Green hydrogen production by intermediate-temperature protonic solid oxide electrolysis cells: Advances, challenges, and perspectives

Chunmei Tang, Yao Yao, Ning Wang, Xiaohan Zhang, Fangyuan Zheng, Lei Du, Dongxiang Luo, Yoshitaka Aoki, Siyu Ye

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (3) : e12515. DOI: 10.1002/inf2.12515
REVIEW ARTICLE

Green hydrogen production by intermediate-temperature protonic solid oxide electrolysis cells: Advances, challenges, and perspectives

Author information +
History +

Abstract

Protonic solid oxide electrolysis cells (P-SOECs) operating at intermediate temperatures, which have low costs, low environmental impact, and high theoretical electrolysis efficiency, are considered promising next-generation energy conversion devices for green hydrogen production. However, the developments and applications of P-SOECs are restricted by numerous material- and interface-related issues, including carrier mismatch between the anode and electrolyte, current leakage in the electrolyte, poor interfacial contact, and chemical stability. Over the past few decades, considerable attempts have been made to address these issues by improving the properties of P-SOECs. This review comprehensively explores the recent advances in the mechanisms governing steam electrolysis in P-SOECs, optimization strategies, specially designed components, electrochemical performance, and durability. In particular, given that the lack of suitable anode materials has significantly impeded P-SOEC development, the relationships between the transferred carriers and the cell performance, reaction models, and surface decoration approaches are meticulously probed. Finally, the challenges hindering P-SOEC development are discussed and recommendations for future research directions, including theoretical calculations and simulations, structural modification approaches, and large-scale single-cell fabrication, are proposed to stimulate research on P-SOECs and thereby realize efficient electricity-to-hydrogen conversion.

Keywords

designed components / electrochemical performance / hydrogen production / key materials / protonic solid oxide electrolysis cells

Cite this article

Download citation ▾
Chunmei Tang, Yao Yao, Ning Wang, Xiaohan Zhang, Fangyuan Zheng, Lei Du, Dongxiang Luo, Yoshitaka Aoki, Siyu Ye. Green hydrogen production by intermediate-temperature protonic solid oxide electrolysis cells: Advances, challenges, and perspectives. InfoMat, 2024, 6(3): e12515 https://doi.org/10.1002/inf2.12515

References

[1]
Peter SC. Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS Energy Lett. 2018;3(7):1557-1561.
[2]
Abas N, Kalair A, Khan N. Review of fossil fuels and future energy technologies. Futures. 2015;69:31-49.
[3]
Ritchie H, Roser M, Rosado P. CO2 and greenhouse gas emissions. Our World in Data. Accessed August 2020. https://ourworldindata.org/co2-and-greenhouse-gas-emissions
[4]
Salvia M, Reckien D, Pietrapertosa F, et al. Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU. Renew Sustain Energy Rev. 2021;135:110253.
[5]
Zhao X, Ma X, Chen B, Shang Y, Song M. Challenges toward carbon neutrality in China: strategies and countermeasures. Resour Conserv Recycl. 2022;176:105959.
[6]
Dincer I. Renewable energy and sustainable development: a crucial review. Renew Sustain Energy Rev. 2000;4(2):157-175.
[7]
Gross R, Leach M, Bauen A. Progress in renewable energy. Environ Int. 2003;29(1):105-122.
[8]
Sayed ET, Wilberforce T, Elsaid K, et al. A critical review on environmental impacts of renewable energy systems and mitigation strategies: wind, hydro, biomass and geothermal. Sci Total Environ. 2021;766:144505.
[9]
Grim RG, Huang Z, Guarnieri MT, Ferrell JR, Tao L, Schaidle JA. Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization. Energy Environ Sci. 2020;13(2):472-494.
[10]
Zheng Y, Wang J, Yu B, et al. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chem Soc Rev. 2017;46(5):1427-1463.
[11]
Møller K, Sheppard D, Ravnsbæk D, et al. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage. Energies. 2017;10(10):1645.
[12]
Kapdan IK, Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb Technol. 2006;38(5):569-582.
