale. 2021;13(17):8118-8125.
|
[138] |
Mir WJ, Sheikh T, Arfin H, Xia Z, Nag A. Lanthanide doping in metal halide perovskite nanocrystals: spectral shifting, quantum cutting and optoelectronic applications. NPG Asia Mater. 2020;12(1):9.
|
[139] |
Kachhap S, Singh S, Singh AK, Singh SK. Lanthanide-doped inorganic halide perovskites (CsPbX3): novel properties and emerging applications. J Mater Chem C. 2022;10(10):3647-3676.
|
[140] |
Milstein TJ, Kluherz KT, Kroupa DM, Erickson CS, De Yoreo JJ, Gamelin DR. Anion exchange and the quantum-cutting energy threshold in ytterbium-doped CsPb(Cl1−xBrx)3 perovskite nanocrystals. Nano Lett. 2019;19(3):1931-1937.
|
[141] |
Zhou D, Sun R, Xu W, et al. Impact of host composition, codoping, or tridoping on quantum-cutting emission of ytterbium in halide perovskite quantum dots and solar cell applications. Nano Lett. 2019;19(10):6904-6913.
|
[142] |
Pan G, Bai X, Yang D, et al. Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties. Nano Lett. 2017;17(12):8005-8011.
|
[143] |
Milstein TJ, Kroupa DM, Gamelin DR. Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals. Nano Lett. 2018;18(6):3792-3799.
|
[144] |
Huang H, Li R, Jin S, et al. Ytterbium-doped CsPbCl3 quantum cutters for near-infrared light-emitting diodes. ACS Appl Mater Interfaces. 2021;13(29):34561-34571.
|
[145] |
Zhang X, Zhang Y, Zhang X, et al. Yb3+ and Yb3+/Er3+ doping for near-infrared emission and improved stability of CsPbCl3 nanocrystals. J Mater Chem C. 2018;6(37):10101-10105.
|
[146] |
Lee W, Hong S, Kim S. Colloidal synthesis of lead-free silver–indium double-perovskite Cs2AgInCl6 nanocrystals and their doping with lanthanide ions. J Phys Chem C. 2019;123(4):2665-2672.
|
[147] |
Mahor Y, Mir WJ, Nag A. Synthesis and near-infrared emission of Yb-doped Cs2AgInCl6 double perovskite microcrystals and nanocrystals. J Phys Chem C. 2019;123(25):15787-15793.
|
[148] |
Li S, Hu Q, Luo J, et al. Self-trapped exciton to dopant energy transfer in rare earth doped lead-free double perovskite. Adv Opt Mater. 2019;7(23):1901098.
|
[149] |
Wu R, Han P, Zheng D, et al. All-inorganic rare-earth-based double perovskite nanocrystals with near-infrared emission. Laser Photonics Rev. 2021;15(11):2100218.
|
[150] |
Xu X, Han P, Zheng D, et al. Boosting the upconversion and near-infrared emission via alloying Bi3+ in Cs2NaErCl6 double perovskite. Laser Photonics Rev. 2022;16(11):2200318.
|
[151] |
Zhang G, Dang P, Lian H, Xiao H, Cheng Z, Lin J. Er3+/Yb3+-based halide double perovskites with highly efficient and wide ranging antithermal quenching photoluminescence behavior for light-emitting diode applications. Laser Photonics Rev. 2022;16(8):2200078.
|
[152] |
Li J, Xiao J, Lin T, Yan Z, Han X. Lanthanide doping enabled multimodal luminescence in layered lead-free double perovskite Cs4MnBi2Cl12. J Mater Chem C. 2022;10(19):7626-7632.
|
[153] |
Dang P, Zhang G, Yang W, Lian H, Li G, Lin J. Red–NIR luminescence in rare-earth and manganese ions codoped Cs4CdBi2Cl12 vacancy-ordered quadruple perovskites. Chem Mater. 2023;35(4):1640-1650.
|
[154] |
Yang W, Dang P, Zhang G, et al. Mn2+ as an “optical energy shutter” to regulate red-to-NIR luminescence in rare earth doped layered quadruple perovskites. Adv Opt Mater. 2023;11(20):2300468.
|
[155] |
Zhao F, Song Z, Zhao J, Liu Q. Double perovskite Cs2AgInCl6:Cr3+: broadband and near-infrared luminescent materials. Inorg Chem Front. 2019;6(12):3621-3628.
|
[156] |
Song E, Ye S, Liu T, et al. Tailored near-infrared photoemission in fluoride perovskites through activator aggregation and super-exchange between divalent manganese ions. Adv Sci. 2015;2(7):1500089.
|
[157] |
Han X, Song E, Zhang S, Ye S, Yang X-B, Zhang Q. Heavy Mn2+-doped near-infrared photon upconversion luminescence in fluoride RbZnF3:Yb3+,Mn2+ guided by dopant distribution simulation. J Mater Chem C. 2020;8(35):12164-12172.
