Materials properties and device applications of semiconducting bismuth oxyselenide

Menglu Li, Pei Chen, Yan Zhao, Mei Zhao, Huaqian Leng, Yong Wang, Sharafat Ali, Fazal Raziq, Xiaoqiang Wu, Jiabao Yi, Haiyan Xiao, Liang Qiao

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (6) : e12539. DOI: 10.1002/inf2.12539
REVIEW ARTICLE

Materials properties and device applications of semiconducting bismuth oxyselenide

Author information +
History +

Abstract

Layered two-dimensional (2D) materials have garnered marvelous attention in diverse fields, including sensors, capacitors, nanocomposites and transistors, owing to their distinctive structural morphologies and superior physicochemical properties. Recently, layered quasi-2D materials, especially layered bismuth oxyselenide (Bi2O2Se), are of particular interest, because of their different interlayer interactions from other layered 2D materials. On this basis, this material offers richer and more intriguing physics, including high electron mobility, sizeable bandgap, and remarkable thermal and chemical durability, rendering it an utterly prospective contender for use in advanced electronic and optoelectronic applications. Herein, this article reviews the recent advances related with Bi2O2Se. Initially, its structural characterization, band structure, and basic properties are briefly introduced. Further, the synthetic strategies for the preparation of Bi2O2Se are presented. Furthermore, the diverse applications of Bi2O2Se in the field of electronics and optoelectronics, photocatalytic, solar cells and sensing were summarized in detail. Ultimately, the challenges and future perspectives of Bi2O2Se are included.

Keywords

bismuth oxyselenide / device applications / preparation methods / properties / two-dimensional material

Cite this article

Download citation ▾
Menglu Li, Pei Chen, Yan Zhao, Mei Zhao, Huaqian Leng, Yong Wang, Sharafat Ali, Fazal Raziq, Xiaoqiang Wu, Jiabao Yi, Haiyan Xiao, Liang Qiao. Materials properties and device applications of semiconducting bismuth oxyselenide. InfoMat, 2024, 6(6): e12539 https://doi.org/10.1002/inf2.12539

References

[1]
Huang W, Zhu J, Wang M, et al. Emerging mono-elemental bismuth nanostructures: controlled synthesis and their versatile applications. Adv Funct Mater. 2021;31(10):2007584.
[2]
Huang W, Hu L, Tang Y, Xie Z, Zhang H. Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv Funct Mater. 2020;30(49):2005223.
[3]
Huang W, Wang M, Hu L, Wang C, Xie Z, Zhang H. Recent advances in semiconducting monoelemental selenium nanostructures for device applications. Adv Funct Mater. 2020;30(42):2003301.
[4]
Huang W, Ma C, Li C, et al. Highly stable MXene (V2CTx)-based harmonic pulse generation. Nanophotonics. 2020;9(8):2577-2585.
[5]
Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22(35):3906-3924.
[6]
Basu J, Basu JK, Bhattacharyya TK. The evolution of graphene-based electronic devices. Int J Smart Nano Mat. 2010;1(3):201-223.
[7]
Zhu SE, Yuan S, Janssen G. Optical transmittance of multilayer graphene. Epl. 2014;108(1):17007.
[8]
Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials. Chem Soc Rev. 2012;41(6):2283-2307.
[9]
He Q, Wu S, Yin Z, Zhang H. Graphene-based electronic sensors. Chem Sci. 2012;3(6):1764-1772.
[10]
Wu S, He Q, Tan C, Wang Y, Zhang H. Graphene-based electrochemical sensors. Small. 2013;9(8):1160-1172.
[11]
Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y. Graphene based electrochemical sensors and biosensors: a review. Electroanal. 2010;22(10):1027-1036.
[12]
Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev. 2012;41(2):666-686.
[13]
Xu C, Xu B, Gu Y, Xiong Z, Sun J, Zhao XS. Graphene-based electrodes for electrochemical energy storage. Energ Environ Sci. 2013;6(5):1388-1414.
[14]
Ellmer K. Past achievements and future challenges in the development of optically transparent electrodes. Nat Photonics. 2012;6(12):808-816.
[15]
Hecht DS, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater. 2011;23(13):1482-1513.
[16]
Lee Y, Ahn JH. Graphene-based transparent conductive films. Nano. 2013;8(3):1330001.
[17]
Schwierz F. Graphene transistors. Nat Nanotechnol. 2010;5(7):487-496.
[18]
Avouris P, Chen Z, Perebeinos V. Carbon-based electronics. Nat Nanotechnol. 2007;2(10):605-615.