[13]
Liu W, Cui Y, Du X, Zhang Z, Chao Z, Deng Y. High efficiency hydrogen evolution from native biomass electrolysis. Energy Environ Sci. 2016;9(2):467-472.
[14]
Dawood F, Anda M, Shafiullah GM. Hydrogen production for energy: an overview. Int J Hydrogen Energy. 2020;45(7):3847-3869.
[15]
Chi J, Yu H. Water electrolysis based on renewable energy for hydrogen production. Chin J Catal. 2018;39(3):390-394.
[16]
Tee SY, Win KY, Teo WS, et al. Recent progress in energy-driven water splitting. Adv Sci. 2017;4(5):1600337.
[17]
Li Q, Wang Y, Zeng J, et al. Phosphating-induced charge transfer on CoO/CoP interface for alkaline H2 evolution. Chin Chem Lett. 2021;32(11):3355-3358.
[18]
Liu Y, Feng Q, Liu W, et al. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy. 2021;81:105641.
[19]
Lei Y, Wang Y, Liu Y, et al. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew Chem Int Ed. 2020;59(47):20794-20812.
[20]
Sapountzi FM, Gracia JM, Weststrate CJ, Fredriksson HOA, Niemantsverdriet JW. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog Energy Combust Sci. 2017;58:1-35.
[21]
Kumar SS, Lim H. An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 2022;8:13793-13813.
[22]
Ivanova M, Peters R, Muller M, et al. Technological pathways to produce compressed and highly pure hydrogen from solar power. Angew Chem Int Ed. 2023;62(32):e202218850.
[23]
Wan L, Xu Z, Xu Q, et al. Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis. Energy Environ Sci. 2023;16(4):1384-1430.
[24]
Zeng K, Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci. 2010;36(3):307-326.
[25]
Miller HA, Bouzek K, Hnat J, et al. Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions. Sustain Energy Fuels. 2020;4(5):2114-2133.
[26]
Varcoe JR, Slade RCT. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells. 2004;5(2):187-200.
[27]
Du N, Roy C, Peach R, Turnbull M, Thiele S, Bock C. Anion-exchange membrane water electrolyzers. Chem Rev. 2022;122(13):11830-11895.
[28]
Wachsman ED, Lee KT. Lowering the temperature of solid oxide fuel cells. Science. 2011;334(6058):935-939.
[29]
Zhang Q, Liu Q-Y, Park B-K, Barnett S, Voorhees P. The oxygen partial pressure in solid oxide electrolysis cells with multilayer electrolytes. Acta Mater. 2021;213:116928.
[30]
Liu M, Yu B, Xu J, Chen J. Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production. J Power Sources. 2008;177(2):493-499.
[31]
Hauch A, Kungas R, Blennow P, et al. Recent advances in solid oxide cell technology for electrolysis. Science. 2020;370(6513):eaba6118.
[32]
Ebbesen SD, Jensen SH, Hauch A, Mogensen MB. High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. Chem Rev. 2014;114(21):10697-10734.
[33]
Buttler A, Spliethoff H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review. Renew Sustain Energy Rev. 2018;82:2440-2454.
[34]
National Institute of Standards and Technology. National Institute of Standards and Technology Chemistry WebBook, Standard Reference Database Number 69. 2023.
[35]
Yang L, Wang S, Blinn K, et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ. Science. 2009;326(5949):126-129.
[36]
Suzuki T, Hasan Z, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M. Impact of anode microstructure on solid oxide fuel cells. Science. 2009;325(5942):852-855.
[37]
Iwahara H, Esaka T, Uchida H, Maeda N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ion. 1981;3-4:359-363.
[38]
Babilo P, Haile SM. Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. J Am Ceram Soc. 2005;88(9):2362-2368.
[39]
Tong J, Clark D, Hoban M, O'Hayre R. Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics. Solid State Ion. 2010;181(11-12):496-503.
[40]
Le S, Zhang J, Zhu X, Zhai J, Sun K. Sintering and electrochemical performance of Y2O3-doped barium zirconate with Bi2O3 as sintering aids. J Power Sources. 2013;232:219-223.
