Towards operation-stabilizing perovskite solar cells: Fundamental materials, device designs, and commercial applications
Jianfang Qin, Zhigang Che, Yifei Kang, Chenjing Liu, Dongdong Wu, Haiying Yang, Xiaotian Hu, Yan Zhan
Towards operation-stabilizing perovskite solar cells: Fundamental materials, device designs, and commercial applications
Over the last decade, perovskite solar cells (PSCs) have drawn extensive attention owing to their high power conversion efficiency (single junction: 26.1%, perovskite/silicon tandem: 33.9%) and low fabrication cost. However, the short lifespan of PSCs with initial efficiency still blocks their practical applications. This operational instability may originate from the intrinsic and extrinsic degradation of materials or devices. Although the lifetime of PSCs has been prolonged through component, crystal, defect, interface, encapsulation engineering, and so on, the systematic analysis of failure regularity for PSCs from the perspective of materials and devices against multiple operating stressors is indispensable. In this review, we start with elaboration of the predominant degradation pathways and mechanism for PSCs under working stressors. Then the strategies for improving long-term durability with respect to fundamental materials, interface designs, and device encapsulation have been summarized. Meanwhile, the key results have been discussed to understand the limitation of assessing PSCs stability, and the potential applications in indoor photovoltaics and wearable electronics are demonstrated. Finally, promising proposals, encompassing material processing, film formation, interface strengthening, structure designing, and device encapsulation, are provided to improve the operational stability of PSCs and promote their commercialization.
commercial applications / device designs / failure regularity / fundamental materials / multiple stressors / perovskite photovoltaics
[1] |
(a) Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photonics. 2014;8(7):506-514. (b) Rong Y, Hu Y, Mei A, et al. Challenges for commercializing perovskite solar cells. Science. 2018;361(6408):eaat8235. (c) Morteza Najarian A, Dinic F, Chen H, et al. Homomeric chains of intermolecular bonds scaffold octahedral germanium perovskites. Nature. 2023;620(7973):328-335.
|
[2] |
(a) Zhan Y, Li C, Che Z, Shum HC, Hu X, Li H. Light management using photonic structures towards high-index perovskite optoelectronics: fundamentals, designing, and applications. Energ Environ Sci. 2023;16(10):4135-4163. (b) Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science. 2015;347(6225):967-970. (c) Xing G, Mathews N, Sun S, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science. 2013;342(6156):344-347.
|
[3] |
(a) Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050-6051. (b) Shao J-Y, Li D, Shi J, et al. Recent progress in perovskite solar cells: material science. Sci China Chem. 2023;66(1):10-64. (c) Zhang L, Mei L, Wang K, et al. Advances in the application of perovskite materials. Nano-Micro Lett. 2023;15(1):177. (d) Best research-cell efficiency chart.
|
[4] |
(a) Meng L, You J, Yang Y. Addressing the stability issue of perovskite solar cells for commercial applications. Nat Commun. 2018;9(1):5265. (b) Snaith HJ. Present status and future prospects of perovskite photovoltaics. Nat Mater. 2018;17(5):372-376. (c) Berry JJ, van de Lagemaat J, Al-Jassim MM, Kurtz S, Yan Y, Zhu K. Perovskite photovoltaics: The path to a printable Terawatt-scale technology. ACS Energy Lett. 2017;2(11):2540-2544. (d) Luo X, Lin X, Gao F, et al. Recent progress in perovskite solar cells: from device to commercialization. Sci China Chem. 2022;65(12):2369-2416.
|
[5] |
(a) Song Z, McElvany CL, Phillips AB, et al. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energ Environ Sci. 2017;10(6):1297-1305. (b) Zhang F, Castaneda JF, Chen S, et al. Comparative studies of optoelectrical properties of prominent PV materials: Halide perovskite, CdTe, and GaAs. Mater Today. 2020;36:18-29. (c) Li Z, Zhao Y, Wang X, et al. Cost analysis of perovskite tandem photovoltaics. Joule. 2018;2(8):1559-1572. (d) Cai M, Wu Y, Chen H, Yang X, Qiang Y, Han L. Cost-performance analysis of perovskite solar modules. Adv Sci. 2017;4(1):1600269. (e) Čulík P, Brooks K, Momblona C, et al. Design and cost analysis of 100 MW perovskite solar panel manufacturing process in different locations. ACS Energy Lett. 2022;7(9):3039-3044.
|
[6] |
(a) Wang J, Liu H, Zhao Y, Zhang X. Perovskite-based tandem solar cells gallop ahead. Joule. 2022;6(3):509-511. (b) Charles RG, Doolin A, Garcia Rodriguez R, Villalobos KV, Davies ML. Circular economy for perovskite solar cells—drivers, progress and challenges. Energ Environ Sci. 2023;16(9):3711-3733.
|
[7] |
(a) Bu T, Ono LK, Li J, et al. Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat Energy. 2022;7(6):528-536. (b) Tong J, Jiang Q, Ferguson AJ, et al. Carrier control in Sn-Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nat Energy. 2022;7(7):642-651. (c) Liu J, De Bastiani M, Aydin E, et al. Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science. 2022;377(6603):302-306. (d) Grancini G, Roldán-Carmona C, Zimmermann I, et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat Commun. 2017;8(1):15684.
|
[8] |
(a) Yang S, Chen S, Mosconi E, et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science. 2019;365(6452):473-478. b Lin Y-H, Sakai N, Da P, et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science. 2020;369(6499):96-102. b Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science. 2014;345(6196):542-546. d Boyd CC, Cheacharoen R, Leijtens T, McGehee MD. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev. 2019;119(5):3418-3451.