[19]
Avouris P. Graphene: electronic and photonic properties and devices. Nano Lett. 2010;10(11):4285-4294.
[20]
Huang C, Li C, Shi G. Graphene based catalysts. Energ Environ Sci. 2012;5(10):8848-8868.
[21]
Li M, Wang N, Zhang S, et al. A review of the properties, synthesis and applications of lanthanum copper oxychalcogenides. J Phys D Appl Phys. 2022;55(27):273002.
[22]
Sun Y, Zhang J, Ye S, Song J, Qu J. Progress report on property, preparation, and application of Bi2O2Se. Adv Funct Mater. 2020;30(49):2004480.
[23]
Krasutskaya NS, Klyndyuk AI, Evseeva LE, Tanaeva SA. Synthesis and properties of NaxCoO2 (x=0.55, 0.89) oxide thermoelectrics. Inorg Mater. 2016;52(4):393-399.
[24]
Ruan C, Song H, Fan M, Hao H, Liu S. Enhancement of Ca3Co4O9+δ thermoelectric properties by dispersing SiC nanoparticles. Ceram Int. 2021;47(5):6548-6553.
[25]
Tamaki H, Sato HK, Kanno T. Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered Zintl compounds with high thermoelectric performance. Adv Mater. 2016;28(46):10182-10187.
[26]
Zhu Y, Xia Y, Wang Y, et al. Violation of the T-1 relationship in the lattice thermal conductivity of Mg3Sb2 with locally asymmetric vibrations. Research. 2020;2020:4589786.
[27]
Wu J, Yuan H, Meng M, et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat Nanotechnol. 2017;12(6):530-534.
[28]
Yin J, Tan Z, Hong H, et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat Commun. 2018;9(1):3311.
[29]
Wu J, Liu Y, Tan Z, et al. Chemical patterning of high-mobility semiconducting 2D Bi2O2Se crystals for integrated optoelectronic devices. Adv Mater. 2017;29(44):1704060.
[30]
Ruleova P, Drasar C, Lostak P, Li CP, Ballikaya S, Uher C. Thermoelectric properties of Bi2O2Se. Mater Chem Phys. 2010;119(1):299-302.
[31]
Zhan B, Liu Y, Tan X, Lan J, Lin Y, Nan CW. Enhanced thermoelectric properties of Bi2O2Se ceramics by Bi deficiencies. J Am Ceram Soc. 2015;98(8):2465-2469.
[32]
Guo D, Hu C, Xi Y, Zhang K. Strain effects to optimize thermoelectric properties of doped Bi2O2Se via Tran–Blaha modified Becke–Johnson density functional theory. J Phys Chem C. 2013;117(41):21597-21602.
[33]
Chen W, Khan U, Feng S, Ding B, Xu X, Liu B. High-fidelity transfer of 2D Bi2O2Se and its mechanical properties. Adv Funct Mater. 2020;30(43):2004960.
[34]
Boller HJC. Die kristallstruktur von Bi2O2Se. Monatshefte für Chemie. 1973;104(4):916-919.
[35]
Oppermann H, Göbel H, Schmidt P, Schadow H, Vassilev V. Thermochemische untersuchungen am system Bi/Se/O III. Zum quasibinären System Bi2O3–Bi2Se3 und Zum ternären Bereich Bi2O3–Bi2O2Se–Se–SeO2/Thermochemical investigations on the system Bi/Se/O IIIThe quasy binary system Bi2O3-Bi2Se3 and the ternary range Bi2O3-Bi2O2Se–Se–SeO2. Z fur Naturforsch B. 1999;54(2):261-269.
[36]
Oppermann H, Göbel H, Schadow H, Vassilev V, Markova-Deneva I. Thermochemische Untersuchungen zum system Bi/Se/O. I Das Phasendreieck Bi2Se3/Bi2O2Se/Se. Z fur Anorg Allg Chem. 1996;622(12):2115-2118.
[37]
Schmidt P, Rademacher O, Oppermann H, Däbritz S. Zum system Bi2O3/Bi2Se3/Bi2Te3—Die Kristallstruktur von Bi2O2(TexSe1–x). Z fur Anorg Allg Chem. 2000;626(9):1999-2003.
[38]
Schmidt P, Rademacher O, Oppermann H. Untersuchung der Phasenbeziehungen in quaternären Systemen Bi2O3/Bi2Ch/Bi2Ch (Ch=S, Se, Te). Z fur Anorg Allg Chem. 1999;625(2):255-261.
