Recent advances and opportunities in MXene-based liquid crystals

Ken Aldren S. Usman, Jizhen Zhang, Kevinilo P. Marquez, Mia Angela N. Judicpa, Peter A. Lynch, Annabelle Bedford, Babak Anasori, Joselito M. Razal

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (3) : e12516. DOI: 10.1002/inf2.12516
REVIEW ARTICLE

Recent advances and opportunities in MXene-based liquid crystals

Author information +
History +

Abstract

The recent progress on the liquid crystalline (LC) dispersion of two-dimensional (2D) transition metal carbides (MXenes) has propelled this unique nanomaterial into a realm of high-performance architectures, such as films and fibers. Additionally, compared to architectures made from typical non-LC dispersions, those derived from LC MXene possess tunable ion transport routes and enhanced conductivity and physical properties, demonstrating great potential for a wide range of applications, such as electronic displays, smart glasses, and thermal camouflage devices. This review provides an overview of the progress achieved in the production and processing of LC MXenes, including critical discussions on satisfying the required conditions for LC formation. It also highlights how acquiring LC MXenes has broadened the current solution-based manufacturing paradigm of MXene-based architectures, resulting in unprecedented performances in their conventional applications (e.g., energy storage and strain sensing) and in their emerging uses (e.g., tribology). Opportunities for innovation and foreseen challenges are also discussed, offering future research directions on how to further benefit from the exciting potential of LC MXenes with the aim of promoting their widespread use in designing and manufacturing advanced materials and applications.

Keywords

liquid crystals / multi-functional materials / MXenes / solution-based processing

Cite this article

Download citation ▾
Ken Aldren S. Usman, Jizhen Zhang, Kevinilo P. Marquez, Mia Angela N. Judicpa, Peter A. Lynch, Annabelle Bedford, Babak Anasori, Joselito M. Razal. Recent advances and opportunities in MXene-based liquid crystals. InfoMat, 2024, 6(3): e12516 https://doi.org/10.1002/inf2.12516