|
[158] |
Okhrimchuk AG, Butvina LN, Dianov EM, Lichkova NV, Zagorodnev VN, Boldyrev KN. Near-infrared luminescence of RbPb2Cl5:Bi crystals. Opt Lett. 2008;33(19):2182-2184.
|
[159] |
Alekhin MS, Awater RHP, Biner DA, Kraemer KW, de Haas JTM, Dorenbos P. Luminescence and spectroscopic properties of Sm2+ and Er3+ doped SrI2. JOL. 2015;167:347-351.
|
[160] |
Dixie LC, Edgar A, Bartle CM. Samarium doped calcium fluoride: a red scintillator and X-ray phosphor. Nucl Instrum Methods A. 2014;753:131-137.
|
[161] |
Nakauchi D, Fujimoto Y, Kato T, Kawaguchi N, Yanagida T. X- and γ-ray response of Sm-doped SrBr2 crystalline scintillators emitting red-NIR photons. Jpn J Appl Phys. 2021;60(9):092002.
|
[162] |
Nakauchi D, Fujimoto Y, Kato T, Kawaguchi N, Yanagida T. Properties of Sm-doped SrCl2 crystalline scintillators. Crystals. 2022;12(4):517.
|
[163] |
Van Aarle C, Kramer KW, Dorenbos P. Avoiding concentration quenching and self-absorption in Cs4EuX6 (X = Br, I) by Sm3+ doping. J Mater Chem C. 2023;11(6):2336-2344.
|
[164] |
Wolszczak W, Krämer KW, Dorenbos P. CsBa2I5:Eu3+,Sm3+—the first high-energy resolution black scintillator for γ-ray spectroscopy. Phys Status Solidi RRL. 2019;13(9):1900158.
|
[165] |
Wolszczak W, Krämer KW, Dorenbos P. Engineering near-infrared emitting scintillators with efficient Eu3+ → Sm3+ energy transfer. JOL. 2020;222:117101.
|
[166] |
Dang P, Wei Y, Liu D, Li G, Lin J. Recent advances in chromium-doped near-infrared luminescent materials: fundamentals, optimization strategies, and applications. Adv Opt Mater. 2022;11(3):2201739.
|
[167] |
Zhao F, Song Z, Liu Q. Advances in chromium-activated phosphors for near-infrared light sources. Laser Photonics Rev. 2022;16(11):2200380.
|
[168] |
Basore ET, Xiao W, Liu X, Wu J, Qiu J. Broadband near-infrared garnet phosphors with near-unity internal quantum efficiency. Adv Opt Mater. 2020;8(12):2000296.
|
[169] |
Xiao H, Zhang J, Zhang L, et al. Cr3+ activated garnet phosphor with efficient blue to far-red conversion for pc-LED. Adv Opt Mater. 2021;9(20):2101134.
|
[170] |
Chang C-Y, Majewska N, Chen K-C, et al. Broadening phosphor-converted light-emitting diode emission: controlling disorder. Chem Mater. 2022;34(22):10190-10199.
|
[171] |
Zhong J, Zhuo Y, Du F, Zhang H, Zhao W, Brgoch J. Efficient and tunable luminescence in Ga2−xInxO3:Cr3+ for near-infrared imaging. ACS Appl Mater Interfaces. 2021;13(27):31835-31842.
|
[172] |
Zhou X, Geng W, Li J, Wang Y, Ding J, Wang Y. An ultraviolet–visible and near-infrared-responded broadband NIR phosphor and its NIR spectroscopy application. Adv Opt Mater. 2020;8(8):1902003.
|
[173] |
Wen D, Liu H, Guo Y, Zeng Q, Wu M, Liu RS. Disorder-order conversion-induced enhancement of thermal stability of pyroxene near-infrared phosphors for light-emitting diodes. Angew Chem Int Ed. 2022;61(28):e202204411.
|
[174] |
Fang M-H, Huang P-Y, Bao Z, et al. Penetrating biological tissue using light-emitting diodes with a highly efficient near-infrared ScBO3:Cr3+ phosphor. Chem Mater. 2020;32(5):2166-2171.
|
[175] |
Zhang A, Liu Y, Liu G, Xia Z. Dopant and compositional modulation triggered broadband and tunable near-infrared emission in Cs2Ag1–xNaxInCl6:Cr3+ nanocrystals. Chem Mater. 2022;34(7):3006-3012.
|
[176] |
Wang Z, Chen Y, Ke J, Wei Y, Liu Y, Hong M. Achieving ultra-broadband near-infrared emission in Cr3+-activated Cs2NaScCl6 perovskite for efficient phosphor-converted light-emitting diodes. Adv Opt Mater. 2024;12(2):2301323.
|
[177] |
Saikia S, Ghosh A, Nag A. Broad dual emission by codoping Cr3+ (d → d) and Bi3+ (s → p) in Cs2Ag0.6Na0.4InCl6 double perovskite. Angew Chem Int Ed. 2023;62(33):e202307689.
