Establishing carrier transport channels based on Ti—S bonds and enhancing the photocatalytic performance of MXene quantum dots–ZnIn2S4 for ammonia synthesis
Xueying Cheng, Renquan Guan, Zhengkai Wu, Yingnan Sun, Weilong Che, Qingkun Shang
Establishing carrier transport channels based on Ti—S bonds and enhancing the photocatalytic performance of MXene quantum dots–ZnIn2S4 for ammonia synthesis
In the process of photocatalytic synthesis of ammonia, the kinetics of carrier separation and transport, adsorption of nitrogen, and activation of the N≡N triple bond are key factors that directly affect the efficiency of converting nitrogen to ammonia. Here, we report a new strategy for anchoring MXene quantum dots (MXene QDs) onto the surface of ZnIn2S4 by forming Ti—S bonds, which provide a channel for the rapid separation and transport of charge carriers and effectively extend the lifespan of photogenerated carriers. The unique charge distribution caused by the sulfurization of the MXene QDs further enhances the performance of the photocatalysts for the adsorption and activation of nitrogen. The photocatalytic ammonia synthesis efficiency of MXene QDs–ZnIn2S4 can reach up to 360.5 μmol g−1 h−1. Density functional theory calculations, various in situ techniques, and ultrafast spectroscopy are used to characterize the successful construction of Ti—S bonds and the dynamic nature of excited state charge carriers in MXene QDs–ZnIn2S4, as well as their impact on nitrogen adsorption activation and photocatalytic ammonia synthesis efficiency. This study provides a new example of how to improve nitrogen adsorption and activation in photocatalytic material systems and enhance charge carrier dynamics to achieve efficient photocatalytic nitrogen conversion.
carrier transport channels / nitrogen adsorption and activation / photocatalytic synthesis of ammonia / Ti—S bonds
[1] |
Bao D, Zhang Q, Meng F, et al. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv Mater. 2017;29(3):1604799.
|
[2] |
Rosca V, Duca M, De Groot M, Koper MTM. Nitrogen cycle electrocatalysis. Chem Rev. 2009;109(6):2209-2244.
|
[3] |
Chen X, Li N, Kong Z, Ong W, Zhao X. Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancement and future prospects. Mater Horiz. 2018;5(1):9-27.
|
[4] |
Trenerry M, Wallen C, Brown T, Park S, Berry J. Spontaneous N2 formation by a diruthenium complex enables electrocatalytic and aerobic oxidation of ammonia. Nat Chem. 2021;13(12):1221-1227.
|
[5] |
Wang Q, Guo J, Chen P. Recent progress towards mild-condition ammonia synthesis. J Energy Chem. 2019;36:25-36.
|
[6] |
Lee J, Tan L, Chai S. Heterojunction photocatalysts for artificial nitrogen fixation: fundamentals, latest advances and future perspectives. Nanoscale. 2021;13(15):7011-7033.
|
[7] |
Kuriyama S, Arashiba K, Nakajima K, et al. Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand. Nat Commun. 2016;7(1):12181.
|
[8] |
Cao N, Chen Z, Zang K, et al. Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nat Commun. 2019;10(1):2877.
|
[9] |
Marschall R. Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv Funct Mater. 2014;24(17):2421-2440.
|
[10] |
Zhao J, Liu X, Ren X, et al. Defect-rich ZnS nanoparticles supported on reduced graphene oxide for high-efficiency ambient N2-to-NH3 conversion. Appl Catal B. 2021;284:119746.
|
[11] |
Kandemir T, Schuster M, Senyshyn A, Behrens M, Schlögl R. The Haber-Bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions. Angew Chem Int Ed. 2013;52(48):12723-12726.
|
[12] |
Yao C, Wang R, Wang Z, Lei H, Dong X, He C. Highly dispersive and stable Fe3+ active sites on 2D graphitic carbon nitride nanosheets for efficient visible-light photocatalytic nitrogen fixation. J Mater Chem A. 2019;7(48):27547-27559.
|
[13] |
Rebreyend C, Bruin B. Photolytic N2 splitting: a road to sustainable NH3 production? Angew Chem Int Ed. 2015;54(1):42-44.
|
[14] |
Xiao C, Wang H, Zhang L, Sun S, Wang W. Enhanced photocatalytic nitrogen fixation on MoO2/BiOCl composite. ChemCatChem. 2019;11(24):6467-6472.
|
[15] |
Schrauzer G, Guth T. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J Am Chem Soc. 1977;99(22):7189-7193.
|
[16] |
Bi Y, Wang Y, Dong X, Zheng N, Ma H, Zhang X. Efficient solar-driven conversion of nitrogen to ammonia in pure water via hydrogenated bismuth oxybromide. RSC Adv. 2018;8(39):21871-21878.