References

[1]
Ravnik M, Alexander GP, Yeomans JM, Žumer S. Three-dimensional colloidal crystals in liquid crystalline blue phases. Proc Natl Acad Sci U S A. 2011;108(13):5188-5192.
[2]
Nakayama M, Kajiyama S, Kumamoto A, et al. Stimuli-responsive hydroxyapatite liquid crystal with macroscopically controllable ordering and magneto-optical functions. Nat Commun. 2018;9(1):568.
[3]
Shen T-Z, Hong S-H, Song J-K. Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient. Nat Mater. 2014;13(4):394-399.
[4]
He L, Ye J, Shuai M, et al. Graphene oxide liquid crystals for reflective displays without polarizing optics. Nanoscale. 2015;7(5):1616-1622.
[5]
Xin G, Yao T, Sun H, et al. Highly thermally conductive and mechanically strong graphene fibers. Science. 2015;349(6252):1083-1087.
[6]
Fang B, Peng L, Xu Z, Gao C. Wet-spinning of continuous montmorillonite-graphene fibers for fire-resistant lightweight conductors. ACS Nano. 2015;9(5):5214-5222.
[7]
Wang L, Bisoyi HK, Zheng Z, et al. Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene. Mater Today. 2017;20(5):230-237.
[8]
Wang H, Liu B, Wang L, et al. Graphene glass inducing multidomain orientations in cholesteric liquid crystal devices toward wide viewing angles. ACS Nano. 2018;12(7):6443-6451.
[9]
Bulkin BJ, Lok WB. Vibrational spectra of liquid crystals. V. Far-infrared study of intermolecular modes in 4,4′-azoxydianisole and 4-methoxybenzylidene-4′-butylaniline. J Phys Chem. 1973;77(3):326-330.
[10]
Aoki H, Coffin DR, Hancock TA, et al. Synthesis, characterization, rheological, and fiber formation studies of p-linked aromatic polyamides. J Polym Sci Polym Symp. 1978;65(1):29-40.
[11]
Chatzi EG, Koenig JL. Morphology and structure of Kevlar fibers: a review. Polym Plast Technol Mater. 1987;26(3-4):229-270.
[12]
Ikeda T, Miyamoto T, Kurihara S, Tsukada M, Tazuke S. Effect of structure of photoresponsive molecules on photochemical phase transition of liquid crystals I. Synthesis and thermotropic properties of photochromic azobenzene derivatives. Mol Cryst Liq Cryst Inc Nonlinear Opt Lett. 1990;182(1):357-371.
[13]
Yan J, Ota F, San Jose BA, Akagi K. Chiroptical resolution and thermal switching of chirality in conjugated polymer luminescence via selective reflection using a double-layered cell of chiral nematic liquid crystal. Adv Funct Mater. 2017;27(2):1604529.
[14]
Davis VA. Anisotropic nanomaterial liquid crystals: from fiber spinning to additive manufacturing. Langmuir. 2023;39(11):3829-3836.
[15]
Song W, Kinloch IA, Windle AH. Nematic liquid crystallinity of multiwall carbon nanotubes. Science. 2003;302(5649):1363.
[16]
Rai PK, Pinnick RA, Parra-Vasquez ANG, et al. Isotropic−nematic phase transition of single-walled carbon nanotubes in strong acids. J Am Chem Soc. 2006;128(2):591-595.
[17]
Davis VA, Parra-Vasquez ANG, Green MJ, et al. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol. 2009;4(12):830-834.
[18]
Hogan BT, Kovalska E, Zhukova MO, et al. 2D WS2 liquid crystals: tunable functionality enabling diverse applications. Nanoscale. 2019;11(36):16886-16895.
[19]
Jalili R, Aminorroaya-Yamini S, Benedetti TM, et al. Processable 2D materials beyond graphene: MoS2 liquid crystals and fibres. Nanoscale. 2016;8(38):16862-16867.
[20]
Blake P, Brimicombe PD, Nair RR, et al. Graphene-based liquid crystal device. Nano Lett. 2008;8(6):1704-1708.
[21]
Xu Z, Gao C. Aqueous liquid crystals of graphene oxide. ACS Nano. 2011;5(4):2908-2915.
[22]
Kim JE, Han TH, Lee SH, et al. Graphene oxide liquid crystals. Angew Chem Int Ed. 2011;50(13):3043-3047.
[23]
Naficy S, Jalili R, Aboutalebi SH, et al. Graphene oxide dispersions: tuning rheology to enable fabrication. Mater Horiz. 2014;1(3):326-331.
[24]
Dalton AB, Collins S, Munoz E, et al. Super-tough carbon-nanotube fibres. Nature. 2003;423(6941):703.
[25]
Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun. 2011;2(1):571.
[26]
Sun G, Zhang X, Lin R, Yang J, Zhang H, Chen P. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Angew Chem Int Ed. 2015;54(15):4651-4656.
[27]
Aboutalebi SH, Jalili R, Esrafilzadeh D, et al. High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles. ACS Nano. 2014;8(3):2456-2466.
[28]