[41]
He F, Song D, Peng R, Meng G, Yang S. Electrode performance and analysis of reversible solid oxide fuel cells with proton conducting electrolyte of BaCe0.5Zr0.3Y0.2O3−δ. J Power Sources. 2010;195(11):3359-3364.
[42]
Forrat F, Dauge G, Trevoux P, Danner G, Christen M. Electrolyte solide a base de AlLaO3 application aux piles à combustible. C R Acad Sci. 1964;259(17):2813-2816.
[43]
Fop S. Solid oxide proton conductors beyond perovskites. J Mater Chem A. 2021;9(35):18836-18856.
[44]
Kreuer K-D, Rabenau A, Weppner W. Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors. Angew Chem Int Ed. 1982;21(3):208-209.
[45]
Su H, Hu YH. Degradation issues and stabilization strategies of protonic ceramic electrolysis cells for steam electrolysis. Energy Sci Eng. 2021;10(5):1706-1725.
[46]
Wang N, Hinokuma S, Ina T, et al. Incorporation of bulk proton carriers in cubic perovskite manganite driven by interplays of oxygen and manganese redox. Chem Mater. 2019;31(20):8383-8393.
[47]
Geneste G. Proton transfer in barium zirconate: lattice reorganization, landau-zener curve-crossing approach. Solid State Ion. 2018;323:172-202.
[48]
Kim J, Sengodan S, Kim S, Kwon O, Bu Y, Kim G. Proton conducting oxides: a review of materials and applications for renewable energy conversion and storage. Renew Sustain Energy Rev. 2019;109:606-618.
[49]
Jing J, Pang J, Chen L, Zhang H, Lei Z, Yang Z. Structure, synthesis, properties and solid oxide electrolysis cells application of Ba(Ce, Zr)O3 based proton conducting materials. Chem Eng J. 2022;429:132314.
[50]
Azimova MA, McIntosh S. On the reversibility of anode supported proton conducting solid oxide cells. Solid State Ion. 2011;203(1):57-61.
[51]
Yoo Y, Lim N. Performance and stability of proton conducting solid oxide fuel cells based on yttrium-doped barium cerate-zirconate thin-film electrolyte. J Power Sources. 2013;229:48-57.
[52]
Tanner CW, Virkar AV. Instability of BaCeO3 in H2O-containing atmospheres. J Electrochem Soc. 1996;143(4):1386-1389.
[53]
Lyagaeva J, Danilov N, Vdovin G, et al. A new Dy-doped BaCeO3-BaZrO3 proton-conducting material as a promising electrolyte for reversible solid oxide fuel cells. J Mater Chem A. 2016;4(40):15390-15399.
[54]
Lei L, Tao Z, Wang X, Lemmon JP, Chen F. Intermediate-temperature solid oxide electrolysis cells with thin proton-conducting electrolyte and a robust air electrode. J Mater Chem A. 2017;5(44):22945-22951.
[55]
Huan D, Shi N, Zhang L, et al. New, efficient, and reliable air electrode material for proton-conducting reversible solid oxide cells. ACS Appl Mater Interfaces. 2018;10(2):1761-1770.
[56]
Yang S, Zhang S, Sun C, Ye X, Wen Z. Lattice incorporation of Cu2+ into the BaCe0.7Zr0.1Y0.1Yb0.1O3–δ electrolyte on boosting its sintering and proton-conducting abilities for reversible solid oxide cells. ACS Appl Mater Interfaces. 2018;10(49):42387-42396.
[57]
Kim J, Jun A, Gwon O, et al. Hybrid-solid oxide electrolysis cell: a new strategy for efficient hydrogen production. Nano Energy. 2018;44:121-126.
[58]
Wu W, Ding H, Zhang Y, et al. 3D self-architectured steam electrode enabled efficient and durable hydrogen production in a proton-conducting solid oxide electrolysis cell at temperatures lower than 600°C. Adv Sci. 2018;5(11):1800360.
