Gate-tunable Berry curvature in van der Waals itinerant ferromagnetic Cr7Te8

Kui Meng, Zeya Li, Zhansheng Gao, Xiangyu Bi, Peng Chen, Feng Qin, Caiyu Qiu, Lingyun Xu, Junwei Huang, Jinxiong Wu, Feng Luo, Hongtao Yuan

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (3) : e12524. DOI: 10.1002/inf2.12524
RESEARCH ARTICLE

Gate-tunable Berry curvature in van der Waals itinerant ferromagnetic Cr7Te8

Author information +
History +

Abstract

The anomalous Hall effect (AHE) that associated with the Berry curvature of occupied electronic states in momentum-space is one of the intriguing aspects in condensed matter physics, and provides an alternative for potential applications in topological electronics. Previous experiments reported the tunable Berry curvature and the resulting magnetization switching process in the AHE based on strain engineering or chemical doping. However, the AHE modulation by these strategies are usually irreversible, making it difficult to realize switchable control of the AHE and the resultant spintronic applications. Here, we demonstrated the switchable control of the Berry-curvature-related AHE by electrical gating in itinerant ferromagnetic Cr7Te8 with excellent ambient stability. The gate-tunable sign reversal of the AHE can be attributed to the redistribution of the Berry curvature in the band structure of Cr7Te8 due to the intercalation-induced change in the Fermi level. Our work facilitates the applications of magnetic switchable devices based on gate-tunable Berry curvature.

Keywords

anomalous Hall effect / Berry curvature / van der Waals itinerant ferromagnetism

Cite this article

Download citation ▾
Kui Meng, Zeya Li, Zhansheng Gao, Xiangyu Bi, Peng Chen, Feng Qin, Caiyu Qiu, Lingyun Xu, Junwei Huang, Jinxiong Wu, Feng Luo, Hongtao Yuan. Gate-tunable Berry curvature in van der Waals itinerant ferromagnetic Cr7Te8. InfoMat, 2024, 6(3): e12524 https://doi.org/10.1002/inf2.12524