Zhang J, Uzun S, Seyedin S, et al. Additive-free MXene liquid crystals and fibers. ACS Cent Sci. 2020;6(2):254-265.
[29]
Zhang J, Kong N, Uzun S, et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv Mater. 2020;32(23):2001093.
[30]
Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248-4253.
[31]
Naguib M, Come J, Dyatkin B, et al. MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem Commun. 2012;16(1):61-64.
[32]
Deysher G, Shuck CE, Hantanasirisakul K, et al. Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano. 2020;14(1):204-217.
[33]
Shayesteh Zeraati A, Mirkhani SA, Sun P, Naguib M, Braun PV, Sundararaj U. Improved synthesis of Ti3C2 TxMXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale. 2021;13(6):3572-3580.
[34]
Mathis TS, Maleski K, Goad A, et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano. 2021;15(4):6420-6429.
[35]
Yang C, Tang Y, Tian Y, et al. Flexible nitrogen-doped 2D titanium carbide (MXene) films constructed by an ex situ solvothermal method with extraordinary volumetric capacitance. Adv Energy Mater. 2018;8(31):1802087.
[36]
Qin S, Usman KAS, Hegh D, et al. Development and applications of MXene-based functional fibers. ACS Appl Mater Interfaces. 2021;13(31):36655-36669.
[37]
Maleski K, Mochalin VN, Gogotsi Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem Mater. 2017;29(4):1632-1640.
[38]
Hope MA, Forse AC, Griffith KJ, et al. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys Chem Chem Phys. 2016;18(7):5099-5102.
[39]
Magne D, Mauchamp V, Célérier S, Chartier P, Cabioc'h T. Spectroscopic evidence in the visible-ultraviolet energy range of surface functionalization sites in the multilayerTi3C2 MXene. Phys Rev B. 2015;91(20):201409.
[40]
Akuzum B, Maleski K, Anasori B, et al. Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS Nano. 2018;12(3):2685-2694.
[41]
Seyedin S, Zhang J, Usman KAS, et al. Facile solution processing of stable MXene dispersions towards conductive composite fibers. Glob Chall. 2019;3(10):1900037.
[42]
Zhang Q, Lai H, Fan R, Ji P, Fu X, Li H. High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano. 2021;15(3):5249-5262.
[43]
Ling Z, Ren CE, Zhao M-Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci U S A. 2014;111(47):16676-16681.
[44]
Bian R, He G, Zhi W, Xiang S, Wang T, Cai D. Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J Mater Chem C. 2019;7(3):474-478.
[45]
Behabtu N, Young CC, Tsentalovich DE, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science. 2013;339(6116):182-186.
[46]
Xu Z, Sun H, Zhao X, Gao C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater. 2013;25(2):188-193.
[47]
Jalili R, Aboutalebi SH, Esrafilzadeh D, et al. Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles. Adv Funct Mater. 2013;23(43):5345-5354.
[48]
Lee JT, Wyatt BC, Davis GA, et al. Covalent surface modification of Ti3C2Tx MXene with chemically active polymeric ligands producing highly conductive and ordered microstructure films. ACS Nano. 2021;15(12):19600-19612.
[49]
Seredych M, Shuck CE, Pinto D, et al. High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem Mater. 2019;31(9):3324-3332.
[50]
Usman KAS, Qin S, Henderson LC, Zhang J, Hegh DY, Razal JM. Ti3C2Tx MXene: from dispersions to multifunctional architectures for diverse applications. Mater Horiz. 2021;8(11):2886-2912.
[51]
Abdolhosseinzadeh S, Jiang X, Zhang H, Qiu J, Zhang CJ. Perspectives on solution processing of two-dimensional MXenes. Mater Today. 2021;48:214-240.
[52]
Rameshbabu K, Kannan P, Velu R, Ramamurthy P. Studies on thermotropic liquid crystalline polyphosphates containing photoreactive dual mesogens. Liq Cryst. 2005;32(7):823-832.
[53]
Trushkevych O, Collings N, Hasan T, et al. Characterization of carbon nanotube–thermotropic nematic liquid crystal composites. J Phys D. 2008;41(12):125106.
[54]
Pelzl G, Diele S, Weissflog W. Banana-shaped compounds—a new field of liquid crystals. Adv Mater. 1999;11(9):707-724.
[55]
Shen Y, Dierking I. Perspectives in liquid-crystal-aided nanotechnology and nanoscience. Appl Sci. 2019;9(12):2512.
[56]
Hamade F, Amit SK, Woods MB, Davis VA. The effects of size and shape dispersity on the phase behavior of nanomesogen lyotropic liquid crystals. Crystals. 2020;10(8):715.
[57]