[39]
Oppermann H, Göbel H, Petasch U. Zustandsbarogramme—Zustandsdiagramme durch Gesamtdruckmessungen. J Thermal Anal. 1996;47(2):595-604.
[40]
Drasar C, Ruleova P, Benes L, Lostak P. Preparation and transport properties of Bi2O2Se single crystals. J Electron Mater. 2012;41(9):2317-2321.
[41]
Liangruksa M. Effects of negative response of electron transport to thermoelectric properties of Bi2O2Se. Comp Mater Sci. 2016;120:142-148.
[42]
Zhan B, Butt S, Liu Y, Lan JL, Nan CW, Lin YH. High-temperature thermoelectric behaviors of Sn-doped n-type Bi2O2Se ceramics. J Electroceram. 2015;34(2–3):175-179.
[43]
Tan X, Lan JL, Liu YC, et al. Optimization of the thermoelectric properties of Bi2O2Se ceramics by altering the temperature of spark plasma sintering. J Electroceram. 2016;37(1–4):66-72.
[44]
Tran QV, Kim M. Role of O and Se defects in the thermoelectric properties of bismuth oxide selenide. J Appl Phys. 2016;120(19):195105.
[45]
Tran QV, Lim H, Kim M. Temperature and carrier-concentration dependences of the thermoelectric properties of bismuth selenide dioxide compounds. J Korean Phys Soc. 2012;61(10):1728-1731.
[46]
Luu SDN, Vaqueiro P. Synthesis, characterisation and thermoelectric properties of the oxytelluride Bi2O2Te. J Solid State Chem. 2015;226:219-223.
[47]
Zhan B, Liu Y, Lan J, Zeng C, Lin YH, Nan CW. Enhanced thermoelectric performance of Bi2O2Se with Ag addition. Materials. 2015;8(4):1568-1576.
[48]
Zhang K, Hu C, Kang X, Wang S, Xi Y, Liu H. Synthesis and thermoelectric properties of Bi2O2Se nanosheets. Mater Res Bull. 2013;48(10):3968-3972.
[49]
Li J, Wang Z, Chu J, et al. Oriented layered Bi2O2Se nanowire arrays for ultrasensitive photodetectors. Appl Phys Lett. 2019;114(15):151104.
[50]
Ying J, Yang G, Lyu Z, et al. Gate-tunable h/e-period magnetoresistance oscillations in Bi2O2Se nanowires. Phys Rev B. 2019;100(23):235307.
[51]
Tan C, Yu M, Xu S, et al. Vapor-liquid-solid growth of Bi2O2Se nanoribbons for high-performance transistors. Acta Phys Chim Sin. 2020;36(1):1908038.
[52]
Xie H, Liu M, You B, et al. Biodegradable Bi2O2Se quantum dots for photoacoustic imaging-guided cancer photothermal therapy. Small. 2020;16(1):1905208.
[53]
Luo P, Zhuge F, Wang F, et al. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband Photodetection beyond 2 mu m. ACS Nano. 2019;13(8):9028-9037.
[54]
Li J, Wang Z, Wen Y, et al. High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv Funct Mater. 2018;28(10):1706437.
[55]
Yang H, Tan C, Deng C, et al. Bolometric effect in Bi2O2Se photodetectors. Small. 2019;15(43):1904482.
[56]
Tan C, Tang M, Wu J, et al. Wafer-scale growth of single-crystal 2D semiconductor on perovskite oxides for high-performance transistors. Nano Lett. 2019;19(3):2148-2153.
[57]
Tong T, Chen Y, Qin S, et al. Sensitive and ultrabroadband phototransistor based on two-dimensional Bi2O2Se nanosheets. Adv Funct Mater. 2019;29(50):1905806.
[58]
Fu Q, Zhu C, Zhao X, et al. Ultrasensitive 2D Bi2O2Se phototransistors on silicon substrates. Adv Mater. 2019;31(1):1804945.
[59]
Wu J, Qiu C, Fu H, et al. Low residual carrier concentration and high mobility in 2D semiconducting Bi2O2Se. Nano Lett. 2019;19(1):197-202.
[60]
Liu S, Xu L, Pan Y, et al. Unusual fermi-level pinning and ohmic contact at monolayer Bi2O2Se-metal Interface. Adv Theor Simul. 2019;2(5):1800178.
[61]
Xu L, Liu S, Yang J, et al. Pervasive Ohmic contacts in bilayer Bi2O2Se-metal interfaces. J Phys Chem C. 2019;123(14):8923-8931.