|
[9] |
(a) Wang Y, Wu T, Barbaud J, et al. Stabilizing heterostructures of soft perovskite semiconductors. Science. 2019;365(6454):687-691. (b) Liu Z, Qiu L, Ono LK, et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat Energy. 2020;5(8):596-604. c Bai Y, Huang Z, Zhang X, et al. Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science. 2022;378(6621):747-754. (c) Zhan Y, Yang F, Chen W, et al. Elastic lattice and excess charge carrier manipulation in 1D-3D perovskite solar cells for exceptionally long-term operational stability. Adv Mater. 2021;33(48):2105170. (e) Azmi R, Ugur E, Seitkhan A, et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science. 2022;376(6588):73-77. (f) Sidhik S, Wang Y, De Siena M, et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science. 2022;377(6613):1425-1430. (g) Wang T, Zhang Y, Kong W, et al. Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science. 2022;377(6611):1227-1232. (h) Li H, Zhang C, Gong C, et al. 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat Energy. 2023;8(9):946-955. (i) Zhao Y, Heumueller T, Zhang J, et al. A bilayer conducting polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures. Nat Energy. 2022;7(2):144-152. (j) Li X, Zhang W, Guo X, Lu C, Wei J, Fang J. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science. 2022;375(6579):434-437. (k) Park SM, Wei M, Xu J, et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science. 2023;381(6654):209-215. (l) Li Z, Li B, Wu X, et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science. 2022;376(6591):416-420. (m) Lin X, Su H, He S, et al. In situ growth of graphene on both sides of a Cu-Ni alloy electrode for perov-skite solar cells with improved stability. Nat Energy. 2022;7(6):520-527. (n) Zhang T, Wang F, Kim H-B, et al. Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science. 2022;377(6605):495-501. (o) Zhao X, Liu T, Burlingame QC, et al. Accelerated aging of allinorganic, interface-stabilized perovskite solar cells. Science. 2022;377(6603):307-310. (p) Li G, Su Z, Canil L, et al. Highly efficient p-i-n perovskite solar cells that endure temperature variations. Science. 2023;379(6630):399-403. (q) You S, Zeng H, Liu Y, et al. Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules. Science. 2023;379(6629):288-294. (r) Fei C, Li N, Wang M, et al. Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science. 2023;380(6647):823-829. (s) Li C, Wang X, Bi E, et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science. 2023;379(6633):690-694. (t) McMeekin DP, Holzhey P, Fürer SO, et al. Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat Mater. 2023;22(1):73-83. (u) Tan S, Huang T, Yavuz I, et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature. 2022;605(7909):268-273. (v) Luo L, Zeng H, Wang Z, et al. Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat Energy. 2023;8(3):294-303. (w) Lin R, Xu J, Wei M, et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature. 2022;603(7899):73-78. (x) Chen H, Maxwell A, Li C, et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature. 2023;613(7945):676-681. (y) Jiang Q, Tong J, Scheidt RA, et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science. 2022;378(6626):1295-1300. (z) Xiao K, Lin R, Han Q, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surfaceanchoring zwitterionic antioxidant. Nat Energy. 2020;5(11):870-880. (aa) Liu J, Aydin E, Yin J, et al. 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule. 2021;5(12):3169-3186. (ab) Zheng J, Duan W, Guo Y, et al., eds. Efficient monolithic perovskite-Si tandem solar cells enabled by an ultra-thin indium tin oxide interlayer. Energ Environ Sci. 2023;16(3):1223-1233. (ac) Luo X, Luo H, Li H, et al. Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv Mater. 2023;35(9):2207883. (ad) Lin R, Wang Y, Lu Q, et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature. 2023;620(7976):994-1000. (ae) Li T, Xu J, Lin R, et al. Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat Energy. 2023;8(6):610-620. (af) Mariotti S, Köhnen E, Scheler F, et al. Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science. 2023;381(6653):63-69. (ag) Bi E, Tang W, Chen H, et al. Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers. Joule. 2019;3(11):2748-2760. (ah) Huang H-H, Liu Q-H, Tsai H, et al. A simple one-step method with wide processing window for high-quality perovskite mini-module fabrication. Joule. 2021;5(4):958-974. (ai) Yang Z, Zhang W, Wu S, et al. Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Sci Adv. 2021;7(18):eabg3749. (aj) Chen S, Dai X, Xu S, Jiao H, Zhao L, Huang J. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science. 2021;373(6557):902-907. (ak) Chen R, Shen H, Chang Q, et al. Conformal imidazolium 1D perovskite capping layer stabilized 3D perovskite films for efficient solar cells. Adv Sci. 2022;9:2204017. (al) Zeng H, Li L, Liu F, et al. Improved performance and stability of perovskite solar modules by regulating interfacial ion diffusion with nonionic cross-linked 1D lead-iodide. Adv Energy Mater. 2022;12(1):2102820. (am) Zhang K, Wang Y, Tao M, et al. Efficient inorganic vapor-assisted defects passivation for perovskite solar module. Adv Mater. 2023;35(22):2211593. (an) Zhang S, Ye F, Wang X, et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science. 2023;380(6643):404-409. (ao) Gu H, Fei C, Yang G, et al. Design optimization of bifacial perovskite minimodules for improved efficiency and stability. Nat Energy. 2023;8(7):675-684. (ap) Chen R, Wang J, Liu Z, et al. Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat Energy. 2023;8(8):839-849. (aq) Xiao K, Lin Y-H, Zhang M, et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science. 2022;376(6594):762-767. (ar) Wang X, Ying Z, Zheng J, et al. Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion. Nat Commun. 2023;14(1):2166.
|
[10] |
(a) Martulli A, Rajagopalan N, Gota F, et al. Towards market commercialization: lifecycle economic and environmental evaluation of scalable perovskite solar cells. Prog Photovoltaics Res Appl. 2023;31(2):180-194. (b) Ahangharnejhad RH, Phillips AB, Song Z, et al. Impact of lifetime on the levelized cost of electricity from perovskite single junction and tandem solar cells. Sustain Energy Fuels. 2022;6(11):2718-2726.
|
[11] |
(a) Cheng Y, Ding L. Pushing commercialization of perovskite solar cells by improving their intrinsic stability. Energ Environ Sci. 2021;14(6):3233-3255. (b) Lee JW, Park NG. Chemical approaches for stabilizing perovskite solar cells. Adv Energy Mater. 2020;10(1):1903249. (c) Han T-H, Lee J-W, Choi C, et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat Commun. 2019;10(1):520. (d) Peng S, Wang Y, Braun M, et al. Kinetics and mechanism of light-induced phase separation in a mixed-halide perovskite. Matter. 2023;6(6):2052-2065.
|
[12] |
(a) Tress W, Domanski K, Carlsen B, et al. Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nat Energy. 2019;4(7):568-574. b De Rossi F, Barbé J, Tanenbaum DM, et al. An interlaboratory study on the stability of all-printable hole transport material-free perovskite solar cells. Energ Technol. 2020;8(12):2000134. c Jošt M, Lipovšek B, Glažar B, et al. Perovskite solar cells go outdoors: field testing and temperature effects on energy yield. Adv Energy Mater. 2020;10(25):2000454. d Velilla E, Jaramillo F, Mora-Seró I. High-throughput analysis of the ideality factor to evaluate the outdoor performance of perovskite solar minimodules. Nat Energy. 2021;6(1):54-62.