|
[178] |
Snoeren TJ, Pressler K, Kluherz KT, Walsh KM, De Yoreo JJ, Gamelin DR. Luminescence and covalency in ytterbium-doped CrX3 (X = Cl, Br, I) van der Waals compounds. J Am Chem Soc. 2023;145(31):17427-17434.
|
[179] |
Xiao Y, Xiao W, Wu D, Guan L, Luo M, Sun LD. An extra-broadband vis-NIR emitting phosphor toward multifunctional led applications. Adv Funct Mater. 2021;32(7):2109618.
|
[180] |
Ma YY, Hu JQ, Song EH, Ye S, Zhang QY. Regulation of red to near-infrared emission in Mn2+ single doped magnesium zinc phosphate solid-solution phosphors by modification of the crystal field. J Mater Chem C. 2015;3(48):12443-12449.
|
[181] |
Yuan L, Jin Y, Wu H, et al. Ni2+-doped garnet solid-solution phosphor-converted broadband shortwave infrared light-emitting diodes toward spectroscopy application. ACS Appl Mater Interfaces. 2022;14(3):4265-4275.
|
[182] |
Lu X, Gao Y, Chen J, Tan M, Qiu J. Long-wavelength near-infrared divalent nickel-activated double-perovskite Ba2MgWO6 phosphor as imaging for human fingers. ACS Appl Mater Interfaces. 2023;15(33):39472-39479.
|
[183] |
Tang Z, Liu R, Chen J, et al. Highly efficient and ultralong afterglow emission with anti-thermal quenching from CsCdCl3: Mn perovskite single crystals. Angew Chem Int Ed. 2022;61(51):e202210975.
|
[184] |
Majher JD, Gray MB, Strom TA, Woodward PM. Cs2NaBiCl6:Mn2+—a new orange-red halide double perovskite phosphor. Chem Mater. 2019;31(5):1738-1744.
|
[185] |
Zhou G, Liu Z, Huang J, et al. Unraveling the near-unity narrow-band green emission in zero-dimensional Mn2+-based metal halides: a case study of (C10H16N)2Zn1–xMnxBr4 solid solutions. J Phys Chem Lett. 2020;11(15):5956-5962.
|
[186] |
Lin C, Liu C, Zhao Z, Li L, Bocker C, Russel C. Broadband near-IR emission from cubic perovskite KZnF3:Ni2+ nanocrystals embedded glass-ceramics. Opt Lett. 2015;40(22):5263-5266.
|
[187] |
Cao J, Guo H, Hu F, Li L, Xu S, Peng M. Instant precipitation of KMgF3:Ni2+ nanocrystals with broad emission (1.3-2.2 μm) for potential combustion gas sensors. J Am Ceram Soc. 2018;101(9):3890-3899.
|
[188] |
Romanov AN, Veber AA, Fattakhova ZT, et al. Subvalent bismuth monocation Bi+ photoluminescence in ternary halide crystals KAlCl4 and KMgCl3. JOL. 2013;134:180-183.
|
[189] |
Sun HT, Matsushita Y, Sakka Y, et al. Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite y. J Am Chem Soc. 2012;134(6):2918-2921.
|
[190] |
Romanov AN, Veber AA, Fattakhova ZT, et al. Spectral properties and NIR photoluminescence of Bi+ impurity in CsCdCl3 ternary chloride. JOL. 2014;149:292-296.
|
[191] |
Chen Q, Jing W, Yeung YY, Yin M, Duan CK. Mechanisms of bismuth-activated near-infrared photoluminescence-a first-principles study on the MXCl3 series. Phys Chem Chem Phys. 2021;23(32):17420-17429.
|
[192] |
Davis HL, Bjerrum NJ, Smith GP. Ligand field theory of p2,4 configurations and its application to the spectrum of Bi+ in molten salt media. Inorg Chem. 1967;6(6):1172-1178.
|
[193] |
Vtyurina DN, Kaurova IA, Kuz'micheva GM, et al. Structural peculiarities, point defects and luminescence in Bi-doped CsCdX3 (X = Cl, Br) single crystals. J Alloy Compd. 2019;803:912-921.
|
[194] |
Vtyurina DN, Romanov AN, Veber AA, et al. The spectral properties and the NIR photoluminescence of univalent bismuth Bi+ in RbAlCl4, CsAlCl4, RbMgCl3, CsMgCl3, KCdCl3 and RbCdCl3 crystal phases. Russ J Phys Chem B. 2016;10(3):388-393.
|
[195] |
Huang A, Liu M, Duan C-K, Wong K-L, Tanner PA. Understanding the ultraviolet, green, red, near infrared and infrared emission properties of bismuth halide double perovskite. Inorg Chem Front. 2022;9(24):6379-6390.