Saha P, Davis VA, Appl ACS. Photonic properties and applications of cellulose nanocrystal films with planar anchoring. Nano Mater. 2018;1(5):2175-2183.
[58]
Paterson DA, Gao M, Kim Y-K, et al. Understanding the twist-bend nematic phase: the characterisation of 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl)hexane (CB6OCB) and comparison with CB7CB. Soft Matter. 2016;12(32):6827-6840.
[59]
Tamaoki N. Cholesteric liquid crystals for color information technology. Adv Mater. 2001;13(15):1135-1147.
[60]
van Doorn CZ. Dynamic behavior of twisted nematic liquid-crystal layers in switched fields. J Appl Phys. 1975;46(9):3738-3745.
[61]
Niori T, Sekine T, Watanabe J, Furukawa T, Takezoe H. Distinct ferroelectric smectic liquid crystals consisting of banana shaped achiral molecules. J Mater Chem. 1996;6(7):1231-1233.
[62]
Lagerwall JPF, Giesselmann F. Current topics in smectic liquid crystal research. ChemPhysChem. 2006;7(1):20-45.
[63]
Bushby RJ, Lozman OR. Photoconducting liquid crystals. Curr Opin Solid State Mater Sci. 2002;6(6):569-578.
[64]
Kikuchi H, Matsukizono H, Iwamatsu K, Endo S, Anan S, Okumura Y. Fluid layered ferroelectrics with global C∞vSymmetry. Adv Sci. 2022;9(26):2202048.
[65]
Kato T, Yasuda T, Kamikawa Y, Yoshio M. Self-assembly of functional columnar liquid crystals. ChemComm. 2009;(7):729-739.
[66]
Zhang J, Seyedin S, Gu Z, Salim N, Wang X, Razal JM. Liquid crystals of graphene oxide: a route towards solution-based processing and applications. Part Part Syst Charact. 2017;34(9):1600396.
[67]
Scharf T. Polarized Light in Liquid Crystals and Polymers. John Wiley & Sons; 2007.
[68]
Wang Y, Zheng Y, Zhao J, Li Y. Assembling free-standing and aligned tungstate/MXene fiber for flexible lithium and sodium-ion batteries with efficient pseudocapacitive energy storage. Energy Storage Mater. 2020;33:82-87.
[69]
Usman KAS, Yao Y, Bacal CJO, et al. Robust biocompatible fibers from silk fibroin coated MXene sheets. Adv Mater Interfaces. 2023;10(9):2201634.
[70]
Ko TY, Kim D, Kim SJ, et al. Universal ligands for dispersion of two-dimensional MXene in organic solvents. ACS Nano. 2023;17(2):1112-1119.
[71]
Seyedin S, Yanza ERS, Razal JM. Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. J Mater Chem A. 2017;5(46):24076-24082.
[72]
Usman KAS, Zhang J, Hegh DY, et al. Sequentially bridged Ti3C2Tx MXene sheets for high performance applications. Adv Mater Interfaces. 2021;8(7):2002043.
[73]
Wan S, Li X, Chen Y, et al. High-strength scalable MXene films through bridging-induced densification. Science. 2021;374(6563):96-99.
[74]
Xia Y, Mathis TS, Zhao M-Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature. 2018;557(7705):409-412.
[75]
Usman KAS, Zhang J, Bacal CJO, et al. Tension-induced toughening and conductivity enhancement in sequentially bridged MXene fibers. 2D Mater. 2022;9(4):044003.
[76]
Usman KAS, Zhang J, Qin S, et al. Inducing liquid crystallinity in dilute MXene dispersions for facile processing of multifunctional fibers. J Mater Chem A. 2022;10(9):4770-4781.
[77]
Eom W, Shin H, Ambade RB, et al. Large-scale wet-spinning of highly electroconductive MXene fibers. Nat Commun. 2020;11(1):2825.
[78]
Song C, Wang T, Sun X, Hu Y, Fan L, Guo R. Lubrication performance of MXene/Brij30/H2O composite lamellar liquid crystal system. Colloids Surf A Physicochem Eng Asp. 2022;641:128487.
[79]
Bisoyi HK, Kumar S. Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem Soc Rev. 2011;40(1):306-319.
[80]
Dieckmann GR, Dalton AB, Johnson PA, et al. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J Am Chem Soc. 2003;125(7):1770-1777.
[81]
Hegmann T, Qi H, Marx VM. Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications. J Inorg Organomet Polym Mater. 2007;17(3):483-508.
[82]
Zhang J, Seyedin S, Gu Z, Yang W, Wang X, Razal JM. MXene: a potential candidate for yarn supercapacitors. Nanoscale. 2017;9(47):18604-18608.
[83]
Orangi J, Hamade F, Davis VA, Beidaghi M. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano. 2020;14(1):640-650.
[84]
Shin H, Eom W, Lee KH, Jeong W, Kang DJ, Han TH. Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel. ACS Nano. 2021;15(2):3320-3329.
[85]
Carey M, Barsoum M. MXene polymer nanocomposites: a review. Mater Today Adv. 2021;9:100120.
[86]