|
[13] |
(a) Li N, Niu X, Chen Q, Zhou H. Towards commercialization: the operational stability of perovskite solar cells. Chem Soc Rev. 2020;49(22):8235-8286. a Motta C, El-Mellouhi F, Kais S, Tabet N, Alharbi F, Sanvito S. Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat Commun. 2015;6(1):7026.
|
[14] |
(a) Liu X, Luo D, Lu Z-H, et al. Stabilization of photoactive phases for perovskite photovoltaics. Nat Rev Chem. 2023;7(7):462-479. b Huang Y, Lei X, He T, Jiang Y, Yuan M. Recent progress on formamidinium-dominated perovskite photovoltaics. Adv Energy Mater. 2021;2100690. c Zhuang J, Wang J, Yan F. Review on chemical stability of lead halide perovskite solar cells. Nano-Micro Lett. 2023;15(1):220. c Tan S, Yavuz I, Weber MH, Huang T, Yang Y. Shallow iodine defects accelerate the degradation of α-phase formamidinium perovskite. Joule. 2020;4(11):2426-2442.
|
[15] |
(a) Yun JS, Seidel J, Kim J, et al. Critical role of grain boundaries for ion migration in formamidinium and methylammonium lead halide perovskite solar cells. Adv Energy Mater. 2016;6(13):1600330. (b) Eames C, Frost JM, Barnes PRF, O'Regan BC, Walsh A, Islam MS. Ionic transport in hybrid lead iodide perovskite solar cells. Nat Commun. 2015;6(1):7497. (c) Azpiroz JM, Mosconi E, Bisquert J, De Angelis F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energ Environ Sci. 2015;8(7):2118-2127.
|
[16] |
(a) Altinkaya C, Aydin E, Ugur E, et al. Tin oxide electron-selective layers for efficient, stable, and scalable perovskite solar cells. Adv Mater. 2021;33(15):2005504. (b) Meng D, Xue J, Zhao Y, Zhang E, Zheng R, Yang Y. Configurable organic charge carriers toward stable perovskite photovoltaics. Chem Rev. 2022;122(18):14954-14986. (c) Du M, Zhao S, Duan L, et al. Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules. Joule. 1931;2022:1931-1943. (d)Liu M, Bi L, Jiang W, et al. Compact hole-selective self-assembled monolayers enabled by disassembling micelles in solution for efficient perovskite solar cells. Adv Mater. 2023;35(46):2304415.
|
[17] |
Holzhey P, Saliba M. A full overview of international standards assessing the long-term stability of perovskite solar cells. J Mater Chem A. 2018;6(44):21794-21808.
|
[18] |
(a) Bush KA, Palmstrom AF, Yu ZJ, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy. 2017;2(4):17009. b Wu Z, Liu Z, Hu Z, et al. Highly efficient and stable perovskite solar cells via modification of energy levels at the perovskite/carbon electrode interface. Adv Mater. 2019;31(11):1804284. c Shi L, Young TL, Kim J, et al. Accelerated lifetime testing of organic-inorganic perovskite solar cells encapsulated by polyisobutylene. Mater Interfaces. 2017;9(30):25073-25081. d Bella F, Griffini G, Correa-Baena J-P, et al. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science. 2016;354(6309):203-206.
|
[19] |
Khenkin MV, Katz EA, Abate A, et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat Energy. 2020;5(1):35-49.
|
[20] |
Wang S, Zhao Q, Hazarika A, et al. Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand. Nat Commun. 2023;14(1):2216.
|
[21] |
(a) Yang J-N, Wang J-J, Yin Y-C, Yao H-B. Mitigating halide ion migration by resurfacing lead halide perovskite nanocrystals for stable light-emitting diodes. Chem Soc Rev. 2023;52(16):5516-5540. (b) Ma F, Zhao Y, Qu Z, You J. Developments of highly efficient perovskite solar cells. Acc Mater Res. 2023;4(8):716-725.
|
[22] |
(a) Azmi R, Zhumagali S, Bristow H, et al. Moisture-resilient perovskite solar cells for enhanced stability. Adv Mater. 2023;2211317. (b) Wang Q, Chen B, Liu Y, et al. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energ Environ Sci. 2017;10(2):516-522.
|
[23] |
Leguy AMA, Hu Y, Campoy-Quiles M, et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem Mater. 2015;27(9):3397-3407.
|
[24] |
Kato Y, Ono LK, Lee MV, Wang S, Raga SR, Qi Y. Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv Mater Interfaces. 2015;2(13):1500195.
|
[25] |
Shi L, Bucknall MP, Young TL, et al. Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells. Science. 2020;368(6497):eaba2412.
|
[26] |
Cheacharoen R, Rolston N, Harwood D, Bush KA, Dauskardt RH, McGehee MD. Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energ Environ Sci. 2018;11(1):144-150.
|
[27] |
Zhang H, Pfeifer L, Zakeeruddin SM, Chu J, Grätzel M. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat Rev Chem. 2023;7(9):632-652.
|
[28] |
(a) Ni Z, Jiao H, Fei C, et al. Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination. Nat Energy. 2022;7(1):65-73. (b) Deng Y, Xu S, Chen S, Xiao X, Zhao J, Huang J. Defect compensation in formamidinium-caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat Energy. 2021;6(6):633-641.
|
[29] |
(a) Wei J, Wang Q, Huo J, et al. Mechanisms and suppression of photoinduced degradation in perovskite solar cells. Adv Energy Mater. 2021;11(3):2002326. (b) Fu F, Pisoni S, Jeangros Q, et al. I2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat-light soaking conditions. Energ Environ Sci. 2019;12(10):3074-3088. (c) He S, Qiu L, Ono LK, Qi Y. How far are we from attaining 10-year lifetime for metal halide perovskite solar cells? Mater Sci Eng R Rep. 2020;140:100545. (d) Leonard AA, Diroll BT, Flanders NC, et al. Light-induced transient lattice dynamics and metastable phase transition in CH3NH3PbI3 nanocrystals. ACS Nano. 2023;17(6):5306-5315.
|
[30] |
(a) Kim GY, Senocrate A, Yang T-Y, Gregori G, Grätzel M, Maier J. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat Mater. 2018;17(5):445-449. (b) Correa-Baena J-P, Turren-Cruz S-H, Tress W, et al. Changes from bulk to surface recombination mechanisms between pristine and cycled perovskite solar cells. ACS Energy Lett. 2017;2(3):681-688. (c) Ouyang Y, Li Y, Zhu P, et al. Photo-oxidative degradation of methylammonium lead iodide perovskite: mechanism and protection. J Mater Chem A. 2019;7(5):2275-2282.