|
[17] |
Zhang S, Zhao Y, Shi R, Waterhouse GIN, Zhang T. Photocatalytic ammonia synthesis: recent progress and future. EnergyChem. 2019;1(2):100013.
|
[18] |
Zhao Y, Zhao Y, Shi R, et al. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv Mater. 2019;31(16):1806482.
|
[19] |
Li X, Wang W, Jiang D, Sun S, Zhang L, Sun X. Efficient solar-driven nitrogen fixation over carbon-tungstic-acid hybrids. Chem A Eur J. 2016;22(39):13819-13822.
|
[20] |
Li H, Shang J, Ai Z, Zhang L. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J Am Chem Soc. 2015;137(19):6393-6399.
|
[21] |
Zhu D, Zhang L, Ruther R, Hamers R. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat Mater. 2013;12(9):836-841.
|
[22] |
Wu S, Chen Z, Yue W, et al. Single-atom high-valent Fe(IV) for promoted photocatalytic nitrogen hydrogenation on porous TiO2-SiO2. ACS Catal. 2021;11(7):4362-4371.
|
[23] |
Li J, Chen R, Wang J, Zhou Y, Yang G, Dong F. Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis. Nat Commun. 2022;13(1):1098.
|
[24] |
Dong G, Ho W, Wang C. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J Mater Chem A. 2015;3(46):23435-23441.
|
[25] |
Guan R, Wang D, Zhang Y, et al. Enhanced photocatalytic N2 fixation via defective and fluoride modified TiO2 surface. Appl Catal B. 2021;282:119580.
|
[26] |
Zhao Z, Tan R, Kong Y, et al. Magnetic-field-stimulated efficient photocatalytic N2 fixation over defective BaTiO3 perovskites. Angew Chem Int Ed. 2023;62(26):e202303629.
|
[27] |
Guan R, Cheng X, Chen Y, et al. Wettability control of defective TiO2 with alkyl acid for highly efficient photocatalytic ammonia synthesis. Nano Res. 2023;16(8):10770-10778.
|
[28] |
Liu Q, Ai L, Jiang J. MXene-derived TiO2@C/g-C3N4 heterojunctions for highly efficient nitrogen photofixation. J Mater Chem A. 2018;6(9):4102-4110.
|
[29] |
Lou J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi A. Heterojunction photocatalysts. Adv Mater. 2017;29(20):1601694.
|
[30] |
Zhao G, Jiang Y, Dou S, Sun W, Pan H. Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Sci Bull. 2021;66(1):85-96.
|
[31] |
Xiong Y, Li B, Gu Y, et al. Photocatalytic nitrogen fixation under an ambient atmosphere using a porous coordination polymer with bridging dinitrogen anions. Nat Chem. 2023;15(2):286-293.
|
[32] |
He H, Chen Y, Yang C, Yang L, Jiang Q, Huang H. Constructing 3D interweaved MXene/graphitic carbon nitride nanosheets/graphene nanoarchitectures for promoted electrocatalytic hydrogen evolution. J Energy Chem. 2022;67:483-491.
|
[33] |
Fang Y, Liu Z, Han J, et al. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx MXene. Adv Energy Mater. 2019;9(16):1803406.
|
[34] |
Yuan Z, Lin Q, Li Y, Han W, Wang L. Effects of multiple ion reactions based on a CoSe2/MXene cathode in aluminum-ion batteries. Adv Mater. 2023;35(17):2211527.
|
[35] |
Lu M, Li H, Han W, et al. 2D titanium carbide (MXene) electrodes with lower-F surface for high-performance lithium-ion batteries. J Energy Chem. 2019;31:148-153.
|
[36] |
Cao J, Wang L, Li D, et al. Ti3C2Tx MXene conductive layers supported bio-derived Fex−1Sex/MXene/carbonaceous nanoribbons for high-performance half/full sodium-ion and potassium-ion batteries. Adv Mater. 2021;33(34):2101535.
|
[37] |
Han W, Lu M, Chen J, et al. Activating an MXene as a host for EMIm+ by electrochemistry-driven Fe-ion pre-intercalation. J Mater Chem A. 2020;8(32):16265-16270.
|
[38] |
Zheng Y, Wang Y, Li Z, et al. MXene quantum dots/perovskite heterostructure enabling highly specific ultraviolet detection for skin prevention. Matter. 2023;6(2):506-520.
|
[39] |
Wu W, Li L, Li Z, Sun J, Wang L. Extensible integrated system for real-time monitoring of cardiovascular physiological signals and limb health. Adv Mater. 2023;35(51):2304596.
