Boosting CsSnI3-based near-infrared perovskite light-emitting diodes performance via solvent coordination engineering
Yuqing Li, Xiang Guan, Yuanyuan Meng, Jingfu Chen, Junpeng Lin, Xi Chen, Chia-Yun Liu, Yaping Zhao, Qin Zhang, Chengbo Tian, Jianxun Lu, Zhanhua Wei
Boosting CsSnI3-based near-infrared perovskite light-emitting diodes performance via solvent coordination engineering
Due to their unique photoelectric properties, nontoxic tin-based perovskites are emerging candidates for efficient near-infrared LEDs. However, the facile oxidation of Sn2+ and the rapid crystallization rate of tin-based perovskites result in suboptimal film quality, leading to inferior efficiencies of tin-based perovskite light-emitting diodes (Pero-LEDs). In this study, we investigate the influence of commonly used solvents on the quality of the CsSnI3 films. Remarkably, DMSO exhibits a stronger interaction with SnI2, forming a stable intermediate phase of SnI2·3DMSO. This intermediate effectively inhibits the oxidation of Sn2+ and slows down the crystallization rate, bringing in lower defect state density and higher photoluminescence quantum yield of the prepared perovskite films. Consequently, the corresponding Pero-LEDs achieve a maximum external quantum efficiency (EQE) of 5.6%, among the most efficient near-infrared Pero-LEDs. In addition, the device processes ultra-low efficiency roll-off and high reproducibility. Our research underscores the crucial role of solvent-perovskite coordination in determining film quality. These findings offer valuable guidance for screening solvents to prepare highly efficient and stable tin-based perovskites.
intermolecular interaction / light-emitting diodes / solvent engineering / tin-based perovskites
[1] |
Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050-6051.
|
[2] |
Wei Z, Xing J. The rise of perovskite light-emitting diodes. J Phys Chem Lett. 2019;10(11):3035-3042.
|
[3] |
Cho H, Jeong SH, Park MH, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science. 2015;350(6265):1222-1225.
|
[4] |
Tan ZK, Moghaddam RS, Lai ML, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol. 2014;9(9):687-692.
|
[5] |
Lin K, Xing J, Quan LN, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature. 2018;562(7726):245-248.
|
[6] |
Ma D, Lin K, Dong Y, et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature. 2021;599(7886):594-598.
|
[7] |
Zhou W, Shen Y, Cao LX, et al. Manipulating ionic behavior with bifunctional additives for efficient sky-blue perovskite light-emitting diodes. Adv Funct Mater. 2023;33(27):e2301425.
|
[8] |
Jiang J, Chu Z, Yin Z, et al. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations. Adv Mater. 2022;34(36):e2204460.
|
[9] |
Bai W, Xuan T, Zhao H, et al. Perovskite light-emitting diodes with an external quantum efficiency exceeding 30. Adv Mater. 2023;35(39):e2302283.
|
[10] |
Hodes G, Cahen D. Perovskite cells roll forward. Nat Photonics. 2014;8(2):87-88.
|
[11] |
Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat Photonics. 2014;8(6):489-494.
|
[12] |
Mao L, Stoumpos CC, Kanatzidis MG. Two-dimensional hybrid halide perovskites: principles and promises. J Am Chem Soc. 2019;141(3):1171-1190.
|
[13] |
Fang HH, Adjokatse S, Shao S, Even J, Loi MA. Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites. Nat Commun. 2018;9(1):243.
|
[14] |
Liu A, Zhu H, Kim S, et al. Antimony fluoride (SbF3): A potent hole suppressor for tin(II)-halide perovskite devices. InfoMat. 2022;5(1):e12386.
|
[15] |
Yokoyama T, Cao DH, Stoumpos CC, et al. Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas-solid reaction film fabrication process. J Phys Chem Lett. 2016;7(5):776-782.
|
[16] |
Akbulatov AF, Tsarev SA, Elshobaki M, et al. Comparative intrinsic thermal and photochemical stability of Sn (II) complex halides as next-generation materials for lead-free perovskite solar cells. J Phys Chem C. 2019;123(44):26862-26869.
|
[17] |
Sun N, Gao W, Dong H, et al. Architecture of p-i-n Sn-based perovskite solar cells: characteristics, advances, and perspectives. ACS Energy Lett. 2021;6(8):2863-2875.
|
[18] |
Jiang X, Zang Z, Zhou Y, Li H, Wei Q, Ning Z. Tin halide perovskite solar cells: an emerging thin-film photovoltaic technology. Acc Chem Res. 2021;2(4):210-219.
|
[19] |
Byranvand MM, Zuo W, Imani R, Pazoki M, Saliba M. Tin-based halide perovskite materials: properties and applications. Chem Sci. 2022;13(23):6766-6781.