|
[31] |
Juarez-Perez EJ, Ono LK, Maeda M, Jiang Y, Hawash Z, Qi Y. Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J Mater Chem A. 2018;6(20):9604-9612.
|
[32] |
Brennan MC, Draguta S, Kamat PV, Kuno M. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 2018;3(1):204-213.
|
[33] |
(a) Lin Y, Chen B, Fang Y, et al. Excess charge-carrier induced instability of hybrid perovskites. Nat Commun. 2018;9(1):4981. (b) Yan X, Fan W, Cheng F, et al. Ion migration in hybrid perovskites: classification, identification, and manipulation. Nano Today. 2022;44:101503.
|
[34] |
(a) Razera RAZ, Jacobs DA, Fu F, et al. Instability of p–i–n perovskite solar cells under reverse bias. J Mater Chem A. 2020;8(1):242-250. (b) Shi J, Li Y, Li Y, et al. Eliminating the electric field response in a perovskite heterojunction solar cell to improve operational stability. Sci Bull. 2021;66(6):536-544.
|
[35] |
(a) Domanski K, Roose B, Matsui T, et al. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energ Environ Sci. 2017;10(2):604-613. (b) Haruyama J, Sodeyama K, Han L, Tateyama Y. First-principles study of ion diffusion in perovskite solar cell sensitizers. J Am Chem Soc. 2015;137(32):10048-10051.
|
[36] |
(a) Bogachuk D, Saddedine K, Martineau D, et al. Perovskite photovoltaic devices with carbon-based electrodes withstanding reverse-bias voltages up to –9 V and Surpassing IEC 61215:2016 International Standard. Sol RRL. 2022;6(3):2100527. (b) Nakka L, Luo W, Aberle AG, Lin F. Study of potential-induced degradation in glass-encapsulated perovskite solar cells under different stress conditions. Sol RRL. 2023;7(12):2300100.
|
[37] |
(a) Jordan DC, Silverman TJ, Wohlgemuth JH, Kurtz SR, VanSant KT. Photovoltaic failure and degradation modes. Prog Photovolt: Res Appl. 2017;25(4):318-326. (b) Meggiolaro D, Mosconi E, De Angelis F. Formation of surface defects dominates ion migration in lead-halide perovskites. ACS Energy Lett. 2019;4(3):779-785.
|
[38] |
(a) Tang X, van den Berg M, Gu E, et al. Local observation of phase segregation in mixed-halide perovskite. Nano Lett. 2018;18(3):2172-2178. (b) Barker AJ, Sadhanala A, Deschler F, et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2017;2(6):1416-1424. (c) Kang Y, Li R, Wang A, et al. Ionogel-perovskite matrix enabling highly efficient and stable flexible solar cells towards fully-R2R fabrication. Energ Environ Sci. 2022;15(8):3439-3448.
|
[39] |
Chi W, Banerjee SK. Stability improvement of perovskite solar cells by compositional and interfacial engineering. Chem Mater. 2021;33(5):1540-1570.
|
[40] |
(a) Leijtens T, Eperon GE, Noel NK, Habisreutinger SN, Petrozza A, Snaith HJ. Stability of metal halide perovskite solar cells. Adv Energy Mater. 2015;5(20):1500963. (b) Berhe TA, Su W-N, Chen C-H, et al. Organometal halide perovskite solar cells: degradation and stability. Energ Environ Sci. 2016;9(2):323-356.
|
[41] |
Zhang D, Li D, Hu Y, Mei A, Han H. Degradation pathways in perovskite solar cells and how to meet international standards. Commun Mater. 2022;3(1):58.
|
[42] |
Hu Y, Chu Y, Wang Q, et al. Standardizing perovskite solar modules beyond cells. Joule. 2019;3(9):2076-2085.
|
[43] |
(a) Jiang Y, Remeika M, Hu Z, et al. Negligible-Pb-waste and upscalable perovskite deposition technology for high-operational-stability perovskite solar modules. Adv Energy Mater. 2019;9(13):1803047. (b) Bitton S, Tessler N. Perovskite ionics—elucidating degradation mechanisms in perovskite solar cellsviadevice modelling and iodine chemistry. Energ Environ Sci. 2023;16(6):2621-2628. (c) Duijnstee EA, Gallant BM, Holzhey P, et al. Understanding the degradation of methylenediammonium and its role in phase-stabilizing formamidinium lead triiodide. J Am Chem Soc. 2023;145(18):10275-10284. (d) Kim T, Park S, Iyer V, et al. Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites. Nat Commun. 1846;2023(1):14.
|
[44] |
(a) An Y, Hidalgo J, Perini CAR, et al. Structural stability of formamidinium- and cesium-based halide perovskites. ACS Energy Lett. 1942;2021(5):6-1969. (b) Yuan Y, Huang J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc Chem Res. 2016;49(2):286-293. (c) Kang Y, Wang A, Li R, et al. Thermal shock fabrication of ion-stabilized perovskite and solar cells. Adv Mater. 2022;34(32):2203166.
|
[45] |
(a) Liu N, Xiong J, He Z, et al. Multifunctional anti-corrosive interface modification for inverted perovskite solar cells. Adv Energy Mater. 2023;13(20):2300025. (b) Mäkinen P, Fasulo F, Liu M, et al. Less is more: simplified fluorene-based dopant-free hole transport materials promote the long-term ambient stability of perovskite solar cells. Chem Mater. 2023;35(7):2975-2987.
|
[46] |
(a) Zhan Y, Peng J, Cao C, Cheng Q. A biomineralization-inspired strategy of self-encapsulation for perovskite solar cells. Nano Energy. 2022;101:107575. (b) Zhan Y, Cheng Q, Peng J, et al. Nacre inspired robust self-encapsulating flexible perovskite photodetector. Nano Energy. 2022:98:107254. (c) Lu Q, Yang Z, Meng X, et al. A review on encapsulation technology from organic light emitting diodes to organic and perovskite solar cells. Adv Funct Mater. 2021;31(23):2100151. (d) Ma S, Yuan G, Zhang Y, Yang N, Li Y, Chen Q. Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energ Environ Sci. 2022;15(1):13-55.