Habib T, Zhao X, Shah SA, et al. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2D Mater Appl. 2019;3(1):8.
[87]
Cao F, Zhang Y, Wang H, et al. Recent advances in oxidation stable chemistry of 2D MXenes. Adv Mater. 2022;34(13):2107554.
[88]
Zhang CJ, Pinilla S, McEvoy N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater. 2017;29(11):4848-4856.
[89]
Ozipek B, Karakas H. In: Zhang D, ed. Advances in Filament Yarn Spinning of Textiles and Polymers. Woodhead Publishing; 2014:174-186.
[90]
Doppert HL, Harmsen GJ. The influence of the stretch ratio on the rate of diffusion in a wet-spinning process. J Appl Polym Sci. 1973;17(3):893-903.
[91]
Deopura BL, Padaki NV. In: Sinclair R, ed. Textiles and Fashion. Woodhead Publishing; 2015:97-114.
[92]
Liu H, Xu W, Zou H, Ke G, Li W, Ouyang C. Feasibility of wet spinning of silk-inspired polyurethane elastic biofiber. Mater Lett. 2008;62(12-13):1949-1952.
[93]
Wu T-M, Blackwell J. Comparison of the axial correlation lengths and paracrystalline distortion for Technora and Kevlar aromatic polyamide fibers. Macromolecules. 1996;29(17):5621-5627.
[94]
Chen X, Jiang J, Yang G, Li C, Li Y. Bioinspired wood-like coaxial fibers based on MXene@graphene oxide with superior mechanical and electrical properties. Nanoscale. 2020;12(41):21325-21333.
[95]
Yang Q, Xu Z, Fang B, et al. MXene/graphene hybrid fibers for high performance flexible supercapacitors. J Mater Chem A. 2017;5(42):22113-22119.
[96]
Ma H, Wang J, Wang J, Shang K, Yang Y, Fan Z. Blade-coated Ti3C2T MXene films for pseudocapacitive energy storage and infrared stealth. Diamond Relat Mater. 2023;131:109587.
[97]
Zhang X, Yang Y, Xue P, et al. Three-dimensional electrochromic soft photonic crystals based on MXene-integrated blue phase liquid crystals for bioinspired visible and infrared camouflage. Angew Chem Int Ed. 2022;134(42):e202211030.
[98]
Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater. 2017;29(18):7633-7644.
[99]
Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014;516(7529):78-81.
[100]
Seyedin S, Uzun S, Levitt A, et al. MXene composite and coaxial fibers with high Stretchability and conductivity for wearable strain sensing textiles. Adv Funct Mater. 2020;30(12):1910504.
[101]
Zheng Y, Wang Y, Zhao J, Li Y. Electrostatic interfacial cross-linking and structurally oriented fiber constructed by surface-modified 2D MXene for high-performance flexible pseudocapacitive storage. ACS Nano. 2023;17(3):2487-2496.
[102]
Li S, Fan Z, Wu G, et al. Assembly of nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation. ACS Nano. 2021;15(4):7821-7832.
[103]
Zhang F, Chen J, Wallace GG, Yang J. Engineering electrocatalytic fiber architectures. Prog Mater Sci. 2023;133:101069.
[104]
Zhang F, Chen J, Yang J. Fiber materials for electrocatalysis applications. Adv Fiber Mater. 2022;4(4):720-735.
[105]
Tao M-J, Cheng S-Q, Han X-L, et al. Alignment of MXene based membranes to enhance water purification. J Membr Sci. 2022;662:120965.
[106]
Shepelin NA, Sherrell PC, Skountzos EN, et al. Interfacial piezoelectric polarization locking in printable Ti3C2Tx MXene-fluoropolymer composites. Nat Commun. 2021;12(1):3171.
[107]
Bai S, Yang M, Jiang J, et al. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. npj 2D Mater Appl. 2021;5(1):78.
[108]
Shahzad F, Alhabeb M, Hatter CB, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science. 2016;353(6304):1137-1140.
[109]
Tian W, VahidMohammadi A, Reid MS, et al. Multifunctional nanocomposites with high strength and capacitance using 2D MXenes and 1D nanocellulose. Adv Mater. 2019;34(41):1902977.
[110]
Ahmed B, Ghazaly AE, Rosen J. i-MXenes for energy storage and catalysis. Adv Funct Mater. 2020;30(47):2000894.
[111]
Morales-García Á, Calle-Vallejo F, Illas F. MXenes: new horizons in catalysis. ACS Catal. 2020;10(22):13487-13503.
[112]
Li Z, Wu Y. 2D early transition metal carbides (MXenes) for catalysis. Small. 2019;15(29):1804736.
[113]
Ma Z, Zhou X, Deng W, Lei D, Liu Z. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl Mater Interfaces. 2018;10(4):3634-3643.
[114]
Sarycheva A, Polemi A, Liu Y, Dandekar K, Anasori B, Gogotsi Y. 2D titanium carbide (MXene) for wireless communication. Sci Adv. 2018;4(9):eaau0920.
[115]