|
[20] |
Goyal A, McKechnie S, Pashov D, Tumas W, van Schilfgaarde M, Stevanović V. Origin of pronounced nonlinear band gap behavior in lead–tin hybrid perovskite alloys. Chem Mater. 2018;30(11):3920-3928.
|
[21] |
Xiao Z, Song Z, Yan Y. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv Mater. 2019;31(47):e1803792.
|
[22] |
Ye T, Wang K, Hou Y, et al. Ambient-air-stable lead-free CsSnI3 solar cells with greater than 7.5% efficiency. J Am Chem Soc. 2021;143(11):4319-4328.
|
[23] |
Cao F, Tian W, Wang M, et al. Stability enhancement of lead-free CsSnI3 perovskite photodetector with reductive ascorbic acid additive photodetector with reductive ascorbic acid additive. InfoMat. 2020;2(3):577-584.
|
[24] |
Dai Z, Lv T, Barbaud J, et al. Stable tin perovskite solar cells developed via additive engineering. Sci China Mater. 2021;64(11):2645-2654.
|
[25] |
Xiao M, Gu S, Zhu P, et al. Tin-based perovskite with improved coverage and crystallinity through tin-fluoride-assisted heterogeneous nucleation. Adv Opt Mater. 2018;6(1):1700615.
|
[26] |
Tai Q, Guo X, Tang G, et al. Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew Chem Int Ed. 2019;58(3):806-810.
|
[27] |
Guan X, Lu J, Wei Q, et al. Suppressing disproportionation decomposition in Sn-based perovskite light-emitting diodes. ACS Energy Lett. 2023;8(3):1597-1605.
|
[28] |
Liu X, Zhang Z, Lin F, Cheng Y. Structural modulation and assembling of metal halide perovskites for solar cells and light-emitting diodes. InfoMat. 2021;3(11):1218-1250.
|
[29] |
Li G, Su Z, Li M, et al. Ionic liquid stabilizing high-efficiency tin halide perovskite solar cells. Adv Energy Mater. 2021;11(32):2101539.
|
[30] |
Jokar E, Cheng P-Y, Lin C-Y, Narra S, Shahbazi S, Wei-Guang Diau E. Enhanced performance and stability of 3D/2D tin perovskite solar cells fabricated with a sequential solution deposition. ACS Energy Lett. 2021;6(2):485-492.
|
[31] |
Deng L, Wang K, Yang H, Yu H, Hu B. Polymer assist crystallization and passivation for enhancements of open-circuit voltage and stability in tin-halide perovskite solar cells. J Phys D. 2018;51(47):475102.
|
[32] |
Lin Z, Liu C, Liu G, et al. Preparation of efficient inverted tin-based perovskite solar cells via the bidentate coordination effect of 8-hydroxyquinoline. Commun Chem. 2020;56(28):4007-4010.
|
[33] |
Nasti G, Aldamasy MH, Flatken MA, et al. Pyridine controlled tin perovskite crystallization. ACS Energy Lett. 2022;7(10):3197-3203.
|
[34] |
Chao L, Niu T, Gao W, et al. Solvent engineering of the precursor solution toward large-area production of perovskite solar cells. Adv Mater. 2021;33(14):e2005410.
|
[35] |
Rezaee E, Zhang W, Silva SRP. Solvent engineering as a vehicle for high quality thin films of perovskites and their device fabrication. Small. 2021;17(25):2008145.
|
[36] |
Di Girolamo D, Pascual J, Aldamasy MH, et al. Solvents for processing stable tin halide perovskites. ACS Energy Lett. 2021;6(3):959-968.
|
[37] |
Hao F, Stoumpos CC, Guo P, et al. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J Am Chem Soc. 2015;137(35):11445-11452.
|
[38] |
Liang H, Yuan F, Johnston A, et al. High color purity lead-free perovskite light-emitting diodes via Sn stabilization. Adv Sci. 2020;7(8):1903213.
|
[39] |
Xiao K, Lin R, Han Q, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm−2 using surface-anchoring zwitterionic antioxidant. Nat Energy. 2020;5(11):870-880.
|
[40] |
Cao X, Li J, Dong H, et al. Stability improvement of tin-based halide perovskite by precursor-solution regulation with dual-functional reagents. Adv Funct Mater. 2021;31(40):2104344.
|
[41] |
Leijtens T, Prasanna R, Gold-Parker A, Toney MF, McGehee MD. Mechanism of tin oxidation and stabilization by lead substitution in tin halide perovskites. ACS Energy Lett. 2017;2(9):2159-2165.
|
[42] |
Lanzetta L, Webb T, Zibouche N, et al. Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide. Nat Commun. 2021;12(1):2853.
|
[43] |
Lu J, Guan X, Li Y, et al. Dendritic CsSnI3 for efficient and flexible near-infrared perovskite light-emitting diodes. Adv Mater. 2021;33(44):e2104414.
|
/
〈 | 〉 |