Crystal reconstruction of V2O3/carbon heterointerfaces via anodic hydration for ultrafast and reversible Mg-ion battery cathodes
Gun Jang, Yun Sang Joe, Sang Joon Lee, Hyun Gyu Cho, Sang Ha Baek, Peixun Xiong, Kang Ho Shin, Jeong Seok Yeon, Min Su Kang, Si Hyoung Oh, Ho Seok Park
Crystal reconstruction of V2O3/carbon heterointerfaces via anodic hydration for ultrafast and reversible Mg-ion battery cathodes
Magnesium-ion batteries (MIBs) have promising applications because of their high theoretical capacity and the natural abundance of magnesium Mg. However, the kinetic performance and cyclic stability of cathode materials are limited by the strong interactions between Mg ions and the crystal lattice. Here, we demonstrate the unique Mg2+-ion storage mechanism of a hierarchical accordion-like vanadium oxide/carbon heterointerface (V2O3@C), where the V2O3 crystalline structure is reconstructed into a MgV3O7∙H2O phase through an anodic hydration reaction upon first cycle, for the improved kinetic and cyclic performances. As verified by in situ/ex situ spectroscopic and electrochemical analyses, the fast charge transfer kinetics of the V2O3@C cathode were due to the crystal-reconstruction and chemically coupled heterointerface. The V2O3@C demonstrated an ultrahigh rate capacity of 130.4 mAh g−1 at 50 000 mA g−1 and 1000 cycles, achieving a Coulombic efficiency of 99.6%. The high capacity of 381.0 mA h g−1 can be attributed to the reversible Mg2+-ion intercalation mechanism observed in the MgV3O7∙H2O phase using a 0.3 M Mg(TFSI)2/ACN(H2O) electrolyte. Additionally, within the voltage range of 2.25 V versus Mg/Mg2+, the V2O3@C exhibited a capacity of 245.1 mAh g−1 when evaluated with magnesium metal in a 0.3 M Mg(TFSI)2 + 0.25 M MgCl2/DME electrolyte. These research findings have important implications for understanding the relationship between the Mg-ion storage mechanism and reconstructed crystal phase of vanadium oxides as well as the heterointerface reconstruction for the rational design of MIB cathode materials.
anodic hydration reaction / magnesium ion battery / nano crystal / vanadium oxide
[1] |
Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167-1176.
|
[2] |
Liang Y, Dong H, Aurbach D, Yao Y. Current status and future directions of multivalent metal-ion batteries. Nat Energy. 2020;5(9):646-656.
|
[3] |
Huie MM, Bock DC, Takeuchi ES, Marschilok AC, Takeuchi KJ. Cathode materials for magnesium and magnesium-ion based batteries. Coord Chem Rev. 2015;287(2):15-27.
|
[4] |
Canepa P, Sai Gautam G, Hannah DC, et al. Odyssey of multivalent cathode materials: open questions and future challenges. Chem Rev. 2017;117(5):4287-4341.
|
[5] |
Wu X, Dou Y, Lian R, Wang Y, Wei Y. Understanding rechargeable magnesium ion batteries via first-principles computations: a comprehensive review. Energy Storage Mater. 2022;48(7):344-355.
|
[6] |
Ling C, Suto K. Thermodynamic origin of irreversible magnesium trapping in Chevrel phase Mo6S8: importance of magnesium and vacancy ordering. Chem Mater. 2017;29(8):3731-3739.
|
[7] |
Levi M, Lancri E, Levi E, Gizbar H, Gofer Y, Aurbach D. The effect of the anionic framework of MoX Chevrel phase (X=S, Se) on the thermodynamics and the kinetics of the electrochemical insertion of Mg ions. Solid State Ion. 2005;176(19-22):1695-1699.
|
[8] |
Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energ Environ Sci. 2014;7(5):7.
|
[9] |
Carrasco J. Role of van der Waals forces in thermodynamics and kinetics of layered transition metal oxide electrodes: alkali and alkaline-earth ion insertion into V2O5. J Phys Chem C. 2014;118(34):19599-19607.
|
[10] |
Xu Y, Deng X, Li Q, et al. Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries. Chem. 2019;5(5):1194-1209.
|
[11] |
Yang C, Pu Z, Jiang Z, et al. H2O-boosted Mgproton collaborated energy storage for rechargeable Mg-metal batteries. Adv Energy Mater. 2022;12(34):12.
|
[12] |
Xue X, Chen R, Yan C, et al. One-step synthesis of 2-ethylhexylamine pillared vanadium disulfide nanoflowers with ultralarge interlayer spacing for high-performance magnesium storage. Adv Energy Mater. 2019;9(22):9.
|
[13] |
Yoo HD, Liang Y, Dong H, et al. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nat Commun. 2017;8(1):339.
|
[14] |
Son SB, Gao T, Harvey SP, et al. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat Chem. 2018;10(5):532-539.
|
[15] |
Nam KW, Kim S, Lee S, et al. The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 2015;15(6):4071-4079.
|
[16] |
Zuo C, Xiao Y, Pan X, et al. Organic-inorganic superlattices of vanadium oxide@polyaniline for high-performance magnesium-ion batteries. ChemSusChem. 2021;14(9):2093-2099.
|
[17] |
Zhou L, Liu Q, Zhang Z, et al. Interlayer-spacing-regulated VOPO4 nanosheets with fast kinetics for high-capacity and durable rechargeable magnesium batteries. Adv Mater. 2018;30(32):e1801984.