[62]
Khan U, Luo Y, Tang L, et al. Controlled vapor solid deposition of millimeter-size single crystal 2D Bi2O2Se for high-performance phototransistors. Adv Funct Mater. 2019;29(14):1807979.
[63]
Zhang C, Wu J, Sun Y, et al. High-mobility flexible oxyselenide thin-film transistors prepared by a solution-assisted method. J Am Chem Soc. 2020;142(6):2726-2731.
[64]
Tian X, Luo H, Wei R, et al. An ultrabroadband mid-infrared pulsed optical switch employing solution-processed bismuth oxyselenide. Adv Mater. 2018;30(31):1801021.
[65]
Xu R, Wang S, Li Y, et al. Layered semiconductor Bi2O2Se for broadband pulse generation in the near-infrared. IEEE Photon Techol Lett. 2019;31(13):1056-1059.
[66]
Zhang Z, Li T, Wu Y, et al. Truly concomitant and independently expressed short- and long-term plasticity in a Bi2O2Se-based three-terminal memristor. Adv Mater. 2019;31(3):1805769.
[67]
Huang C, Yu H. Two-dimensional Bi2O2Se with high mobility for high-performance polymer solar cells. ACS Appl Mater Interfaces. 2020;12(17):19643-19654.
[68]
Ying J, He J, Yang G, et al. Magnitude and spatial distribution control of the supercurrent in Bi2O2Se-based Josephson junction. Nano Lett. 2020;20(4):2569-2575.
[69]
Quhe R, Liu J, Wu J, et al. High-performance sub-10 nm monolayer Bi2O2Se transistors. Nanoscale. 2019;11(2):532-540.
[70]
Yang J, Quhe R, Li Q, et al. Sub 10 nm bilayer Bi2O2Se transistors. Adv Electron Mater. 2019;5(3):1800720.
[71]
Li T, Tu T, Sun Y, et al. A native oxide high-kappa gate dielectric for two-dimensional electronics. Nat Electron. 2020;3(8):473-478.
[72]
Tu T, Zhang Y, Li T, et al. Uniform high-k amorphous native oxide synthesized by oxygen plasma for top-gated transistors. Nano Lett. 2020;20(10):7469-7475.
[73]
Illarionov YY, Knobloch T, Grasser T. Native high-k oxides for 2D transistors. Nat Electron. 2020;3(8):442-443.
[74]
Kang M, Chai HJ, Jeong HB, et al. Low-temperature and high-quality growth of Bi2O2Se layered semiconductors via cracking metal–organic chemical vapor deposition. ACS Nano. 2021;15(5):8715-8723.
[75]
Wei Q, Li R, Lin C, et al. Quasi-two-dimensional Se-terminated bismuth oxychalcogenide (Bi2O2Se). ACS Nano. 2019;13(11):13439-13444.
[76]
Wang F, Yang S, Wu J, et al. Emerging two-dimensional bismuth oxychalcogenides for electronics and optoelectronics. InfoMat. 2021;3(11):1251-1271.
[77]
Huang W, Li C, Gao L, et al. Emerging black phosphorus analogue nanomaterials for high-performance device applications. J Mater Chem C. 2020;8(4):1172-1197.
[78]
Wang M, Zhu J, Zi Y, et al. Functional two-dimensional black phosphorus nanostructures towards next-generation devices. J Mater Chem A. 2021;9(21):12433-12473.
[79]
Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun. 2014;5(1):4458.
[80]
Huang W, Zhang Y, You Q, et al. Enhanced photodetection properties of tellurium@selenium roll-to-roll nanotube heterojunctions. Small. 2019;15(23):1900902.
[81]
Yang F, Wang R, Zhao W, et al. Thermal transport and energy dissipation in two-dimensional Bi2O2Se. Appl Phys Lett. 2019;115(19):193103.
[82]
Chang YJ, Kim CH, Phark SH, Kim YS, Yu J, Noh TW. Fundamental thickness limit of itinerant ferromagnetic SrRuO3 thin films. Phys Rev Lett. 2009;103(5):057201.
[83]
King PDC, Wei HI, Nie YF, et al. Atomic-scale control of competing electronic phases in ultrathin LaNiO3. Nat Nanotechnol. 2014;9(6):443-447.
[84]
Scherwitzl R, Gariglio S, Gabay M, Zubko P, Gibert M, Triscone JM. Metal-insulator transition in ultrathin LaNiO3 films. Phys Rev Lett. 2011;106(24):246403.