|
[47] |
(a) Jeon NJ, Noh JH, Yang WS, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature. 2015;517(7535):476-480. (b) Kieslich G, Sun S, Cheetham AK. An extended tolerance factor approach for organic-inorganic perovskites. Chem Sci. 2015;6(6):3430-3433. (c) Li Z, Yang M, Park J-S, Wei S-H, Berry JJ, Zhu K. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem Mater. 2016;28(1):284-292.
|
[48] |
Charles B, Dillon J, Weber OJ, Islam MS, Weller MT. Understanding the stability of mixed A-cation lead iodide perovskites. J Mater Chem A. 2017;5(43):22495-22499.
|
[49] |
Zhao Y, Yavuz I, Wang M, et al. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat Mater. 2022;21(12):1396-1402.
|
[50] |
Turren-Cruz S-H, Hagfeldt A, Saliba M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science. 2018;362(6413):449-453.
|
[51] |
(a) Wang X, Zhang M, Hou T, Sun X, Hao X. Extrinsic interstitial ions in metal halide perovskites: a review. Small. 2023;19:2303060. (b) Bai D, Zhang J, Jin Z, et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Lett. 2018;3(4):970-978. (c) Hidalgo J, Atourki L, Li R, et al. Bulky cation hinders undesired secondary phases in FAPbI3 perovskite solar cells. Mater Today. 2023;68:13-21. (d) Li Y, Yuan S, Miao S, et al. Uncovering the influence of cation composition engineering on the ion migration kinetics in perovskite solar cells. J Phys Chem C. 2023;127(30):14679-14686.
|
[52] |
Zhao Y, Zhang J, Xu Z, et al. Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning. Nat Commun. 2021;12(1):2191.
|
[53] |
(a) Jing Y, Wang C, Chen Y, et al. Crystallinity regulation and defects passivation for efficient and stable perovskite solar cells using fully conjugated porous aromatic frameworks. Angew Chem Int Ed. 2023;62(23):e202301234. (b) Huang X, Cao F, Zhan S, et al. Solvent racing crystallization: low-solvation dispersion cosolvents for high-quality halide perovskites in photovoltaics. Joule. 2023;7(7):1556-1573. (c) He J, Li D, Liu H, et al. Single-crystal seeds inducing the crystallization of high-performance α-FAPbI3 for efficient perovskite solar cells. Adv Energy Mater. 2023;13(23):2300451.
|
[54] |
(a) Shi P, Ding Y, Ding B, et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature. 2023;620(7973):323-327. (b) Xue J, Wang R, Wang KL, Wang ZK, Yang Y. Crystalline liquid-like behavior: surface-induced secondary grain growth of photovoltaic perovskite thin film. J Am Chem Soc. 2019;141(35):13948-13953. (c) Telschow O, Scheffczyk N, Hinderhofer A, et al. Elucidating structure formation in highly oriented triple cation perovskite films. Adv Sci. 2023;10(17):2206325. (d) Zhou Q, Qiu J, Zhuang R, et al. Ionic liquid-induced multisite synergistic interactions for highly efficient inverted perovskite solar cells. ACS Appl Mater Interfaces. 2023;15(34):40676-40686.
|
[55] |
(a) Zhao Y, Zhu P, Wang M, et al. A Polymerization-assisted grain growth strategy for efficient and stable perovskite solar cells. Adv Mater. 2020;32(17):1907769. (b) Zuo L, Guo H, Dequilettes DW, et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci Adv. 2017;3(8):e1700106. (c) Luo C, Zheng G, Gao F, et al. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat Photonics. 2023;17(10):856-864. (d) Li F, Deng X, Shi Z, et al. Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat Photonics. 2023;17(6):478-484.
|
[56] |
Bi D, Yi C, Luo J, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat Energy. 2016;1(10):16142.
|
[57] |
Li N, Niu X, Li L, et al. Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science. 2021;373(6554):561-567.
|
[58] |
Park J, Kim J, Yun H-S, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature. 2023;616(7958):724-730.
|
[59] |
Bu T, Li J, Li H, Tian C, Huang F. Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science. 2021;372(6548):1327-1332.
|
[60] |
Zhang Z, Qiao L, Meng K, Long R, Chen G, Gao P. Rationalization of passivation strategies toward high-performance perovskite solar cells. Chem Soc Rev. 2023;52(1):163-195.
|
[61] |
Mei A, Sheng Y, Ming Y, et al. Stabilizing perovskite solar cells to IEC61215:2016 standards with over 9,000-h operational tracking. Joule. 2020;4(12):2646-2660.
|
[62] |
Zhang Y, Wang Y, Zhao L, et al. Depth-dependent defect manipulation in perovskites for high-performance solar cells. Energ Environ Sci. 2021;14(12):6526-6535.
|
[63] |
Gao F, Zhao Y, Zhang X, You J. Recent progresses on defect passivation toward efficient perovskite solar cells. Adv Energy Mater. 2019;10:1902650.
|
[64] |
(a) Ni Z, Bao C, Liu Y, et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science. 2020;367(6484):1352-1358. (b) Liu T, Gao F. Molecule additive design for perovskite light-emitting diodes operated at high current densities. Chem. 2023;9(8):2058-2059. (c) Chen J, Jia D, Zhuang R, Hua Y, Zhang X. Rejuvenating aged perovskite quantum dots for efficient solar cells. Adv Mater. 2023;2306854.
|
[65] |
Wang L, Zhou H, Hu J, et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science. 2019;363(6424):265-270.
|
[66] |
Chang Q, Wang F, Xu W, et al. Ferrocene-induced perpetual recovery on all elemental defects in perovskite solar cells. Angew Chem Int Ed. 2021;60(48):25567-25574.
|
[67] |
(a) Zhao L, Astridge DD, Gunnarsson WB, et al. Thermal properties of polymer hole-transport layers influence the efficiency roll-off and stability of perovskite light-emitting diodes. Nano Lett. 2023;23(11):4785-4792. (b) You S, Eickemeyer FT, Gao J, et al. Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells. Nat Energy. 2023;8(5):515-525. (c) Yang D, Zhang X, Hou Y, et al. 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell. Nano Energy. 2021;84:105934. (d) Zhou Q, Qiu J, Zhuang R, Mei X, Hua Y, Zhang X. Understanding the dopant of hole-transport polymers for efficient inverted perovskite solar cells with high electroluminescence. J Mater Chem A. 2023;11(10):5199-5211.
|
[68] |
Jena AK, Ikegami M, Miyasaka T. Severe morphological deformation of Spiro-OMeTAD in (CH3NH3)PbI3 solar cells at high temperature. ACS Energy Lett. 2017;2(8):1760-1761.