References

[1]
Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP. Anomalous Hall effect. Rev Mod Phys. 2010;82(2):1539-1592.
[2]
Haldane FDM. Berry curvature on the Fermi surface: anomalous Hall effect as a topological fermi-liquid property. Phys Rev Lett. 2004;93(20):206602.
[3]
Xiao D, Chang M-C, Niu Q. Berry phase effects on electronic properties. Rev Mod Phys. 2010;82(3):1959-2007.
[4]
Wimmer M, Price HM, Carusotto I, Peschel U. Experimental measurement of the Berry curvature from anomalous transport. Nat Phys. 2017;13(6):545-550.
[5]
Mercaldo MT, Noce C, Caviglia AD, Cuoco M, Ortix C. Orbital design of Berry curvature: pinch points and giant dipoles induced by crystal fields. npj Quantum Mater. 2023;8(1):12.
[6]
Schüler M, De Giovannini U, Hübener H, Rubio A, Sentef MA, Werner P. Local Berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci Adv. 2020;6(9):eaay2730.
[7]
Liu E, Sun Y, Kumar N, et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat Phys. 2018;14(11):1125-1131.
[8]
Nayak AK, Fischer JE, Sun Y, et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci Adv. 2016;2(4):e1501870.
[9]
Kim J, Kim K-W, Shin D, et al. Prediction of ferroelectricity-driven Berry curvature enabling charge- and spin-controllable photocurrent in tin telluride monolayers. Nat Commun. 2019;10(1):3965.
[10]
Ma Q, Xu S-Y, Shen H, et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature. 2019;565(7739):337-342.
[11]
Song J, Park BC, Sim KI, et al. Tunable Berry curvature and transport crossover in topological Dirac semimetal KZnBi. npj Quantum Mater. 2021;6(1):77.
[12]
Fang Z, Nagaosa N, Takahashi KS, et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science. 2003;302(5642):92-95.
[13]
Groenendijk DJ, Autieri C, van Thiel TC, et al. Berry phase engineering at oxide interfaces. Phys Rev Res. 2020;2(2):023404.
[14]
Kumar N, Lamba N, Gayles J, et al. Giant anomalous Hall conductivity in the itinerant ferromagnet LaCrSb3 and the effect of f-electrons. Adv Quantum Technol. 2021;4(6):2100023.
[15]
Guin SN, Xu Q, Kumar N, et al. 2D-Berry-curvature-driven large anomalous Hall effect in layered topological nodal-line MnAlGe. Adv Mater. 2021;33(21):2006301.
[16]
Karplus R, Luttinger JM. Hall effect in ferromagnetics. Phys Rev. 1954;95(5):1154-1160.
[17]
Taguchi Y, Oohara Y, Yoshizawa H, Nagaosa N, Tokura Y. Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. Science. 2001;291(5513):2573-2576.
[18]
Jungwirth T, Niu Q, MacDonald AH. Anomalous Hall effect in ferromagnetic semiconductors. Phys Rev Lett. 2002;88(20):207208.
[19]
Onoda M, Nagaosa N. Quantized anomalous Hall effect in two-dimensional ferromagnets: quantum Hall effect in metals. Phys Rev Lett. 2003;90(20):206601.
[20]
Yao Y, Kleinman L, MacDonald AH, et al. First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe. Phys Rev Lett. 2004;92(3):037204.
[21]
Zhang X, Lu Q, Liu W, et al. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films. Nat Commun. 2021;12(1):2492.
[22]
Wang F, Wang X, Zhao Y-F, et al. Interface-induced sign reversal of the anomalous Hall effect in magnetic topological insulator heterostructures. Nat Commun. 2021;12(1):79.
[23]
Sohn B, Lee E, Park SY, et al. Sign-tunable anomalous Hall effect induced by two-dimensional symmetry-protected nodal structures in ferromagnetic perovskite thin films. Nat Mater. 2021;20(12):1643-1649.
[24]
Kim K, Seo J, Lee E, et al. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal. Nat Mater. 2018;17(9):794-799.
[25]
Liu DF, Liang AJ, Liu EK, et al. Magnetic Weyl semimetal phase in a Kagom crystal. Science. 2019;365(6459):1282-1285.
[26]
Ye L, Kang M, Liu J, et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature. 2018;555(7698):638-642.
[27]
Fujisawa Y, Pardo-Almanza M, Hsu C-H, et al. Widely tunable Berry curvature in the magnetic semimetal Cr1+δTe2. Adv Mater. 2023;35(12):2207121.
[28]
Chi H, Ou Y, Eldred TB, et al. Strain-tunable Berry curvature in quasi-two-dimensional chromium telluride. Nat Commun. 2023;14(1):3222.
[29]
Liu Y, Petrovic C. Anomalous Hall effect in the trigonal Cr5Te8 single crystal. Phys Rev B. 2018;98(19):195122.
[30]
Wen Y, Liu Z, Zhang Y, et al. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett. 2020;20(5):3130-3139.
[31]
Cao G, Zhang Q, Frontzek M, et al. Structure, chromium vacancies, and magnetism in a Cr12-xTe16 compound. Phys Rev Mater. 2019;3(12):125001.
[32]
McGuire MA, Garlea VO, Kc S, et al. Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe3. Phys Rev B. 2017;95(14):144421.
[33]
Chua R, Zhou J, Yu X, et al. Room temperature ferromagnetism of monolayer chromium telluride with perpendicular magnetic anisotropy. Adv Mater. 2021;33(42):2103360.
[34]
Li H, Wang L, Chen J, et al. Molecular beam epitaxy grown Cr2Te3 thin films with tunable curie temperatures for spintronic devices. ACS Appl Nano Mater. 2019;2(11):6809-6817.
[35]
Coughlin AL, Xie D, Yao Y, et al. Near degeneracy of magnetic phases in two-dimensional chromium telluride with enhanced perpendicular magnetic anisotropy. ACS Nano. 2020;14(11):15256-15266.
[36]
Lee IH, Choi BK, Kim HJ, et al. Modulating Curie temperature and magnetic anisotropy in nanoscale-layered Cr2Te3 films: implications for room-temperature spintronics. ACS Appl Nano Mater. 2021;4(5):4810-4819.
[37]
Zhao D, Zhang L, Malik IA, et al. Observation of unconventional anomalous Hall effect in epitaxial CrTe thin films. Nano Res. 2018;11(6):3116-3121.
[38]
Zhang Y, Zou K, Gao Z, et al. Large negative magnetoresistance in all-2D-materials-based spin valves. Phys Status Solidi (RRL)–Rapid Res Lett. 2023;17(7):2300073.
[39]
Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 2017;546(7657):270-273.
[40]
Tang M, Huang J, Qin F, et al. Continuous manipulation of magnetic anisotropy in a van der Waals ferromagnet via electrical gating. Nat Electron. 2023;6(1):28-36.
[41]
Manna K, Sun Y, Muechler L, Kübler J, Felser C. Heusler, Weyl and Berry. Nat Rev Mater. 2018;3(8):244-256.
[42]
Manna K, Muechler L, Kao T-H, et al. From Colossal to zero: controlling the anomalous Hall effect in magnetic Heusler compounds via Berry curvature design. Phys Rev X. 2018;8(4):041045.
[43]
Onoda M, Nagaosa N. Topological nature of anomalous Hall effect in ferromagnets. J Phys Soc Japan. 2002;71(1):19-22.
[44]
Kübler J, Felser C. Berry curvature and the anomalous Hall effect in Heusler compounds. Phys Rev B. 2012;85(1):012405.
[45]
Ye J, Kim YB, Millis AJ, Shraiman BI, Majumdar P, Tešanović Z. Berry phase theory of the anomalous Hall effect: application to colossal magnetoresistance manganites. Phys Rev Lett. 1999;83(18):3737-3740.
[46]
Mathieu R, Asamitsu A, Yamada H, et al. Scaling of the anomalous Hall effect in Sr1−xCaxRuO3. Phys Rev Lett. 2004;93(1):016602.
[47]
Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature. 2018;563(7729):94-99.
[48]
Zhou L, Huang J, Tang M, et al. Gate-tunable spin valve effect in Fe3GeTe2-based van der Waals heterostructures. InfoMat. 2023;5(3):e12371.

RIGHTS & PERMISSIONS

2024 2024 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/