[85]
Sahoo S, Gaur APS, Ahmadi M, Guinel MJF, Katiyar RS. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J Phys Chem C. 2013;117(17):9042-9047.
[86]
Zhao Y, Zhang G, Nai MH, et al. Probing the physical origin of anisotropic thermal transport in black phosphorus nanoribbons. Adv Mater. 2018;30(50):1804928.
[87]
Luo Z, Maassen J, Deng Y, et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat Commun. 2015;6(1):8572.
[88]
Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano. 2011;5(12):9703-9709.
[89]
Tao J, Shen W, Wu S, et al. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano. 2015;9(11):11362-11370.
[90]
Liu J, Tian L, Mou Y, Jia W, Zhang L, Liu R. Electronic and mechanical property of high electron mobility semiconductor Bi2O2Se. J Alloys Compd. 2018;764:674-678.
[91]
Zhang Y, Gao Q, Han X, Peng Y. Mechanical flexibility and strain engineered-band structures of monolayer Bi2O2Se. Phys E. 2020;116:113728.
[92]
Ding X, Li M, Chen P, et al. Bi2O2Se: a rising star for semiconductor devices. Matter. 2022;5(12):4274-4314.
[93]
Liu R, Lan J, Tan X, et al. Carrier concentration optimization for thermoelectric performance enhancement in n-type Bi2O2Se. J Eur Ceram Soc. 2018;38(7):2742-2746.
[94]
Tan X, Liu Y, Liu R, et al. Synergistical enhancement of thermoelectric properties in n-type Bi2O2Se by carrier engineering and hierarchical microstructure. Adv Energy Mater. 2019;9(31):1900354.
[95]
Tan X, Liu Y, Hu K, et al. Synergistically optimizing electrical and thermal transport properties of Bi2O2Se ceramics by Te-substitution. J Am Ceram Soc. 2018;101(1):326-333.
[96]
Ruleova P, Plechacek T, Kasparova J, et al. Enhanced thermoelectric performance of n-type Bi2O2Se ceramics induced by Ge doping. J Electron Mater. 2018;47(2):1459-1466.
[97]
Tan X, Lan J, Hu K, et al. Boosting the thermoelectric performance of Bi2O2Se by isovalent doping. J Am Ceram Soc. 2018;101(10):4634-4644.
[98]
Cheng T, Tan C, Zhang S, Tu T, Peng H, Liu Z. Raman spectra and strain effects in bismuth oxychalcogenides. J Phys Chem C. 2018;122(34):19970-19980.
[99]
Tong T, Zhang M, Chen Y, et al. Ultrahigh hall mobility and suppressed backward scattering in layered semiconductor Bi2O2Se. Appl Phys Lett. 2018;113(7):072106.
[100]
Chen C, Wang M, Wu J, et al. Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi2O2Se. Sci Adv. 2018;4(9):eaat8355.
[101]
Wu J, Tan C, Tan Z, et al. Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Lett. 2017;17(5):3021-3026.
[102]
Hong CY, Huang GF, Yao WW, Deng JJ, Liu XL. Thickness-modulated in-plane Bi2O2Se homojunctions for ultrafast high-performance photodetectors. Chin Phys B. 2019;28(12):128502.
[103]
Liu S, Tan C, He D, Wang Y, Peng H, Zhao H. Optical properties and photocarrier dynamics of Bi2O2Se monolayer and nanoplates. Adv Opt Mater. 2020;8(6):1901567.
[104]
Meng M, Huang S, Tan C, et al. Universal conductance fluctuations and phase-coherent transport in a semiconductor Bi2O2Se nanoplate with strong spin–orbit interaction. Nanoscale. 2019;11(22):10622-10628.
[105]
Meng M, Huang S, Tan C, et al. Strong spin–orbit interaction and magnetotransport in semiconductor Bi2O2Se nanoplates. Nanoscale. 2018;10(6):2704-2710.
[106]
Yang CM, Chen TC, Verma D, et al. Bidirectional all-optical synapses based on a 2D Bi2O2Se/graphene hybrid structure for multifunctional optoelectronics. Adv Funct Mater. 2020;30(30):2001598.
[107]
Lv YY, Xu L, Dong ST, et al. Electron-electron scattering dominated electrical and magnetotransport properties in the quasi-two-dimensional Fermi liquid single-crystal Bi2O2Se. Phys Rev B. 2019;99(19):195143.
[108]
Wu Z, Liu G, Wang Y, et al. Seed-induced vertical growth of 2D Bi2O2Se nanoplates by chemical vapor transport. Adv Funct Mater. 2019;29(50):1906639.