|
[196] |
Chen D, Zhang X, Wei J, et al. Simultaneous enhancement of near infrared luminescence and stability of Cs2AgInCl6:Cr3+ double perovskite single crystals enabled by a Yb3+ dopant. Inorg Chem Front. 2022;9(18):4695-4704.
|
[197] |
Song E, Ming H, Zhou Y, et al. Cr3+-doped Sc-based fluoride enabling highly efficient near infrared luminescence: a case study of K2NaScF6:Cr3+. Laser Photonics Rev. 2020;15(2):2000410.
|
[198] |
Song E, Ding S, Wu M, et al. Anomalous NIR luminescence in Mn2+-doped fluoride perovskite nanocrystals. Adv Opt Mater. 2014;2(7):670-678.
|
[199] |
Zhu K, Wang Z, Xu H, Fu Z. Development of multifunctional materials based on heavy concentration Er3+-activated lead-free double perovskite Cs2NaBiCl6. Adv Opt Mater. 2022;10(21):2201182.
|
[200] |
Yang G, Bai S, Li X, et al. Tunable and efficient photoluminescence of lanthanide-doped Cs2NaScCl6 double perovskite single crystals toward multifunctional light-emitting diode applications. ACS Appl Mater Interfaces. 2023;15(20):24629-24637.
|
[201] |
Wen X, Kucerkova R, Babin V, et al. Scintillator-oriented near-infrared emitting Cs4SrI6:Yb2+, Sm2+ single crystals via sensitization strategy. J Am Ceram Soc. 2023;106(11):6762-6768.
|
[202] |
Liu Y, Li F, Liu Q, Xia Z. Synergetic effect of postsynthetic water treatment on the enhanced photoluminescence and stability of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. Chem Mater. 2018;30(19):6922-6929.
|
[203] |
Zhu F-P, Yong Z-J, Liu B-M, et al. Superbroad near-infrared photoluminescence from bismuth-doped CsPbI3 perovskite nanocrystals. Opt Express. 2017;25(26):33283-33289.
|
[204] |
Singh A, Chiu NC, Boopathi KM, et al. Lead-free antimony-based light-emitting diodes through the vapor-anion-exchange method. ACS Appl Mater Interfaces. 2019;11(38):35088-35094.
|
[205] |
Liu D, Li G, Dang P, et al. Simultaneous broadening and enhancement of Cr3+ photoluminescence in LiIn2SbO6 by chemical unit cosubstitution: night-vision and near-infrared spectroscopy detection applications. Angew Chem Int Ed. 2021;60(26):14644-14649.
|
[206] |
Jia Z, Yuan C, Liu Y, et al. Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources. Light Sci Appl. 2020;9(1):86.
|
[207] |
Yang Z, Zhao Y, Zhou Y, et al. Giant red-shifted emission in (Sr,Ba)Y2O4:Eu2+ phosphor toward broadband near-infrared luminescence. Adv Funct Mater. 2021;32(1):2103927.
|
[208] |
Lang T, Cai M, Fang S, et al. Trade-off lattice site occupancy engineering strategy for near-infrared phosphors with ultrabroad and tunable emission. Adv Opt Mater. 2021;10(2):2101633.
|
[209] |
D'Innocenzo V, Srimath Kandada AR, De Bastiani M, Gandini M, Petrozza A. Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J Am Chem Soc. 2014;136(51):17730-17733.
|
[210] |
Yuan M, Quan LN, Comin R, et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol. 2016;11(10):872-877.
|
[211] |
Li Z, Li Y, Liang P, Zhou T, Wang L, Xie R-J. Dual-band luminescent lead-free antimony chloride halides with near-unity photoluminescence quantum efficiency. Chem Mater. 2019;31(22):9363-9371.
|
[212] |
Xiao S-B, Yang C-H, Deng Z, Chen Z-N, Xu L-J. Antimony(III) based hybrid materials toward stable and highly efficient white LED. JOL. 2023;260:119885.
|
[213] |
He Q, Zhou C, Xu L, et al. Highly stable organic antimony halide crystals for X-ray scintillation. ACS Mater Lett. 2020;2(6):633-638.
|
[214] |
Wang Z-P, Wang J-Y, Li J-R, Feng M-L, Zou G-D, Huang X-Y. [Bmim]2SbCl5: a main group metal-containing ionic liquid exhibiting tunable photoluminescence and white-light emission. Chem Commun. 2015;51(15):3094-3097.
|
[215] |
Peng H, Tian Y, Wang X, et al. Bulk assembly of a 0D organic antimony chloride hybrid with highly efficient orange dual emission by self-trapped states. J Mater Chem C. 2021;9(36):12184-12190.
|
[216] |
Wang Z, Zhang Z, Tao L, et al. Hybrid chloroantimonates (III): thermally induced triple-mode reversible luminescent switching and laser-printable rewritable luminescent paper. Angew Chem Int Ed. 2019;58(29):9974-9978.