[59]
Li W, Guan B, Ma L, Tian H, Liu X. Synergistic coupling of proton conductors BaZr0.1Ce0.7Y0.1Yb0.1O3–δ and La2Ce2O7 to create chemical stable, interface active electrolyte for steam electrolysis cells. ACS Appl Mater Interfaces. 2019;11(20):18323-18330.
[60]
Choi S, Davenport TC, Haile SM. Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency. Energy Environ Sci. 2019;12(1):206-215.
[61]
Duan C, Kee R, Zhu H, et al. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat Energy. 2019;4(3):230-240.
[62]
Vøllestad E, Strandbakke R, Tarach M, et al. Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. Nat Mater. 2019;18(7):752-759.
[63]
Murphy R, Zhou Y, Zhang L, et al. A new family of proton-conducting electrolytes for reversible solid oxide cells: BaHfxCe0.8−xY0.1Yb0.1O3−δ. Adv Funct Mater. 2020;30(35):2002265.
[64]
Ding H, Wu W, Jiang C, et al. Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. Nat Commun. 2020;11(1):1907.
[65]
Tang W, Ding H, Bian W, et al. Understanding of A-site deficiency in layered perovskites: promotion of dual reaction kinetics for water oxidation and oxygen reduction in protonic ceramic electrochemical cells. J Mater Chem A. 2020;8(29):14600-14608.
[66]
Rajendran S, Thangavel NK, Ding H, Ding Y, Ding D, Arava LMR. Tri-doped BaCeO3–BaZrO3 as a chemically stable electrolyte with high proton-conductivity for intermediate temperature solid oxide electrolysis cells (SOECs). ACS Appl Mater Interfaces. 2020;12(34):38275-38284.
[67]
Wang N, Toriumi H, Sato Y, et al. La0.8Sr0.2Co1–xNixO3–δ as the efficient triple conductor air electrode for protonic ceramic cells. ACS Appl Energy Mater. 2021;4(1):554-563.
[68]
Zhou Y, Liu E, Chen Y, et al. An active and robust air electrode for reversible protonic ceramic electrochemical cells. ACS Energy Lett. 2021;6(4):1511-1520.
[69]
Zhou Y, Zhang W, Kane N, et al. An efficient bifunctional air electrode for reversible protonic ceramic electrochemical cells. Adv Funct Mater. 2021;31(40):2105386.
[70]
Shin J-S, Park H, Park K, et al. Activity of layered swedenborgite structured Y0.8Er0.2BaCo3.2Ga0.8O7+δ for oxygen electrode reactions in at intermediate temperature reversible ceramic cells. J Mater Chem A. 2021;9(1):607-621.
[71]
Song Y, Liu J, Wang Y, et al. Nanocomposites: a new opportunity for developing highly active and durable bifunctional air electrodes for reversible protonic ceramic cells. Adv Energy Mater. 2021;11(36):2101899.
[72]
Wang W, Li Y, Liu Y, et al. Ruddlesden-popper-structured (Pr0.9La0.1)2(Ni0.8Cu0.2)O4+δ: an effective oxygen electrode material for proton-conducting solid oxide electrolysis cells. ACS Sustain Chem Eng. 2021;9(32):10913-10919.
[73]
Bian W, Wu W, Wang B, et al. Revitalizing interface in protonic ceramic cells by acid etch. Nature. 2022;604(7906):479-485.
[74]
Xue G, Li J, Wang H, Sun H, Guo X, Hu Q. (Pr0.9La0.1)1.9(Ni0.7Cu0.3)0.9Mn0.1O4+δ nanofiber cathode with Pr site cation defect prepared by electrospinning and its application in reversible fuel cells. J Power Sources. 2022;552:232220.
[75]
Liang M, Song Y, Liu D, et al. Magnesium tuned triple conductivity and bifunctionality of BaCo0.4Fe0.4Zr0.1Y0.1O3–δ perovskite towards reversible protonic ceramic electrochemical cells. Appl Catal B. 2022;318:121868.
[76]
Ren R, Sun J, Wang G, et al. Rational design of Sr2Fe1.5Mo0.4Y0.1O6–δ oxygen electrode with triple conduction for hydrogen production in protonic ceramic electrolysis cell. Sep Purif Technol. 2022;299:121780.