[109]
Liang Y, Chen Y, Sun Y, et al. Molecular beam epitaxy and electronic structure of atomically thin oxyselenide films. Adv Mater. 2019;31(39):1901964.
[110]
Song Y, Li Z, Li H, et al. Epitaxial growth and characterization of high quality Bi2O2Se thin films on SrTiO3 substrates by pulsed laser deposition. Nanotechnology. 2020;31(16):165704.
[111]
Pan L, Liu WD, Zhang JY, et al. Synergistic effect approaching record-high figure of merit in the shear exfoliated n-type Bi2O2-2xTe2xSe. Nano Energy. 2020;69:104394.
[112]
Pan L, Zhao L, Zhang X, et al. Significant optimization of electron–phonon transport of n-type Bi2O2Se by mechanical manipulation of Se vacancies via shear exfoliation. ACS Appl Mater Interfaces. 2019;11(24):21603-21609.
[113]
Ghosh T, Samanta M, Vasdev A, et al. Ultrathin free-standing nanosheets of Bi2O2Se: room temperature ferroelectricity in self-assembled charged layered heterostructure. Nano Lett. 2019;19(8):5703-5709.
[114]
Pan L, Zhang J, Chen C, Wang Y. Enhanced thermoelectric properties of highly textured Bi2O2-xSe1+x with liquid-phase mechanical exfoliation. Scripta Mater. 2020;178:376-381.
[115]
Li MQ, Dang LY, Wang GG, et al. Bismuth oxychalcogenide Nanosheet: facile synthesis, characterization, and photodetector application. Adv Mater Technol. 2020;5(7):2000180.
[116]
Chambers SA. Epitaxial growth and properties of doped transition metal and complex oxide films. Adv Mater. 2010;22(2):219-248.
[117]
Qiao L, Droubay T, Bowden M, Shutthanandan V, Kaspar T, Chambers S. LaCrO3 heteroepitaxy on SrTiO3(001) by molecular beam epitaxy. Appl Phys Lett. 2011;99(6):061904.
[118]
Qiao L, Zhang KHL, Bowden ME, et al. The impacts of cation stoichiometry and substrate surface quality on nucleation, structure, defect formation, and intermixing in complex oxide Heteroepitaxy–LaCrO3 on SrTiO3 (001). Adv Funct Mater. 2013;23(23):2953-2963.
[119]
Chambers SA, Qiao L, Droubay TC, Kaspar TC, Arey BW, Sushko P. Band alignment, built-in potential, and the absence of conductivity at the LaCrO3/SrTiO3 (001) heterojunction. Phys Rev Lett. 2011;107(20):206802.
[120]
Sushko PV, Qiao L, Bowden M, et al. Multiband optical absorption controlled by lattice strain in thin-film LaCrO3. Phys Rev Lett. 2013;110(7):077401.
[121]
Qiao L, Xiao HY, Heald SM, et al. The impact of crystal symmetry on the electronic structure and functional properties of complex lanthanum chromium oxides. J Mater Chem C. 2013;1(30):4527-4535.
[122]
Colby R, Qiao L, Zhang KHL, et al. Cation intermixing and electronic deviations at the insulating LaCrO3/SrTiO3 (001) interface. Phys Rev B. 2013;88(15):155325.
[123]
Cho AY, Arthur JR. Molecular beam epitaxy. Prog Solid State Chem. 1975;10:157-191.
[124]
Davey JE, Pankey T. Epitaxial GaAs films deposited by vacuum evaporation. J Appl Phys. 2003;39(4):1941-1948.
[125]
Schlom DG, Chen LQ, Pan X, Schmehl A, Zurbuchen MA. A thin film approach to engineering functionality into oxides. J Am Ceram Soc. 2008;91(8):2429-2454.
[126]
Dijkkamp D, Venkatesan T, Wu XD, et al. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material. Appl Phys Lett. 1987;51(8):619-621.
[127]
Christen HM, Eres G. Recent advances in pulsed-laser deposition of complex oxides. J Phys Condens Matter. 2008;20(26):264005.
[128]
Wu X, He J, Zhang M, et al. Binary Pd/amorphous-SrRuO3 hybrid film for high stability and fast activity recovery ethanol oxidation electrocatalysis. Nano Energy. 2020;67:104247.
[129]
Zhang KHL, Wu R, Tang F, et al. Electronic structure and band alignment at the NiO and SrTiO3 p–n heterojunctions. ACS Appl Mater Interfaces. 2017;9(31):26549-26555.
