The mechanism of room-temperature oxidation of a HF-etched Ti3C2Tx MXene determined via environmental transmission electron microscopy and molecular dynamics

Yuying Liu , Zhihao Shi , Tingbin Liang , Dehui Zheng , Zhichao Yang , Zhen Wang , Jian Zhou , Shuangbao Wang

InfoMat ›› 2024, Vol. 6 ›› Issue (7) : e12536

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (7) : e12536 DOI: 10.1002/inf2.12536
RESEARCH ARTICLE

The mechanism of room-temperature oxidation of a HF-etched Ti3C2Tx MXene determined via environmental transmission electron microscopy and molecular dynamics

Author information +
History +
PDF

Abstract

The oxidation chemistry of two-dimensional transition metal carbide MXenes has brought new research significance to their protection and application. However, the oxidation behavior and degradation mechanism of MXenes, in particular with time under oxygen conditions at room temperature, remain largely unexplored. Here, several experimental and theoretical techniques are used to determine a very early stage of the oxidation mechanism of HF-etched Ti3C2Tx (a major member of MXenes and Tx = surface functional groups) in an oxygen environment at room temperature. Aberration-corrected environmental transmission electron microscopy coupled with reactive molecular dynamics simulations show that the crystal plane-dependent oxidation rate of Ti3C2Tx and oxide expansion are attributed to differences in the coordination and charge of superficial Ti atoms, and the existence of the channels between neighboring MXene layers on the different crystal planes. The complementary x-ray photoelectron spectroscopy and Raman spectroscopy analyses indicate that the anatase and a tiny fraction of brookite TiO2 successively precipitate from the amorphous region of oxidized Ti3C2Tx, grow irregularly and transform to rutile TiO2. Our study reveals the early-stage structural evolution of MXenes in the presence of oxygen and facilitates further tailoring of the MXene performance employing oxidation strategy.

Keywords

aberration-corrected environmental transmission electron microscopy / oxidation mechanism / reactive MD simulations / Ti 3C 2T x MXene

Cite this article

Download citation ▾
Yuying Liu, Zhihao Shi, Tingbin Liang, Dehui Zheng, Zhichao Yang, Zhen Wang, Jian Zhou, Shuangbao Wang. The mechanism of room-temperature oxidation of a HF-etched Ti3C2Tx MXene determined via environmental transmission electron microscopy and molecular dynamics. InfoMat, 2024, 6(7): e12536 DOI:10.1002/inf2.12536

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Naguib M, Barsoum MW, Gogotsi Y. Ten years of progress in the synthesis and development of MXenes. Adv Mater. 2021; 33(39): 2103393.

[2]

Jun B-M, Kim S, Heo J, et al. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019; 12(3): 471-487.

[3]

Wang L, Song H, Yuan L, et al. Effective removal of anionic Re(VII) by surface-modified Ti2CTx MXene nanocomposites: implications for Tc(VII) sequestration. Environ Sci Technol. 2019; 53(7): 3739-3747.

[4]

Wu Y, Wang L, Bo T, Chai Z, Gibson JK, Shi W. Boosting hydrogen evolution in neutral medium by accelerating water dissociation with Ru clusters loaded on Mo2CTx MXene. Adv Funct Mater. 2023; 33(16): 2214375.

[5]

Zhang P, Zhang Y, Wang L, et al. Bioinspired macrocyclic molecule supported two-dimensional lamellar membrane with robust interlayer structure for high-efficiency nanofiltration. Adv Sci. 2023; 10: 2206516.

[6]

Wang L, Tao W, Yuan L, et al. Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem Commun. 2017; 53(89): 12084-12087.

[7]

Barsoum M. The MN+1AXN phases: a new class of solids: thermodynamically stable nanolaminates. Prog Solid State Chem. 2000; 28(1-4): 201-281.

[8]

Wang XH, Zhou YC. Oxidation behavior of Ti3AlC2 at 1000–1400°C in air. Corros Sci. 2003; 45(5): 891-907.

[9]

Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011; 23(37): 4248-4253.

[10]

Li M, Lu J, Luo K, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc. 2019; 141(11): 4730-4737.

[11]

Gogotsi Y. Transition metal carbides go 2D. Nat Mater. 2015; 14(11): 1079-1080.

[12]

Yang S, Zhang P, Wang F, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem. 2018; 130(47): 15717-15721.

[13]

Persson I, Halim J, Hansen TW, et al. How much oxygen can a MXene surface take before it breaks? Adv Funct Mater. 2020; 30(47): 1909005.

[14]

Lotfi R, Naguib M, Yilmaz DE, Nanda J, van Duin ACT. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J Mater Chem A. 2018; 6(26): 12733-12743.

[15]

Ghassemi H, Harlow W, Mashtalir O, et al. In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. J Mater Chem A. 2014; 2(35): 14339-14343.