[77]
Liu Z, Cheng D, Zhu Y, et al. Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells. Chem Eng J. 2022;450:137787.
[78]
He F, Liu S, Wu T, et al. Catalytic self-assembled air electrode for highly active and durable reversible protonic ceramic electrochemical cells. Adv Funct Mater. 2022;32(48):2206756.
[79]
Xu K, Zhang H, Xu Y, et al. An efficient steam-induced heterostructured air electrode for protonic ceramic electrochemical cells. Adv Funct Mater. 2022;32(23):2110998.
[80]
Liu Z, Tang Z, Song Y, et al. High-entropy perovskite oxide: a new opportunity for developing highly active and durable air electrode for reversible protonic ceramic electrochemical cells. Nano-Micro Lett. 2022;14(1):217.
[81]
Pei K, Zhou Y, Xu K, et al. Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells. Nat Commun. 2022;13(1):2207.
[82]
Kim D, Bae KT, Kim KJ, et al. High-performance protonic ceramic electrochemical cells. ACS Energy Lett. 2022;7(7):2393-2400.
[83]
Luo Z, Zhou Y, Hu X, et al. Critical role of acceptor dopants in designing highly stable and compatible proton-conducting electrolytes for reversible solid oxide cells. Energy Environ Sci. 2022;15(7):2992-3003.
[84]
Luo Z, Zhou Y, Hu X, et al. Highly conductive and durable Nb(Ta)-doped proton conductors for reversible solid oxide cells. ACS Energy Lett. 2022;7(9):2970-2978.
[85]
Jing J, Lei Z, Zheng Z, et al. Triple conducting perovskite Ba0.95La0.05Fe0.8Zn0.2O3−δ as oxygen electrode for reversible protonic ceramic cells. Int J Hydrogen Energy. 2023;48(24):9037-9045.
[86]
He F, Zhou Y, Hu T, et al. An efficient high-entropy perovskite-type air electrode for reversible oxygen reduction and water splitting in protonic ceramic cells. Adv Mater. 2023;35(16):2209469.
[87]
Park K, Bae H, Kim HK, et al. Understanding the highly electrocatalytic active mixed triple conducting NaxCa3–xCo4O9–δ oxygen electrode materials. Adv Energy Mater. 2022;13(2):2202999.
[88]
Wang N, Tang C, Du L, et al. Advanced cathode materials for protonic ceramic fuel cells: recent progress and future perspectives. Adv Energy Mater. 2022;12(34):2201882.
[89]
Iwahara H, Uchida H, Ono K, Ogaki K. Proton conduction in sintered oxides based on BaCeO3. J Electrochem Soc. 1988;135(2):529-533.
[90]
Matsumoto H, Sakai T, Okuyama Y. Proton-conducting oxide and applications to hydrogen energy devices. Pure Appl Chem. 2013;85(2):427-435.
[91]
Li S, Xie K. Composite oxygen electrode based on LSCF and BSCF for steam electrolysis in a proton-conducting solid oxide electrolyzer. J Electrochem Soc. 2013;160(2):F224-F233.
[92]
Toriumi H, Kobayashi T, Hinokuma S, et al. High-valence-state manganate(V) Ba3Mn2O8 as an efficient anode of a proton-conducting solid oxide steam electrolyzer. Inorg Chem Front. 2019;6(6):1587-1597.
[93]
Kobayashi T, Kuroda K, Jeong S, et al. Analysis of the anode reaction of solid oxide electrolyzer cells with BaZr0.4Ce0.4Y0.2O3–δ electrolytes and Sm0.5Sr0.5CoO3–δ anodes. J Electrochem Soc. 2018;165(5):F342-F349.
[94]
He F, Wu T, Peng R, Xia C. Cathode reaction models and performance analysis of Sm0.5Sr0.5CoO3−δ–BaCe0.8Sm0.2O3−δ composite cathode for solid oxide fuel cells with proton conducting electrolyte. J Power Sources. 2009;194(1):263-268.