|
[40] |
Zhang Y, Wang L, Zhao L, et al. Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films. Adv Mater. 2021;33(22):2007890.
|
[41] |
Chu K, Luo Y, Shen P, Li X, Li Q, Guo Y. Unveiling the synergy of o-vacancy and heterostructure over MoO3-x/MXene for N2 electroreduction to NH3. Adv Energy Mater. 2021;12(3):2103022.
|
[42] |
Chu K, Li X, Tian Y, Li Q, Guo Y. Boron nitride quantum dots/Ti3C2Tx-MXene heterostructure for efficient electrocatalytic nitrogen fixation. Energy Environ Mater. 2021;5(4):1303-1309.
|
[43] |
Wang H, Zhao R, Hu H, Fan X, Zhang D, Wang D. 0D/2D heterojunctions of Ti3C2 MXene QDs/SiC as an efficient and robust photocatalyst for boosting the visible photocatalytic NO pollutant removal ability. ACS Appl Mater Inter. 2020;12(36):40176-40185.
|
[44] |
Ma X, Liu J, Xiao H, Li J. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J Am Chem Soc. 2017;140(1):46-49.
|
[45] |
Xu Q, Yang W, Wen Y. Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes. Appl Mater Today. 2019;16(9):90-101.
|
[46] |
Xue Q, Zhang H, Zhu M, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater. 2017;29(15):1604847.
|
[47] |
Su T, Men C, Chen L, et al. Sulfur vacancy and Ti3C2Tx cocatalyst synergistically boosting interfacial charge transfer in 2D/2D Ti3C2Tx/ZnIn2S4 heterostructure for enhanced photocatalytic hydrogen evolution. Adv Sci. 2021;9(4):2103715.
|
[48] |
Guan R, Wang L, Wang D, et al. Boosting photocatalytic hydrogen production via enhanced exciton dissociation in black phosphorus quantum dots/TiO2 heterojunction. Chem Eng J. 2022;435:135138.
|
[49] |
Li Z, Huang W, Liu J, Lv K, Li Q. Embedding CdS@Au into ultrathin Ti3-xC2Ty to build dual schottky barriers for photocatalytic H2 production. ACS Catal. 2021;11(14):8510-8520.
|
[50] |
Yu S, Fan X, Wang X, et al. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat Commun. 2018;9(1):4009.
|
[51] |
Bhatt H, Goswami T, Yadav D, et al. Ultrafast hot electron transfer and trap-state mediated charge carrier separation toward enhanced photocatalytic activity in g-C3N4/ZnIn2S4 heterostructure. J Phys Chem Lett. 2021;12(49):11865-11872.
|
[52] |
Goswami T, Yadav D, Bhatt H, et al. Defect-mediated slow carrier recombination and broad photoluminescence in non-metal-doped ZnIn2S4 nanosheets for enhanced photocatalytic activity. J Phys Chem Lett. 2021;12(20):5000-5008.
|
[53] |
DuBose J, Kamat P. Directing energy transfer in halide perovskite–chromophore hybrid assemblies. J Am Chem Soc. 2021;143(45):19214-19223.
|
[54] |
Pilawa B, Wieckowski A, Lewandowski M. Application of EPR spectroscopy to the characterization of magnetic interactions in thermally decomposed coal. Magn Reson Chem. 1999;37(12):871-877.
|
[55] |
Stefaniuk I, Obermayr W, Popovych V, Cieniek B, Rogalska I. EPR spectra of sintered Cd1−xCrxTe powdered crystals with various Cr content. Materials. 2021;14(13):3449.
|
[56] |
Cheng X, Guan R, Chen Y, Sun Y, Shang Q. The unique TiO2(B)/BiOCl0.7I0.3-P Z-scheme heterojunction effectively degrades and mineralizes the herbicide fomesafen. Chem Eng J. 2022;431:134021.
|
[57] |
Lu M, Han W, Li H, Zhang W, Zhang B. There is plenty of space in the MXene layers: the confinement and fillings. J Energy Chem. 2020;48:344-363.
|
[58] |
Lu M, Han W, Li H, et al. Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity. Energy Stor Mater. 2019;16(1):163-168.
|
[59] |
Han W, Wen X, Ding Y, et al. Ultraviolet emissive Ti3C2Tx MXene quantum dots for multiple anti-counterfeiting. Appl Surf Sci. 2022;595:153563.
|
[60] |
Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci. 1996;6(1):15-50.
|
[61] |
Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865-3868.
|
[62] |
Paier J, Hirschl R, Marsman M, Georg K. The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J Chem Phys. 2005;122(23):234102.
|
/
〈 | 〉 |