[16]

Palisaitis J, Persson I, Halim J, Rosen J, Persson POÅ. On the structural stability of MXene and the role of transition metal adatoms. Nanoscale. 2018; 10(23): 10850-10855.

[17]

Zhang CJ, Pinilla S, McEvoy N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater. 2017; 29(11): 4848-4856.

[18]

Naguib M, Mashtalir O, Lukatskaya MR, et al. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem Commun. 2014; 50(56): 7420-7423.

[19]

Tang H, Zhuang S, Bao Z, Lao C, Mei Y. Two-step oxidation of Mxene in the synthesis of layer-stacked anatase titania with enhanced lithium-storage performance. ChemElectroChem. 2016; 3(6): 871-876.

[20]

Ma Y, Cheng Y, Wang J, et al. Flexible and highly-sensitive pressure sensor based on controllably oxidized MXene. InfoMat. 2022; 4(9): e12328.

[21]

Tang J, Mathis TS, Kurra N, et al. Tuning the electrochemical performance of titanium carbide MXene by controllable in situ anodic oxidation. Angew Chem. 2019; 131(49): 18013-18019.

[22]

Cao F, Zhang Y, Wang H, et al. Recent advances in oxidation stable chemistry of 2D MXenes. Adv Mater. 2022; 34(13): 2107554.

[23]

Zhao X, Vashisth A, Blivin JW, et al. pH, nanosheet concentration, and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions. Adv Mater Interfaces. 2020; 7(20): 2000845.

[24]

Lee Y, Kim SJ, Kim Y-J, et al. Oxidation-resistant titanium carbide MXene films. J Mater Chem A. 2020; 8(2): 573-581.

[25]

Natu V, Hart JL, Sokol M, Chiang H, Taheri ML, Barsoum MW. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew Chem. 2019; 131(36): 12785-12790.

[26]

Xia F, Lao J, Yu R, et al. Ambient oxidation of Ti3C2 MXene initialized by atomic defects. Nanoscale. 2019; 11(48): 23330-23337.

[27]

Iqbal A, Hong J, Ko TY, Koo CM. Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 2021; 8(1): 9.

[28]

Li X, Yin X, Han M, et al. A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene. J Mater Chem C. 2017; 5(30): 7621-7628.

[29]

Ahmed B, Anjum DH, Hedhili MN, Gogotsi Y, Alshareef HN. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale. 2016; 8(14): 7580-7587.

[30]

Wang S, Dong Z, Zhang L, Tsiakaras P, Shen PK, Luo L. Atomic scale mechanisms of multimode oxide growth on nickel–chromium alloy: direct in situ observation of the initial oxide nucleation and growth. ACS Appl Mater Interfaces. 2021; 13(1): 1903-1913.

[31]

Luo L, Su M, Yan P, et al. Atomic origins of water-vapour-promoted alloy oxidation. Nat Mater. 2018; 17(6): 514-518.

[32]

Falicov L, Somorjai G. Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: theory and experimental evidence. Proc Natl Acad Sci USA. 1985; 82(8): 2207-2211.

[33]

Badawy K, Liao K, Singh N. Atomistic insights of Ti-based MXenes thermal decomposition and transformation to carbon-supported Ti–O phases for energy applications. ACS Appl Nano Mater. 2022; 5(11): 16731-16740.

[34]

Qin Y, Lu W, Zhang D, Qin J, Ji B. Oxidation of in situ synthesized TiC particle-reinforced titanium matrix composites. Mater Sci Eng A. 2005; 404(1-2): 42-48.

[35]

Kumar K-NP. Growth of rutile crystallites during the initial stage of anatase-to-rutile transformation in pure titania and in titania-alumina nanocomposites. Scr Metall Mater. 1995; 32(6): 873-877.

[36]

Nellist PD, Pennycook SJ. Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy. 1999; 78(1-4): 111-124.

[37]

Wang X, Fu Q, Wen J, et al. 3D Ti3C2Tx aerogels with enhanced surface area for high performance supercapacitors. Nanoscale. 2018; 10(44): 20828-20835.

[38]

Koch CT. Determination of Core Structure Periodicity and Point Defect Density along Dislocations Ph.D. thesis, Arizona State University, (2002).

[39]

Cowley JM, Moodie AF. The scattering of electrons by atoms and crystals. Acta Crystallogr. 1957; 10(10): 609-619.

[40]

Wang S, Liu Y, Liu Y, et al. Identifying the surface properties of Ti3C2Tx MXene through transmission electron microscopy. Cell Rep Phys Sci. 2022; 3(11): 101151.

[41]

Nielson KD, van Duin ACT, Oxgaard J, Deng W-Q, Goddard WA. Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. J Phys Chem A. 2005; 109(3): 493-499.

[42]

van Duin ACT, Dasgupta S, Lorant F, Goddard WA. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A. 2001; 105(41): 9396-9409.

RIGHTS & PERMISSIONS

2024 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

213

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/