Zhao Y, Yu Q, Cheng W-W, et al. Ti3C2Tx MXene liquid crystal: access to create background-free and easy-made alignment medium. ACS Nano. 2022;16(4):5454-5462.
[116]
Lee C, Park SM, Kim S, et al. Field-induced orientational switching produces vertically aligned Ti3C2Tx MXene nanosheets. Nat Commun. 2022;13(1):5615.
[117]
Rosenkranz A, Righi MC, Sumant AV, Anasori B, Mochalin VN. Perspectives of 2D MXene tribology. Adv Mater. 2023;35(5):2207757.
[118]
Gao L, Chen H, Kuklin AV, et al. Optical properties of few-layer Ti3CN MXene: from experimental observations to theoretical calculations. ACS Nano. 2022;16(2):3059-3069.
[119]
Echols IJ, An H, Yun J, et al. Electronic and optical property control of polycation/MXene layer-by-layer assemblies with chemically diverse MXenes. Langmuir. 2021;37(38):11338-11350.
[120]
Shekhirev M, Busa J, Shuck CE, et al. Ultralarge flakes of Ti3C2Tx MXene via Soft delamination. ACS Nano. 2022;16(9):13695-13703.
[121]
Michałowski PP, Anayee M, Mathis TS, et al. Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry. Nat Nanotechnol. 2022;17(11):1192-1197.
[122]
Thakur A, Chandran N, Davidson K, et al. Step-by-step guide for synthesis and delamination of Ti3C2Tx MXene. Small Methods. 2023;7(8):2300030.
[123]
Pomerantseva E, Gogotsi Y. Two-dimensional heterostructures for energy storage. Nat Energy. 2017;2(7):17089.
[124]
Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature. 2013;499(7459):419-425.
[125]
Chen WY, Jiang X, Lai S-N, Peroulis D, Stanciu L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat Commun. 2020;11(1):1302.
[126]
Hantanasirisakul K, Gogotsi Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv Mater. 2018;30(52):1804779.
[127]
Chen J, Li Z, Ni F, Ouyang W, Fang X. Bio-inspired transparent MXene electrodes for flexible UV photodetectors. Mater Horiz. 2020;7(7):1828-1833.
[128]
Chen J, Liu X, Li Z, Cao F, Lu X, Fang X. Work-function-tunable MXenes electrodes to optimize p-CsCu2I3/n-Ca2Nb3-xTaxO10Junction photodetectors for image sensing and logic electronics. Adv Funct Mater. 2022;32(24):2201066.
[129]
You HR, Lee S, Lee DH, et al. Organic solvent dispersible MXene integrated colloidal quantum dot photovoltaics. Adv Energy Mater. 2023;13(37):2301648.
[130]
Ali A, Hantanasirisakul K, Abdala A, et al. Effect of synthesis on performance of MXene/iron oxide anode material for lithium-ion batteries. Langmuir. 2018;34(38):11325-11334.
[131]
Hu Z, Xie Y, Yu D, et al. Hierarchical Ti3C2Tx MXene/carbon nanotubes for low overpotential and long-life Li–CO2 batteries. ACS Nano. 2021;15(5):8407-8417.
[132]
Tohver V, Braun PV, Pralle MU, Stupp SI. Counterion effects in liquid crystal templating of nanostructured CdS. Chem Mater. 1997;9(7):1495-1498.
[133]
Mirzaei J, Reznikov M, Hegmann T. Quantum dots as liquid crystal dopants. J Mater Chem A. 2012;22(42):22350-22365.
[134]
Zaki AA, Hagar M, Alnoman RB, Jaremko M, Emwas A-H, Ahmed HA. Mesomorphic, optical and DFT aspects of near to room-temperature calamitic liquid crystal. Crystals. 2020;10(11):1044.
[135]
Osipov MA. Molecular theory of solvent effect on cholesteric ordering in lyotropic polypeptide liquid crystals. Chem Phys. 1985;96(2):259-270.
[136]
Jalili R, Aboutalebi SH, Esrafilzadeh D, et al. Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures. ACS Nano. 2013;7(5):3981-3990.
[137]
Jalili R, Aboutalebi SH, Esrafilzadeh D, et al. Formation and processability of liquid crystalline dispersions of graphene oxide. Mater Horiz. 2014;1(1):87-91.
[138]
Zhang S, Kumar S. Carbon nanotubes as liquid crystals. Small. 2008;4(9):1270-1283.
[139]
Carey M, Hinton Z, Natu V, et al. Dispersion and stabilization of alkylated 2D MXene in nonpolar solvents and their pseudocapacitive behavior. Cell Rep Phys Sci. 2020;1(4):100042.
[140]
Paul JT, Singh AK, Dong Z, et al. Computational methods for 2D materials: discovery, property characterization, and application design. J Phys Condens Matter. 2017;29(47):473001.
[141]
Vertina EW, Deskins NA, Sutherland E, Mangoubi O. 21st IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE; 2022:1573-1578.
[142]
Wu T, Jiang D-E. Computational studies of MXenes. MRS Bull. 2023;48(3):253-260.

RIGHTS & PERMISSIONS

2024 2024 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/