[130]
Qiao L, Li W, Xiao H, et al. Electronic structure and band alignment at an epitaxial spinel/perovskite heterojunction. ACS Appl Mater Interfaces. 2014;6(16):14338-14344.
[131]
Qiao L, Bi X. Direct observation of Ni3+ and Ni2+ in correlated LaNiO3−δ films. Europhys Lett. 2011;93(5):57002.
[132]
Qiao L, Bi X. Dielectric response and structure of in-plane tensile strained BaTiO3 thin films grown on the LaNiO3 buffered Si substrate. Appl Phys Lett. 2008;92(6):062912.
[133]
Long M, Wang P, Fang H, Hu W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater. 2019;29(19):1803807.
[134]
Wang F, Wang Z, Shifa TA, et al. Two-dimensional non-layered materials: synthesis, properties and applications. Adv Funct Mater. 2017;27(19):1603254.
[135]
Zhu J, Wei S, Tang J, et al. MXene V2CTx nanosheet/bismuth quantum dot-based heterostructures for enhanced flexible photodetection and nonlinear photonics. ACS Appl Nano Mater. 2023;6(14):13629-13636.
[136]
Chen Y, Ma W, Tan C, et al. Broadband Bi2O2Se photodetectors from infrared to terahertz. Adv Funct Mater. 2021;31(14):2009554.
[137]
Luo P, Wang F, Qu J, et al. Self-driven WSe2/Bi2O2Se van der Waals heterostructure photodetectors with high light on/off ratio and fast response. Adv Funct Mater. 2021;31(8):2008351.
[138]
Yang H, Chen W, Zheng X, et al. Near-infrared photoelectric properties of multilayer Bi2O2Se nanofilms. Nanoscale Res Lett. 2019;14(1):371.
[139]
Yang T, Li X, Wang L, et al. Broadband photodetection of 2D Bi2O2Se–MoSe2 heterostructure. J Mater Sci. 2019;54(24):14742-14751.
[140]
Xia F, Mueller T, Lin Y, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nat Nanotechnol. 2009;4(12):839-843.
[141]
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol. 2013;8(7):497-501.
[142]
Liu E, Long M, Zeng J, et al. High responsivity phototransistors based on few-layer ReS2 for weak signal detection. Adv Funct Mater. 2016;26(12):1938-1944.
[143]
Zhou X, Gan L, Tian W, et al. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv Mater. 2015;27(48):8035-8041.
[144]
Sundaram SK, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat Mater. 2002;1(4):217-224.
[145]
Pan H, Chu H, Li Y, et al. Bismuthene quantum dots integrated D-shaped fiber as saturable absorber for multi-type soliton fiber lasers. J Materiomics. 2023;9(1):183-190.
[146]
Giannetti C, Capone M, Fausti D, Fabrizio M, Parmigiani F, Mihailovic D. Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv Phys. 2016;65(2):58-238.
[147]
Ceballos F, Zhao H. Ultrafast laser spectroscopy of two-dimensional materials beyond graphene. Adv Funct Mater. 2017;27(19):1604509.
[148]
Zhu C, Tong T, Liu Y, et al. Observation of bimolecular recombination in high mobility semiconductor Bi2O2Se using ultrafast spectroscopy. Appl Phys Lett. 2018;113(6):061104.
[149]
Li ZW, Li JS. Bi2O2Se for broadband terahertz wave switching. Appl Optics. 2020;59(35):11076-11079.
[150]
Ilyas T, Raziq F, Ali S, et al. Facile synthesis of MoS2/Cu as trifunctional catalyst for electrochemical overall water splitting and photocatalytic CO2 conversion. Mater Des. 2021;204:109674.
[151]
Zhao Y, Chen P, Tao S, Zu X, Li S, Qiao L. Nitrogen/oxygen co-doped carbon nanofoam derived from bamboo fungi for high-performance supercapacitors. J Power Sources. 2020;479:228835.
[152]
Raziq F, He J, Gan J, et al. Promoting visible-light photocatalytic activities for carbon nitride based 0D/2D/2D hybrid system: beyond the conventional 4-electron mechanism. Appl Catal Environ. 2020;270:118870.
[153]
Zhao Y, Huang C, He Y, et al. High-performance asymmetric supercapacitors realized by copper cobalt sulfide crumpled nanoflower and N, F co-doped hierarchical nanoporous carbon polyhedron. J Power Sources. 2020;456:228023.