|
[217] |
Kumawat NK, Tripathi MN, Waghmare U, Kabra D. Structural, optical, and electronic properties of wide bandgap perovskites: experimental and theoretical investigations. J Phys Chem A. 2016;120(22):3917-3923.
|
[218] |
Noh JH, Im SH, Heo JH, Mandal TN, Seok SI. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013;13(4):1764-1769.
|
[219] |
Kumawat NK, Dey A, Kumar A, Gopinathan SP, Narasimhan KL, Kabra D. Band gap tuning of CH3NH3Pb(Br1−xClx)3 hybrid perovskite for blue electroluminescence. ACS Appl Mater Interfaces. 2015;7(24):13119-13124.
|
[220] |
Du KZ, Meng W, Wang X, Yan Y, Mitzi DB. Bandgap engineering of lead-free double perovskite Cs2AgBiBr6 through trivalent metal alloying. Angew Chem Int Ed. 2017;56(28):8158-8162.
|
[221] |
Vashishtha P, Bishnoi S, Li CHA, et al. Recent advancements in near-infrared perovskite light-emitting diodes. ACS Appl Electron Mater. 2020;2(11):3470-3490.
|
[222] |
Zhang K, Cao LX, Tang Y, et al. Blue halide perovskite materials: preparation, progress, and challenges. Laser Photonics Rev. 2022;17(2):2200689.
|
[223] |
Zhang F, Zhong H, Chen C, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano. 2015;9(4):4533-4542.
|
[224] |
Butkus J, Vashishtha P, Chen K, et al. The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals. Chem Mater. 2017;29(8):3644-3652.
|
[225] |
Xiao Z, Song Z, Yan Y. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv Mater. 2019;31(47):1803792.
|
[226] |
He H, Yu Q, Li H, et al. Exciton localization in solution-processed organolead trihalide perovskites. Nat Commun. 2016;7(1):10896.
|
[227] |
Noculak A, Morad V, McCall KM, et al. Bright blue and green luminescence of Sb(III) in double perovskite Cs2MInCl6 (M = Na, K) matrices. Chem Mater. 2020;32(12):5118-5124.
|
[228] |
Jing Y, Liu Y, Li M, Xia Z. Photoluminescence of singlet/triplet self-trapped excitons in Sb3+-based metal halides. Adv Opt Mater. 2021;9(8):2002213.
|
[229] |
Yao LQ, Jia QY, Yu SJ, Liang C, Jiang JQ, Shao QY. Simultaneous absorption and near-infrared emission enhancement of Cr3+ ions in MgGa2O4 spinel oxide via anionic F-substitution. Adv Opt Mater. 2022;11(5):2202458.
|
[230] |
Fang MH, Mahlik S, Lazarowska A, et al. Structural evolution and effect of the neighboring cation on the photoluminescence of Sr(LiAl3)1−x(SiMg3)xN4:Eu2+ phosphors. Angew Chem Int Ed. 2019;58(23):7767-7772.
|
[231] |
Zhang Q, Liu D, Dang P, Lian H, Li G, Lin J. Two selective sites control of Cr3+-doped ABO4 phosphors for tuning ultra-broadband near-infrared photoluminescence and multi-applications. Laser Photonics Rev. 2021;16(2):2100459.
|
[232] |
Gautier R, Paris M, Massuyeau F. Exciton self-trapping in hybrid lead halides: role of halogen. J Am Chem Soc. 2019;141(32):12619-12623.
|
[233] |
Li X, Guo P, Kepenekian M, et al. Small cyclic diammonium cation templated (110)-oriented 2D halide (X = I, Br, Cl) perovskites with white-light emission. Chem Mater. 2019;31(9):3582-3590.
|
[234] |
Zhou G, Li M, Zhao J, Molokeev MS, Xia Z. Single-component white-light emission in 2D hybrid perovskites with hybridized halogen atoms. Adv Opt Mater. 2019;7(24):1901335.
|
[235] |
Pei Y, Tu D, Li C, et al. Boosting near-infrared luminescence of lanthanide in Cs2AgBiCl6 double perovskites via breakdown of the local site symmetry. Angew Chem Int Ed. 2022;61(30):e202205276.
|
[236] |
Li G, Jiang S, Liu A, et al. Proof of crystal-field-perturbation-enhanced luminescence of lanthanide-doped nanocrystals through interstitial H+ doping. Nat Commun. 2023;14(1):5870.
|
[237] |
Pan Z, Liu B, Wang B, et al. Lead-free Cs2SnX6 (X = Cl, Br, I) nanocrystals in mesoporous SiO2 with more stable emission from vis to NIR light. Chem Phys Lett. 2021;782:139023.
|
[238] |
Yuan Z, Hu Z, Persson I, et al. Interface-assisted cation exchange enables high-performance perovskiteleds with tunable near-infrared emissions. Joule. 2022;6(10):2423-2436.
|
[239] |
Nagane S, Ghosh D, Hoye RLZ, et al. Lead-free perovskite semiconductors based on germanium–tin solid solutions: structural and optoelectronic properties. J Phys Chem C. 2018;122(11):5940-5947.