|
[69] |
Kong J, Shin Y, Röhr JA, et al. CO2 doping of organic interlayers for perovskite solar cells. Nature. 2021;594(7861):51-56.
|
[70] |
Ji J, Liu X, Jiang H, et al. Two-stage ultraviolet degradation of perovskite solar cells induced by the oxygen vacancy-Ti4+ states. iScience. 2020;23(4):101013.
|
[71] |
Wu T, Ono LK, Yoshioka R, et al. Elimination of light-induced degradation at the nickel oxide-perovskite heterojunction by aprotic sulfonium layers towards long-term operationally stable inverted perovskite solar cells. Energ Environ Sci. 2022;15(11):4612-4624.
|
[72] |
(a) Jiang C, Zhou J, Li H, et al. Double layer composite electrode strategy for efficient perovskite solar cells with excellent reverse-bias stability. Nano-Micro Lett. 2022;15(1):12. (b) Du T, Qiu S, Zhou X, et al. Efficient, stable, and fully printed carbon-electrode perovskite solar cells enabled by hole-transporting bilayers. Joule. 1920;2023(8):7-1937. (c) Aydin E, Altinkaya C, Smirnov Y, et al. Sputtered transparent electrodes for optoelectronic devices: Induced damage and mitigation strategies. Matter. 2021;4(11):3549-3584.
|
[73] |
Domanski K, Correa-Baena J-P, Mine N, et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano. 2016;10(6):6306-6314.
|
[74] |
Mei A, Li X, Liu L, et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science. 2014;345(6194):295-298.
|
[75] |
Zhang C, Liang S, Liu W, et al. Ti1–graphene single-atom material for improved energy level alignment in perovskite solar cells. Nat Energy. 2021;6(12):1154-1163.
|
[76] |
Hadadian M, Smtt JH, Correa-Baena JP. The role of carbon-based materials in enhancing the stability of perovskite solar cells. Energ Environ Sci. 2020;13(5):1377-1407.
|
[77] |
(a) Chen P, Hu J, Yu M, et al. Refining perovskite heterojunctions for effective light-emitting solar cells. Adv Mater. 2023;35(3):2208178. (b) Krishna A, Zhang H, Zhou Z, et al. Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. Energ Environ Sci. 2021;14(10):5552-5562.
|
[78] |
(a) Gu H, Xia J, Liang C, Chen Y, Huang W, Xing G. Phase-pure two-dimensional layered perovskite thin films. Nat Rev Mater. 2023;8(8):533-551. (b) Jang Y-W, Lee S, Yeom KM, et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat Energy. 2021;6(1):63-71.
|
[79] |
Liu D, Luo D, Iqbal AN, et al. Strain analysis and engineering in halide perovskite photovoltaics. Nat Mater. 2021;20(10):1337-1346.
|
[80] |
Rolston N, Bush KA, Printz AD, et al. Engineering stress in perovskite solar cells to improve stability. Adv Energy Mater. 2018;8(29):1802139.
|
[81] |
Xue D-J, Hou Y, Liu S-C, et al. Regulating strain in perovskite thin films through charge-transport layers. Nat Commun. 2020;11(1):1514.
|
[82] |
Wu J, Cui Y, Yu B, et al. A simple way to simultaneously release the interface stress and realize the inner encapsulation for highly efficient and stable perovskite solar cells. Adv Funct Mater. 2019;29(49):1905336.
|
[83] |
Isikgor FH, Zhumagali S, Merino LVT, De Bastiani M, McCulloch I, De Wolf S. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat Rev Mater. 2023;8(2):89-108.
|
[84] |
(a) Zhang H, Chen Z, Qin M, et al. Multifunctional crosslinking-enabled strain-regulating crystallization for stable, efficient α-FAPbI3-based perovskite solar cells. Adv Mater. 2021;33(29):2008487. (b) Jiang X, Wang X, Wu X, et al. Strain regulation via pseudo halide-based ionic liquid toward efficient and stable α-FAPbI3 inverted perovskite solar cells. Adv Energy Mater. 2023;13(23):2300700. (c) Zhao J, Deng Y, Wei H, et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci Adv. 2017;3(11):eaao5616.
|
[85] |
Zhang S, Liu Z, Zhang W, et al. Barrier designs in perovskite solar cells for long-term stability. Adv. Energy Mater. 2020;10(35):2001610.
|
[86] |
Wu S, Chen R, Zhang S, et al. A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat Commun. 2019;10(1):1161.
|
[87] |
Peng W, Mao K, Cai F, et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science. 2023;379(6633):683-690.
|
[88] |
Dong Q, Zhu C, Chen M, et al. Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nat Commun. 2021;12(1):973.
|
[89] |
Dai Z, Yadavalli SK, Chen M, Abbaspourtamijani A, Qi Y, Padture NP. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science. 2021;372(6542):618-622.
|
[90] |
Dai Z, Li S, Liu X, et al. Dual-interface-reinforced flexible perovskite solar cells for enhanced performance and mechanical reliability. Adv Mater. 2022;34(47):2205301.
|
[91] |
Matteocci F, Cinà L, Lamanna E, et al. Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy. 2016;30:162-172.
|
[92] |
Wang T, Yang J, Cao Q, et al. Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells. Nat Commun. 2023;14(1):1342.
|
[93] |
Galagan Y. Stability of perovskite PV modules. J Phys Energy. 2020;2(2):021004.
|
[94] |
(a) Li Z, Ma T, Yang H, Lu L, Wang R. Transparent and colored solar photovoltaics for building integration. Solar RRL. 2021;5(3):2000614. (b) Liu S, Du Y, Zhang R, et al. Perovskite smart windows: the light manipulator in energy-efficient buildings. Adv Mater. 2023;2306423. (c) Tu Y, Wu J, Xu G, et al. Perovskite solar cells for space applications: progress and challenges. Adv Mater. 2021;33(21):2006545. (d) Reb LK, Böhmer M, Predeschly B, et al. Perovskite and organic solar cells on a rocket flight. Joule. 1880;2020(9):4-1892. (e) Xue T, Huang Z, Zhang P, et al. A shape memory scaffold for body temperature self-repairing wearable perovskite solar cells with efficiency exceeding 21%. InfoMat. 2022;4(12):e12358.
|
[95] |
Cardinaletti I, Vangerven T, Nagels S, et al. Organic and perovskite solar cells for space applications. Sol Energy Mater Sol Cell. 2018;182:121-127.
|
[96] |
Kaltenbrunner M, Adam G, Głowacki ED, et al. Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat Mater. 2015;14(10):1032-1039.