|
[18] |
Yang J, Li J, Gong W, Geng F. Genuine divalent magnesium-ion storage and fast diffusion kinetics in metal oxides at room temperature. Proc Natl Acad Sci U S A. 2021;118(38):118.
|
[19] |
Song Y, Song X, Wang X, et al. Two-dimensional metal-organic framework superstructures from ice-templated self-assembly. J Am Chem Soc. 2022;144(38):17457-17467.
|
[20] |
Li J, Xia W, Tang J, et al. Metal-organic framework-derived graphene mesh: a robust scaffold for highly exposed Fe–N4 active sites toward an excellent oxygen reduction catalyst in acid media. J Am Chem Soc. 2022;144(21):9280-9291.
|
[21] |
Bediako DK, Rezaee M, Yoo H, et al. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature. 2018;558(7710):425-429.
|
[22] |
Luo H, Wang B, Wu F, et al. Synergistic nanostructure and heterointerface design propelled ultra-efficient in-situ self-transformation of zinc-ion battery cathodes with favorable kinetics. Nano Energy. 2021;81(13):81.
|
[23] |
Cullity BD, Stock SR. Elements of X-ray Diffraction. Prentice-Hall; 2001.
|
[24] |
Deng P, Yang F, Wang Z, et al. Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate. Angew Chem Int Ed Engl. 2020;59(27):10807-10813.
|
[25] |
Kong L, Xie CC, Gu H, et al. Thermal instability induced oriented 2D pores for enhanced sodium storage. Small. 2018;14(21):e1800639.
|
[26] |
Butt FK, Cao C, Idrees F, Tahir M, Hussain R, Alshemary AZ. Fabrication of V2O5 super long nanobelts: optical, in situ electrical and field emission properties. New J Chem. 2015;39(7):5197-5202.
|
[27] |
Liu K, Lu F, Li K, Xu Y, Ma C. Synthesis of turbostratic graphene by direct carbon ions implantation on LiNbO3. Appl Surf Sci. 2019;493(119):1255-1259.
|
[28] |
Fujimoto H. Theoretical x-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures. Carbon. 2003;41(8):1585-1592.
|
[29] |
Kim M, Xin R, Earnshaw J, et al. MOF-derived nanoporous carbons with diverse tunable nanoarchitectures. Nat Protoc. 2022;17(12):2990-3027.
|
[30] |
Li G, Yang Z, Jiang Y, et al. Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy. 2016;25(24):211-217.
|
[31] |
Tan YH, Yao WT, Zhang T, et al. High voltage magnesium-ion battery enabled by nanocluster Mg3Bi2 alloy anode in noncorrosive electrolyte. ACS Nano. 2018;12(6):5856-5865.
|
[32] |
Sun R, Ji X, Luo C, et al. Water-pillared sodium vanadium bronze nanowires for enhanced rechargeable magnesium ion storage. Small. 2020;16(30):e2000741.
|
[33] |
Sai Gautam G, Canepa P, Richards WD, Malik R, Ceder G. Role of structural H2O in intercalation electrodes: the case of Mg in nanocrystalline xerogel-V2O5. Nano Lett. 2016;16(4):2426-2431.
|
[34] |
Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12(6):518-522.
|
[35] |
Lau J, DeBlock RH, Butts DM, Ashby DS, Choi CS, Dunn BS. Sulfide solid electrolytes for lithium battery applications. Adv Energy Mater. 2018;8(27):8.
|
[36] |
Shin KH, Park SK, Nakhanivej P, et al. Biomimetic composite architecture achieves ultrahgh rate capability and cycling life of sodium ion battery cathodes. Appl Phys Rev. 2020;7(4):041410.
|
[37] |
Rastgoo-Deylami M, Chae MS, Hong S-T. H2V3O8 as a high energy cathode material for nonaqueous magnesium-ion batteries. Chem Mater. 2018;30(21):7464-7472.
|
[38] |
Liu C, Xu W, Mei C, Li M-C, Xu X, Wu Q. Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan. Chem Eng J. 2021;405(191):405.
|
[39] |
Tang H, Xu N, Pei C, et al. H2V3O8 nanowires as high-capacity cathode materials for magnesium-based battery. ACS Appl Mater Interfaces. 2017;9(34):28667-28673.
|
[40] |
Boyd S, Ganeshan K, Tsai WY, et al. Effects of interlayer confinement and hydration on capacitive charge storage in birnessite. Nat Mater. 2021;20(12):1689-1694.
|
[41] |
Ming F, Liang H, Lei Y, Kandambeth S, Eddaoudi M, Alshareef HN. Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett. 2018;3(10):2602-2609.
|
[42] |
Yu Z, Juran TR, Liu X, et al. Solvation structure and dynamics of Mg(TFSI)2 aqueous electrolyte. Energy Environ Mater. 2021;5(1):295-304.
|
[43] |
Ju B, Song HJ, Yoon H, Kim D-W. Amorphous hydrated vanadium oxide with enlarged interlayer spacing for aqueous zinc-ion batteries. Chem Eng J. 2021;420(30):420.
|
[44] |
Lim Y-G, Kim D, Lim J-M, et al. Anti-fluorite Li6CoO4 as an alternative lithium source for lithium ion capacitors: an experimental and first principles study. J Mater Chem A. 2015;3(23):12377-12385.
|
/
〈 | 〉 |