[95]
Fabbri E, Pergolesi D, Traversa E. Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem Soc Rev. 2010;39(1):4355-4369.
[96]
Choi SM, An H, Yoon KJ, et al. Electrochemical analysis of high-performance protonic ceramic fuel cells based on a columnar-structured thin electrolyte. Appl Energy. 2019;233-234:29-36.
[97]
Jeong S, Wang N, Kitano S, Habazaki H, Aoki Y. Metal/oxide heterojunction boosts fuel cell cathode reaction at low temperatures. Adv Energy Mater. 2021;11(37):2102025.
[98]
Poetzsch D, Merkle R, Maier J. Proton conductivity in mixed-conducting BSFZ perovskite from thermogravimetric relaxation. Phys Chem Chem Phys. 2014;16(31):16446-16453.
[99]
Poetzsch D, Merkle R, Maier J. Proton uptake in the H+-SOFC cathode material Ba0.5Sr0.5Fe0.8Zn0.2O3−δ: transition from hydration to hydrogenation with increasing oxygen partial pressure. Faraday Discuss. 2015;182:129-143.
[100]
Zohourian R, Merkle R, Raimondi G, Maier J. Mixed-conducting perovskites as cathode materials for protonic ceramic fuel cells: understanding the trends in proton uptake. Adv Funct Mater. 2018;28(35):1801241.
[101]
Berger C, Bucher E, Merkle R, et al. Influence of Y-substitution on phase composition and proton uptake of self-generated Ba(Ce,Fe)O3−δ–Ba(Fe,Ce)O3−δ composites. J Mater Chem A. 2022;10(5):2474-2482.
[102]
Merkle R, Hoedl MF, Raimondi G, Zohourian R, Maier J. Oxides with mixed protonic and electronic conductivity. Annu Rev Mater Res. 2021;51(1):461-493.
[103]
Duan C, Tong J, Shang M, et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science. 2015;349(6254):1321-1326.
[104]
Wang N, Hinokuma S, Ina T, Zhu C, Habazaki H, Aoki Y. Mixed proton-electron-oxide ion triple conducting manganite as an efficient cobalt-free cathode for protonic ceramic fuel cells. J Mater Chem A. 2020;8(21):11043-11055.
[105]
Wang N, Yuan B, Tang C, et al. Machine-learning-accelerated development of efficient mixed protonic–electronic conducting oxides as the air electrodes for protonic ceramic cells. Adv Mater. 2022;34(51):2203446.
[106]
Wang N, Tang C, Du L, et al. Single-phase La0.8Sr0.2Co1-xMnxO3–δ electrocatalyst as a triple H+/O2−/e conductor enabling high-performance intermediate-temperature water electrolysis. J Materiomics. 2022;8(5):1020-1030.
[107]
Kim J, Sengodan S, Kwon G, et al. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells. ChemSusChem. 2014;7(10):2811-2815.
[108]
Choi S, Kucharczyk CJ, Liang Y, et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat Energy. 2018;3(3):202-210.
[109]
Choi S, Yoo S, Kim J, et al. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ. Sci Rep. 2013;3(1):2426.
[110]
Grimaud A, Mauvy F, Bassat JM, et al. Hydration properties and rate determining steps of the oxygen reduction reaction of perovskite related oxides as H+-SOFC cathodes. J Electrochem Soc. 2012;159(6):B683-B694.
[111]
Kim JH, Manthiram A. LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells. J Electrochem Soc. 2008;155(4):B385-B390.
[112]
Kim JH, Cassidy M, Irvine JTS, Bae J. Electrochemical investigation of composite cathodes with SmBa0.5Sr0.5Co2O5+δ cathodes for intermediate temperature-operating solid oxide fuel cell. Chem Mater. 2009;22(3):883-892.
[113]
Chen D, Ran R, Zhang K, Wang J, Shao Z. Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte. J Power Sources. 2009;188(1):96-105.
[114]
Lee W, Han JW, Chen Y, Cai Z, Yildiz B. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J Am Chem Soc. 2013;135(21):7909-7925.