|
[97] |
Xia Y, Liang X, Jiang Y, et al. High-efficiency and reliable smart photovoltaic windows enabled by multiresponsive liquid crystal composite films and semi-transparent perovskite solar cells. Adv Energy Mater. 2019;9(33):1900720.
|
[98] |
Sun J, Li Y, Sun J, Zhu Z, Zhai Y, Dong S. Reversible self-powered fluorescent electrochromic windows driven by perovskite solar cells. Chem Commun. 2019;55(80):12060-12063.
|
[99] |
(a) Wojciechowski K, Forgács D. Commercial applications of indoor photovoltaics based on flexible perovskite solar cells. ACS Energy Lett. 2022;7(10):3729-3733. (b) Mathews I, Kantareddy SNR, Sun S, et al. Self-powered sensors enabled by wide-bandgap perovskite indoor photovoltaic cells. Adv Funct Mater. 2019;29(42):1904072.
|
[100] |
(a) Hu X, Huang Z, Zhou X, et al. Wearable large-scale perovskite solar-power source via nanocellular scaffold. Adv Mater. 2017;29(42):1703236. (b) Hu X, Li F, Song Y. Wearable power source: a newfangled feasibility for perovskite photovoltaics. ACS Energy Lett. 2019;4(5):1065-1072.
|
[101] |
Min J, Demchyshyn S, Sempionatto JR, et al. An autonomous wearable biosensor powered by a perovskite solar cell. Nat Electron. 2023;6(8):630-641.
|
[102] |
(a) Hu X, Huang Z, Li F, et al. Nacre-inspired crystallization and elastic “brick-and-mortar” structure for a wearable perovskite solar module. Energ Environ Sci. 2019;12(3):979-987. (b) Meng X, Cai Z, Zhang Y, et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat Commun. 2020;11(1):3016.
|
[103] |
(a) Huang Z, Li L, Wu T, et al. Wearable perovskite solar cells by aligned liquid crystal elastomers. Nat Commun. 2023;14(1):1204. (b) Wu D, Cui Z, Xue T, et al. Self-encapsulated wearable perovskite photovoltaics via lamination process and its biomedical application. iScience. 2023;26(7):107248.
|
[104] |
(a) Wang Z, Zeng L, Zhu T, et al. Suppressed phase segregation for triple-junction perovskite solar cells. Nature. 2023;618(7963):74-79. (b) Wei H, Chen S, Zhao J, Yu Z, Huang J. Is formamidinium always more stable than methylammonium? Chem Mater. 2020;32(6):2501-2507. (c) Hidalgo J, An Y, Yehorova D, et al. Solvent and a-site cation control preferred crystallographic orientation in bromine-based perovskite thin films. Chem Mater. 2023;35(11):4181-4191.
|
[105] |
(a) Singh P, Soffer Y, Ceratti DR, et al. A-site cation dependence of self-ealing in polycrystalline APbI3 perovskite films. ACS Energy Lett. 2023;8(5):2447-2455. (b) Duan L, Walter D, Chang N, et al. Stability challenges for the commercialization of perovskite-silicon tandem solar cells. Nat. Rev. Mater. 2023;8(4):261-281. (c) Chu Q-Q, Sun Z, Hah J, et al. Progress, challenges, and further trends of all perovskites tandem solar cells: A comprehensive review. Mater Today. 2023;67:399-423.
|
[106] |
(a) Zheng X, Li Z, Zhang Y, et al. Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat Energy. 2023;8(5):462-472. (b) Ye S, Rao H, Feng M, et al. Expanding the lowdimensional interface engineering toolbox for efficient perovskite solar cells. Nat Energy. 2023;8(3):284-293.
|
[107] |
(a) Witt C, Schötz K, Kuhn M, et al. Orientation and grain size in MAPbI3 thin films: influence on phase transition, disorder, and defects. J Phys Chem C. 2023;127(22):10563-10573. (b) Zhi R, Yang C-Q, Rothmann MU, et al. Direct observation of intragrain defect elimination in FAPbI3 perovskite solar cells by two-dimensional PEA2PbI4. ACS Energy Lett. 2023;8(6):2620-2629. (c) Zhou Y, Herz LM, Jen AKY, Saliba M. Advances and challenges in understanding the microscopic structure-property-performance relationship in perovskite solar cells. Nat Energy. 2022;7(9):794-807. (d) Zuo W, Byranvand MM, Kodalle T, et al. Coordination chemistry as a universal strategy for a controlled perovskite crystallization. Adv Mater. 2023;35:2302889. (e) Gratia P, Zimmermann I, Schouwink P, et al. The many faces of mixed ion perovskites: unraveling and understanding the crystallization process. ACS Energy Lett. 2017;2(12):2686-2693.
|
[108] |
(a) Ye C, McHugh LN, Chen C, Dutton SE, Bennett TD. Glass formation in hybrid organic-inorganic perovskites. Angew Chem Int Ed. 2023;62(28):e202302406. (b) Zhao L, Tang P, Luo D, et al. Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids. Sci Adv. 2022;8(35):eabo3733. (c) Li M, Sun R, Chang J, et al. Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat Commun. 2023;14(1):573. (d) Zhang C, Li H, Gong C, Zhuang Q, Chen J, Zang Z. Crystallization manipulation and holistic defect passivation toward stable and efficient inverted perovskite solar cells. Energ Environ Sci. 2023;16(9):3825-3836.
|
[109] |
(a) Steele JA, Solano E, Hardy D, et al. How to GIWAXS: grazing incidence wide angle x-ray scattering applied to metal halide perovskite thin films. Adv. Energy Mater. 2023;13(27):2300760. (b) Duan T, Wang W, Cai S, Zhou Y. On-chip light-incorporatedin situtransmission electron microscopy of metal halide perovskite materials. ACS Energy Lett. 2023;8(7):3048-3053. (c) Zhang Y, Zhou Y. Machine vision for interpreting perovskite grain characteristics. Acc Mater Res. 2023;4(3):209-211. (d) Li N, Pratap S, Körstgens V, et al. Mapping structure heterogeneities and visualizing moisture degradation of perovskite films with nano-focus WAXS. Nat Commun. 2022;13(1):6701. (e) Chen S, Xiao X, Chen B, et al. Crystallization in one-step solution deposition of perovskite films: upward or downward? Sci Adv. 2021;7:eabb2412.