|
[240] |
Jin S, Yuan H, Pang T, et al. Boosting STE and Nd3+ NIR luminescence in Cs2AgInCl6 double perovskite via Na+/Bi3+-induced local structure engineering. Adv Funct Mater. 2023;33(50):2304577.
|
[241] |
Souza AS, Cortes GK, Lima H, Couto dos Santos MA. The local-field correction factor beyond the Onsager–Böttcher approach: mixing of states from the interaction with atoms in the surrounding medium. JOL. 2021;238:118292.
|
[242] |
Reid MF, Richardson FS. Rationalization of the f-f intensity parameters for transitions between crystal field levels of lanthanide ions. J Less Common Metals. 1983;93(1):113-118.
|
[243] |
Arfin H, Kshirsagar AS, Kaur J, et al. ns2 electron (Bi3+ and Sb3+) doping in lead-free metal halide perovskite derivatives. Chem Mater. 2020;32(24):10255-10267.
|
[244] |
Sun J, Zheng W, Huang P, et al. Efficient near-infrared luminescence in lanthanide-doped vacancy-ordered double perovskite Cs2ZrCl6 phosphors via Te4+ sensitization. Angew Chem Int Ed. 2022;61(26):e202201993.
|
[245] |
Cao L, Jia X, Gan W, et al. Strong self-trapped exciton emission and highly efficient near-infrared luminescence in Sb3+–Yb3+ co-doped Cs2AgInCl6 double perovskite. Adv Funct Mater. 2023;33(13):2212135.
|
[246] |
Saikia S, Joshi A, Arfin H, Badola S, Saha S, Nag A. Sb3+ -Er3+ −codoped Cs2NaInCl6 for emitting blue and short-wave infrared radiation. Angew Chem Int Ed. 2022;61(32):e202201628.
|
[247] |
Gan W, Liu BM, Huang L, et al. Manganese ion-sensitized near-infrared light in Cs2NaBi1−xErxCl6 lead-free double perovskite. Adv Opt Mater. 2022;10(9):2102851.
|
[248] |
Bahmani Jalali H, Pianetti A, Zito J, et al. Cesium manganese bromide nanocrystal sensitizers for broadband Vis-to-NIR downshifting. ACS Energy Lett. 2022;7(5):1850-1858.
|
[249] |
Gan W, Cao L, Gu S, Lian H, Xia Z, Wang J. Broad-band sensitization in Cr3+–Er3+ co-doped Cs2AgInCl6 double perovskites with 1.5 μm near-infrared emission. Chem Mater. 2023;35(14):5291-5299.
|
[250] |
Qing X, Wu C, Han X. Efficient near-infrared luminescence based on double perovskite Cs2SnCl6. Molecules. 2023;28(8):3593.
|
[251] |
Liao J, Zhang P, Niu X, et al. Co-doping of stibium and rare earth (Nd, Yb) in lead-free double perovskite for efficient near-infrared emission. J Alloy Compd. 2022;911:164946.
|
[252] |
Zhang G, Wei Y, Dang P, et al. Facile solution synthesis of Bi3+/Yb3+ ions co-doped Cs2Na0.6Ag0.4InCl6 double perovskites with near-infrared emission. Dalton Trans. 2020;49(43):15231-15237.
|
[253] |
Zhao J, Pan G, Zhu Y, et al. High-efficiency and wavelength-tunable near-infrared emission of lanthanide ions doped lead-free halide double perovskite nanocrystals toward fluorescence imaging. ACS Appl Mater Interfaces. 2022;14(37):42215-42222.
|
[254] |
Zhou B, Zhang X, Hu R, Hou R, Yu WW. Sb3+ and Sm3+ co-doped lead-free Cs2NaInCl6 double perovskite nanocrystals for single-component cold white emitter. J Rare Earths. (In press).
|
[255] |
Su Y, Yuan L, Wang B, Wu S, Jin Y. Lanthanide-doped Mn2+-based perovskite-like single crystals: switching on highly thermal-stable near-infrared emission and LED device. J Colloid Interface Sci. 2022;624:725-733.
|
[256] |
Chen D, Wu C, Li H, et al. Near-infrared emission, energy transfer, and mechanisms of Mn2+ and Cr3+ co-doped lead-free Cs2AgInCl6 double perovskites. J Mater Chem C. 2023;11(37):12649-12657.
|
[257] |
Ma F, Li J, Li W, Lin N, Wang L, Qiao J. Stable alpha/delta phase junction of formamidinium lead iodide perovskites for enhanced near-infrared emission. Chem Sci. 2017;8(1):800-805.
|
[258] |
Das S, Samanta A. Highly luminescent and phase-stable red/NIR-emitting all-inorganic and hybrid perovskite nanocrystals. ACS Energy Lett. 2021;6(11):3780-3787.