[115]
Choi M, Kim SJ, Lee W. Effects of water atmosphere on chemical degradation of PrBa0.5Sr0.5Co1.5Fe0.5O5+δ electrodes. Ceram Int. 2021;47(6):7790-7797.
[116]
Chen Y, Yoo S, Choi Y, et al. A highly active, CO2-tolerant electrode for the oxygen reduction reaction. Energy Environ Sci. 2018;11(9):2458-2466.
[117]
Strandbakke R, Cherepanov VA, Zuev AY, et al. Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ion. 2015;278:120-132.
[118]
Rost CM, Sachet E, Borman T, et al. Entropy-stabilized oxides. Nat Commun. 2015;6(1):8485.
[119]
Akrami S, Edalati P, Fuji M, Edalati K. High-entropy ceramics: review of principles, production and applications. Mater Sci Eng R Rep. 2021;146:100644.
[120]
Dąbrowa J, Olszewska A, Falkenstein A, et al. An innovative approach to design SOFC air electrode materials: high entropy La1−xSrx(Co,Cr,Fe,Mn,Ni)O3−δ (x = 0, 0.1, 0.2, 0.3) perovskites synthesized by the sol–gel method. J Mater Chem A. 2020;8(46):24455-24468.
[121]
Sarkar A, Djenadic R, Wang D, et al. Rare earth and transition metal based entropy stabilised perovskite type oxides. J Eur Ceram Soc. 2018;38(5):2318-2327.
[122]
Jiang S, Hu T, Gild J, et al. A new class of high-entropy perovskite oxides. Scr Mater. 2018;142:116-120.
[123]
Gazda M, Miruszewski T, Jaworski D, et al. Novel class of proton conducting materials–high entropy oxides. ACS Mater Lett. 2020;2(10):1315-1321.
[124]
Guo R, He T. High-entropy perovskite electrolyte for protonic ceramic fuel cells operating below 600°C. ACS Mater Lett. 2022;4(9):1646-1652.
[125]
Saqib M, Choi IM, Bae H, et al. Transition from perovskite to misfit-layered structure materials: a highly oxygen deficient and stable oxygen electrode catalyst. Energy Environ Sci. 2021;14(7):2472-2484.
[126]
Huang Q, Jiang S, Wang Y, et al. Highly active and durable triple conducting composite air electrode for low-temperature protonic ceramic fuel cells. Nano Res. 2023;16(7):9280-9288.
[127]
Han D, Liu X, Bjørheim TS, Uda T. Yttrium-doped barium zirconate-cerate solid solution as proton conducting electrolyte: why higher cerium concentration leads to better performance for fuel cells and electrolysis cells. Adv Energy Mater. 2021;11(8):2003149.
[128]
Lim DK, Im HN, Song SJ, Yoo HI. Hydration of proton-conducting BaCe0.9Y0.1O3−δ by decoupled mass transport. Sci Rep. 2017;7:486.
[129]
Zhu H, Kee RJ. Membrane polarization in mixed-conducting ceramic fuel cells and electrolyzers. Int J Hydrogen Energy. 2016;41(4):2931-2943.
[130]
Oishi M, Akoshima S, Yashiro K, Sato K, Mizusaki J, Kawada T. Defect structure analysis of B-site doped perovskite-type proton conducting oxide BaCeO3 part 1: the defect concentration of BaCe0.9M0.1O3−δ (M = Y and Yb). Solid State Ionics. 2009;180(2-3):127-131.
[131]
Kreuer KD. Proton-conducting oxides. Annu Rev Mat Res. 2003;33(1):333-359.
[132]
Ricote S, Bonanos N, Caboche G. Water vapour solubility and conductivity study of the proton conductor BaCe(0.9−x)ZrxY0.1O(3−δ). Solid State Ion. 2009;180(14-16):990-997.
[133]
Fabbri E, D'epifanio A, Bartolomeo ED, Licoccia S, Traversa E. Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ion. 2008;179(15-16):558-564.
[134]
Lindman A, Helgee EE, Wahnström G. Comparison of space-charge formation at grain boundaries in proton-conducting BaZrO3 and BaCeO3. Chem Mater. 2017;29(18):7931-7941.