[154]
Khan B, Raziq F, Bilal Faheem M, et al. Electronic and nanostructure engineering of bifunctional MoS2 towards exceptional visible-light photocatalytic CO2 reduction and pollutant degradation. J Hazard Mater. 2020;381:120972.
[155]
Cai C, Han S, Liu W, et al. Tuning catalytic performance by controlling reconstruction process in operando condition. Appl Catal Environ. 2020;260:118103.
[156]
Gan J, He J, Hoye RLZ, et al. α-CsPbI3 colloidal quantum dots: synthesis, photodynamics, and photovoltaic applications. ACS Energy Letter. 2019;4(6):1308-1320.
[157]
Zhao Y, Zhao M, Ding X, et al. One-step colloid fabrication of nickel phosphides nanoplate/nickel foam hybrid electrode for high-performance asymmetric supercapacitors. Chem Eng J. 2019;373:1132-1143.
[158]
Wang M, Hu Y, Pu J, Zi Y, Huang W. Emerging Xene-based single-atom catalysts: theory, synthesis, and catalytic applications. Adv Mater. 2023;36(3):2303492.
[159]
Wang M, Pu J, Hu Y, Zi Y, Wu ZG, Huang W. Functional Graphdiyne for emerging applications: recent advances and future challenges. Adv Funct Mater. 2023;34:2308601.
[160]
Ding D, Jiang Z, Ji D, Nosang Vincent M, Zan L. Bi2O2Se as a novel co-catalyst for photocatalytic hydrogen evolution reaction. Chem Eng J. 2020;400:125931.
[161]
Bittle EG, Basham JI, Jackson TN, Jurchescu OD, Gundlach DJ. Mobility overestimation due to gated contacts in organic field-effect transistors. Nat Commun. 2016;7(1):10908.
[162]
Service RF. Is silicon's reign nearing its end? Science. 2009;323(5917):1000-1002.
[163]
Allain A, Kang J, Banerjee K, Kis A. Electrical contacts to two-dimensional semiconductors. Nat Mater. 2015;14(12):1195-1205.
[164]
Iannaccone G, Bonaccorso F, Colombo L, Fiori G. Publisher correction: quantum engineering of transistors based on 2D materials heterostructures. Nat Nanotechnol. 2018;13(6):520.
[165]
Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666-669.
[166]
Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324(5932):1312-1314.
[167]
Miró P, Audiffred M, Heine T. An atlas of two-dimensional materials. Chem Soc Rev. 2014;43(18):6537-6554.
[168]
Ho PH, Chang YR, Chu YC, et al. High-mobility InSe transistors: the role of surface oxides. ACS Nano. 2017;11(7):7362-7370.
[169]
Desai SB, Madhvapathy SR, Sachid AB, et al. MoS2 transistors with 1-nanometer gate lengths. Science. 2016;354(6308):99-102.
[170]
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol. 2011;6(3):147-150.
[171]
Khan U, Nairan A, Khan K, Li S, Liu B, Gao J. Salt-assisted low-temperature growth of 2D Bi2O2Se with controlled thickness for electronics. Small. 2023;19(10):2206648.
[172]
Tan C, Jiang J, Wang J, et al. Strain-free layered semiconductors for 2D transistors with on-state current density exceeding 1.3 mA μm−1. Nano Lett. 2022;22(9):3770-3776.
[173]
Tan C, Yu M, Tang J, et al. 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature. 2023;616(7955):66-72.
[174]
Li L, Yu Y, Ye GJ, et al. Black phosphorus field-effect transistors. Nat Nanotechnol. 2014;9(5):372-377.
[175]
Fang H, Chuang S, Chang TC, Takei K, Takahashi T, Javey A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012;12(7):3788-3792.
[176]
Bandurin DA, Tyurnina AV, Yu GL, et al. High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe. Nat Nanotechnol. 2017;12(3):223-227.
[177]
Yu H, Liao M, Zhao W, et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano. 2017;11(12):12001-12007.
[178]
Chang YH, Zhang W, Zhu Y, et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano. 2014;8(8):8582-8590.
[179]
Xu S, Fu H, Tian Y, et al. Exploiting two-dimensional Bi2O2Se for trace oxygen detection. Angew Chem. 2020;132(41):18094-18099.
[180]
Pyo S, Choi J, Kim J. A fully transparent, flexible, sensitive, and visible-blind ultraviolet sensor based on carbon nanotube-graphene hybrid. Adv Electron Mater. 2019;5(2):1800737.

RIGHTS & PERMISSIONS

2024 2024 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/