|
[259] |
Liu M, Pauporte T. Additive engineering for stable and efficient dion-jacobson phase perovskite solar cells. Nanomicro Lett. 2023;15(1):134.
|
[260] |
Xiong G, Yuan L, Jin Y, et al. Highly efficient and stable broadband near-infrared-emitting lead-free metal halide double perovskites. J Mater Chem C. 2021;9(38):13474-13483.
|
[261] |
Zhang L, Wang D, Hao Z, et al. Cr3+-doped broadband NIR garnet phosphor with enhanced luminescence and its application in NIR spectroscopy. Adv Opt Mater. 2019;7(12):1900185.
|
[262] |
Huang D, Zhu H, Deng Z, et al. A highly efficient and thermally stable broadband Cr3+-activated double borate phosphor for near-infrared light-emitting diodes. J Mater Chem C. 2021;9(1):164-172.
|
[263] |
Wang Y, Zou R, Chang J, et al. Tin-based multiple quantum well perovskites for light-emitting diodes with improved stability. J Phys Chem Lett. 2019;10(3):453-459.
|
[264] |
Ma Z, Ji X, Lin S, et al. Recent advances and opportunities of eco-friendly ternary copper halides: a new superstar in optoelectronic applications. Adv Mater. 2023;35(44):e2300731.
|
[265] |
Tan ZK, Moghaddam RS, Lai ML, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol. 2014;9(9):687-692.
|
[266] |
Wang N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photonics. 2016;10(11):699-704.
|
[267] |
Cao Y, Wang N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature. 2018;562(7726):249-253.
|
[268] |
Zhao B, Bai S, Kim V, et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat Photonics. 2018;12(12):783-789.
|
[269] |
Xu W, Hu Q, Bai S, et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat Photonics. 2019;13(6):418-424.
|
[270] |
Guo B, Lai R, Jiang S, et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat Photonics. 2022;16(9):637-643.
|
[271] |
Meng Y, Guan X, Weng Y, et al. Bi-functional phosphine oxide passivator for efficient near-infrared sn-based perovskite light-emitting diodes with ultra-low efficiency roll-off. Adv Funct Mater. 2023;2310530.
|
[272] |
Lu J, Guan X, Li Y, et al. Dendritic CsSnI3 for efficient and flexible near-infrared perovskite light-emitting diodes. Adv Mater. 2021;33(44):2104414.
|
[273] |
Chen Y, Yang L, Zeng Z, et al. Degradation in led night vision imaging and recovery algorithms. Optik. 2017;144:240-245.
|
[274] |
Tsagaris V, Anastassopoulos V. Fusion of visible and infrared imagery for night color vision. Displays. 2005;26(4–5):191-196.
|
[275] |
Wang Y, Bai S, Sun J, et al. Highly efficient visible and near-infrared luminescence of Sb3+, Tm3+ co-doped Cs2NaYCl6 lead-free double perovskite and light emitting diodes. J Alloy Compd. 2023;947:169602.
|
[276] |
Wei Y, Dang P, Dai Z, Li G, Lin J. Advances in near-infrared luminescent materials without Cr3+: crystal structure design, luminescence properties, and applications. Chem Mater. 2021;33(14):5496-5526.
|
[277] |
Zhang L, Mei L, Wang K, et al. Advances in the application of perovskite materials. Nanomicro Lett. 2023;15(1):177.
|
[278] |
Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature. 2021;592(7854):381-385.
|
[279] |
Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 2013;342(6156):341-344.
|
[280] |
De Wolf S, Holovsky J, Moon S-J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett. 2014;5(6):1035-1039.
|
[281] |
Leijtens T, Stranks SD, Eperon GE, et al. Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS Nano. 2014;8(7):7147-7155.
|
[282] |
Kitazawa N, Watanabe Y, Nakamura Y. Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals. J Mater Sci. 2002;37(17):3585-3587.
|
[283] |
Conings B, Drijkoningen J, Gauquelin N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater. 2015;5(15):1500477.
|
[284] |
Lu H, Liu Y, Ahlawat P, et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science. 2020;370(6512):eabb8985.
|
[285] |
Kim M, Kim G-H, Lee TK, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule. 2019;3(9):2179-2192.
|
[286] |
Kim MJ, Jeong J, Lu HZ, et al. Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science. 2022;375(6578):302-306.
|
[287] |
Tan S, Yu B, Cui Y, et al. Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics. Angew Chem Int Ed. 2022;61(23):e202201300.
|
[288] |
Wang C, Gu F, Zhao Z, et al. Self-repairing tin-based perovskite solar cells with a breakthrough efficiency over 11%. Adv Mater. 2020;32(31):1907623.
|
[289] |
Song T-B, Yokoyama T, Stoumpos CC, et al. Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. J Am Chem Soc. 2017;139(2):836-842.
|
[290] |
Chen M, Ju M-G, Carl AD, et al. Cesium titanium (IV) bromide thin films based stable lead-free perovskite solar cells. Joule. 2018;2(3):558-570.