|
[110] |
(a) Gao F, Zhao Q. Facet engineering: a promising pathway toward highly efficient and stable perovskite photovoltaics. J Phys Chem Lett. 2023;14(19):4409-4418. (b) Ma C, Eickemeyer FT, Lee S-H, et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science. 2023;379(6628):173-178. (c) Chen J, Jia D, Zhuang R, Hua Y, Zhang X. Highly orientated perovskite quantum dot solids for efficient solar cells. Adv Mater. 2022;34(37):2204259.
|
[111] |
(a) Chen B, Rudd PN, Yang S, Yuan Y, Huang J. Imperfections and their passivation in halide perovskite solar cells. Chem Soc Rev. 2019;48(14):3842-3867. (b) Jia D, Chen J, Mei X, et al. Surface matrix curing of inorganic CsPbI3 perovskite quantum dots for solar cells with efficiency over 16%. Energ Environ Sci. 2021;14(8):4599-4609.
|
[112] |
(a) Dong J, Yan S, Chen H, et al. Approaching full-scale passivation in perovskite solar cells via valent-variable carbazole cations. ACS Energy Lett. 2023;8(6):2772-2780. (b) Chen S, Liu Y, Xiao X, et al. Identifying the soft nature of defective perovskite surface layer and its removal using a facile mechanical approach. Joule. 2020;4(12):2661-2674.
|
[113] |
(a) Qin J, Chen Y, Guo X, et al. A polymer strategy toward high-performance multifunctional perovskite optoelectronics: from polymer matrix to device applications. Adv Opt Mater. 2023;11(7):2202809. (b) Wang Z, Tian Q, Zhang H, et al. Managing multiple halide-related defects for efficient and stable inorganic perovskite solar cells. Angew Chem Int Ed. 2023;62: e202305815. (c) Zheng Y, Fang Z, Shang M, Sun Q, Hou X, Yang W. Are formation and adsorption energies enough to evaluate the stability of surface-passivated tin-based halide perovskites? Mater Horiz. 2023;10(7):2691-2697. (d) Shen L, Song P, Zheng L, et al. Ion-diffusion management enables allinterface defect passivation of perovskite solar cells. Adv Mater. 2023;35(39):2301624.
|
[114] |
(a) Srivastava S, Ranjan S, Yadav L, et al. Advanced spectroscopic techniques for characterizing defects in perovskite solar cells. Commun Mater. 2023;4(1):52. (b) Yang W, Ding B, Lin Z, et al. Visualizing interfacial energy offset and defects in efficient 2D/3D heterojunction perovskite solar cells and modules. Adv Mater. 2023;35(35):2302071.
|
[115] |
(a) Xu Z, Astridge DD, Kerner RA, et al. Origins of photoluminescence instabilities at halide perovskite/organic hole transport layer interfaces. J Am Chem Soc. 2023;145(21):11846-11858. (b) Wang F, Li M, Tian Q, et al. Monolithically-grained perovskite solar cell with mortise-tenon structure for charge extraction balance. Nat Commun. 2023;14(1):3216.
|
[116] |
(a) Ma Y, Gong J, Zeng P, Liu M. Recent progress in interfacial dipole engineering for perovskite solar cells. Nano-Micro Lett. 2023;15(1):173. (b) Kim S-G, Zhu K. Chemical design of organic interface modifiers for highly efficient and stable perovskite solar cells. Adv Energy Mater. 2023;13(25):2300603. (c) Wang M, Fei C, Uddin MA, Huang J. Influence of voids on the thermal and light stability of perovskite solar cells. Sci Adv. 2022;8:eabo5977.
|
[117] |
(a) Kirmani AR, Ostrowski DP, VanSant KT, et al. Metal oxide barrier layers for terrestrial and space perovskite photovoltaics. Nat Energy. 2023;8(2):191-202. (b) Li T, Mao K, Meng H, et al. Understanding the interfacial reactions and band alignment for efficient and stable perovskite solar cells built on metal substrates with reduced upscaling losses. Adv Mater. 2023;35(28):2211959.
|
[118] |
(a) Lei Y, Chen Y, Xu S. Single-crystal halide perovskites: opportunities and challenges. Matter. 2021;4(7):2266-2308. (b) Song Y, Bi W, Wang A, Liu X, Kang Y, Dong Q. Efficient lateral-structure perovskite single crystal solar cells with high operational stability. Nat Commun. 2020;11(1):274. (c) Sun Q, Ge B, Xiao B, et al. Adv Sci. 2023;10:2302236. (d) Chen S, Deng Y, Gu H, et al. Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins. Nat Energy. 2020;5(12):1003-1011. (e) Chen S, Deng Y, Xiao X, Xu S, Rudd PN, Huang J. Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells. Nat Sustain. 2021;4(7):636-643.
|
[119] |
(a) Li R, Li B, Fang X, et al. Self-structural healing of encapsulated perovskite microcrystals for improved optical and thermal stability. Adv Mater. 2021;33(21):2100466. (b) Cheacharoen R, Boyd CC, Burkhard GF, et al. Encapsulating perovskite solar cells to withstand damp heat and thermal cycling. Sustain Energy Fuels. 2018;2(11):2398-2406.
|
[120] |
Yang M, Tian T, Fang Y, et al. Reducing lead toxicity of perovskite solar cells with a built-in supramolecular complex. Nat Sustain. 2023;6(11):1445-1464.
|
[121] |
(a) Emery Q, Remec M, Paramasivam G, et al. Encapsulation and outdoor testing of perovskite solar cells: comparing industrially relevant process with a simplified lab procedure. Mater Interfaces. 2022;14(4):5159-5167. (b) Awais M, Thrithamarassery Gangadharan D, Tan F, Saidaminov MI. How to make 20% efficient perovskite solar cells in ambient air and encapsulate them for 500 h of operational stability. Chem Mater. 2022;34(18):8112-8118. (c) Li D, Zhang D, Lim K-S, et al. A review on scaling up perovskite solar cells. Adv Funct Mater. 2021;31(12):2008621.
|
[122] |
(a) Jiao H, Ni Z, Shi Z, et al. Perovskite grain wrapping by converting interfaces and grain boundaries into robust and water-insoluble low-dimensional perovskites. Sci Adv. 2022;8(48):eabq4524. (b) Shi Y, Zhang F. Advances in encapsulations for perovskite solar cells: from materials to applications. Sol RRL. 2023;7(7):2201123. (c) Raiford JA, Oyakhire ST, Bent SF. Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells. Energ Environ Sci. 1997;2020(7):13-2023.
|
/
〈 | 〉 |