|
[291] |
Zhou D, Liu D, Pan G, et al. Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells. Adv Mater. 2017;29(42):1704149.
|
[292] |
Li F, Deng X, Qi F, et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J Am Chem Soc. 2020;142(47):20134-20142.
|
[293] |
Zhao W, Xiao G, Zou B. Pressure-induced emission (PIE) in halide perovskites toward promising applications in scintillators and solid-state lighting. Aggregate. 2023;5(1):e461.
|
[294] |
Nikl M, Yoshikawa A. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Adv Opt Mater. 2015;3(4):463-481.
|
[295] |
Kim YC, Kim KH, Son D-Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature. 2017;550(7674):87-91.
|
[296] |
Jana A, Cho S, Patil SA, et al. Perovskite: scintillators, direct detectors, and X-ray imagers. Mater Today. 2022;55:110-136.
|
[297] |
Zhou Y, Chen J, Bakr OM, Mohammed OF. Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Lett. 2021;6(2):739-768.
|
[298] |
Zhang Y, Chen L, Wang X, Liu W, Sa W. Europium-bearing organic framework with excellent X-ray scintillating luminescence. J Rare Earths. 2024;42(2):251-255.
|
[299] |
Alekhin MS, Biner DA, Krämer KW, Dorenbos P. Improvement of LaBr3:5%Ce scintillation properties by Li+, Na+, Mg2+, Ca2+, Sr2+, and Ba2+ co-doping. J Appl Phys. 2013;113(22):224904.
|
[300] |
Van Loef EVD, Dorenbos P, van Eijk CWE, Krämer K, Güdel HU. High-energy-resolution scintillator: Ce3+ activated LaBr3. Appl Phys Lett. 2001;79(10):1573-1575.
|
[301] |
Alekhin MS, de Haas JTM, Khodyuk IV, et al. Improvement of γ-ray energy resolution of LaBr3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co-doping. Appl Phys Lett. 2013;102(16):161915.
|
[302] |
Zhao Y, Yin X, Li P, et al. Multifunctional perovskite photodetectors: from molecular-scale crystal structure design to micro/nano-scale morphology manipulation. Nanomicro Lett. 2023;15(1):187.
|
[303] |
Ding J, Fang H, Lian Z, et al. A self-powered photodetector based on a CH3NH3PbI3 single crystal with asymmetric electrodes. CrstEngComm. 2016;18(23):4405-4411.
|
[304] |
Ma N, Jiang J, Zhao Y, et al. Stable and sensitive tin–lead perovskite photodetectors enabled by azobenzene derivative for near-infrared acousto-optic conversion communications. Nano Energy. 2021;86:106113.
|
[305] |
Chang Z, Deng W, Ren X, et al. High-speed printing of narrow-band-gap Sn–Pb perovskite layers toward cost-effective manufacturing of optoelectronic devices. ACS Appl Mater Interfaces. 2023;15(26):32037-32046.
|
[306] |
Liu F, Liu K, Rafique S, et al. Highly efficient and stable self-powered mixed tin–lead perovskite photodetector used in remote wearable health monitoring technology. Adv Sci. 2023;10(5):2205879.
|
[307] |
Yu J, Zheng J, Chen H, et al. Near-infrared photodetectors based on CH3NH3PbI3 perovskite single crystals for bioimaging applications. J Mater Chem C. 2022;10(1):274-280.
|
[308] |
Li W, Chen J, Lin H, et al. The UV–vis-NIR broadband ultrafast flexible Sn–Pb perovskite photodetector for multispectral imaging to distinguish substance and foreign-body in biological tissues. Adv Opt Mater. 2023;12(2):2301373.
|
[309] |
Wu J, Zhang Y, Yang S, Chen Z, Zhu W. Thin MAPB0.5Sn0.5I3 perovskite single crystals for sensitive infrared light detection. Front Chem. 2021;9:821699.
|
[310] |
Yakunin S, Dirin DN, Shynkarenko Y, et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat Photonics. 2016;10(9):585-589.
|
[311] |
Zaletin VM, Varvaritsa VP. Wide-bandgap compound semiconductors for X- or gamma-ray detectors. Russ Microelectron. 2011;40(8):543-552.
|
[312] |
Wei H, Fang Y, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photonics. 2016;10(5):333-339.
|
[313] |
Dudipala KR, Le TH, Nie W, Hoye RLZ. Halide perovskites and their derivatives for efficient, high-resolution direct radiation detection: design strategies and applications. Adv Mater. 2023;36(8):2304523.
|
[314] |
Yu J, Qu Y, Deng Y, et al. Hot-pressed CH3NH3PbI3 polycrystalline wafers for near-infrared bioimaging and medical X-ray imaging. J Mater Chem C. 2023;11(17):5815-5824.
|
[315] |
Bao C, Xu W, Yang J, et al. Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nat Electron. 2020;3(3):156-164.
|
/
〈 | 〉 |