[135]
Bi L, Shafi SP, Traversa E. Y-doped BaZrO3 as a chemically stable electrolyte for proton-conducting solid oxide electrolysis cells (SOECs). J Mater Chem A. 2015;3(11):5815-5819.
[136]
Lei L, Zhang J, Yuan Z, Liu J, Ni M, Chen F. Progress report on proton conducting solid oxide electrolysis cells. Adv Funct Mater. 2019;29(37):1903805.
[137]
Iwahara H, Yajima T, Ushida H. Effect of ionic radii of dopants on mixed ionic conduction (H++O2−) in BaCeO3-based electrolytes. Solid State Ion. 1994;70-71:267-271.
[138]
Kreuer KD, Adams S, Münch W, Fuchs A, Klock U, Maier J. Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics. 2001;145(1-4):295-306.
[139]
Duan C, Huang J, Sullivan N, O'Hayre R. Proton-conducting oxides for energy conversion and storage. Appl Phys Rev. 2020;7(1):011314.
[140]
Yang K, Wang JX, Xue YJ, et al. Synthesis, sintering behavior and electrical properties of Ba(Zr0.1Ce0.7Y0.2)O3−δ and Ba(Zr0.1Ce0.7Y0.1Yb0.1)O3−δ proton conductors. Ceram Int. 2014;40(9):15073-15081.
[141]
Shi H, Su C, Ran R, Cao J, Shao Z. Electrolyte materials for intermediate-temperature solid oxide fuel cells. Prog Nat Sci Mater Int. 2020;30(6):764-774.
[142]
Bi L, Boulfrad S, Traversa E. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chem Soc Rev. 2014;43(24):8255-8270.
[143]
Yang S, Lu Y, Wang Q, Sun C, Ye X, Wen Z. Effects of porous support microstructure enabled by the carbon microsphere pore former on the performance of proton-conducting reversible solid oxide cells. Int J Hydrogen Energy. 2018;43(43):20050-20058.
[144]
Lee JI, Park KY, Park H, et al. Triple perovskite structured Nd1.5Ba1.5CoFeMnO9−δ oxygen electrode materials for highly efficient and stable reversible protonic ceramic cells. J Power Sources. 2021;510:230409.
[145]
Liu Z, Chen Y, Yang G, et al. One-pot derived thermodynamically quasi-stable triple conducting nanocomposite as robust bifunctional air electrode for reversible protonic ceramic cells. Appl Catal B. 2022;319:121929.
[146]
Zheng H, Riegraf M, Sata N, Costa R. A double perovskite oxygen electrode in Zr-rich proton conducting ceramic cells for efficient electricity generation and hydrogen production. J Mater Chem A. 2023;11(20):10955-10970.
[147]
Kosaka F, Nakamura T, Otomo J. Electrochemical ammonia synthesis using mixed protonic-electronic conducting cathodes with exsolved Ru-nanoparticles in proton conducting electrolysis cells. J Electrochem Soc. 2017;164(13):F1323-F1330.
[148]
Ito N, Iijima M, Kimura K, Iguchi S. New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte. J Power Sources. 2005;152(1):200-203.
[149]
Jeong S, Yamaguchi T, Okamoto M, et al. Proton pumping boosts energy conversion in hydrogen-permeable metal-supported protonic fuel cells. ACS Appl Energy Mater. 2020;3(1):1222-1234.
[150]
Aoki Y, Nishimura S, Jeong S, Kitano S, Habazaki H. Development of hydrogen-permeable metal support electrolysis cells. ACS Appl Energy Mater. 2022;5(2):1385-1389.
[151]
Wang R, Lau GY, Ding D, Zhu T, Tucker MC. Approaches for co-sintering metal-supported proton-conducting solid oxide cells with Ba(Zr,Ce,Y,Yb)O3−δ electrolyte. Int J Hydrogen Energy. 2019;44(26):13768-13776.
[152]
Wang R, Byrne C, Tucker MC. Assessment of co-sintering as a fabrication approach for metal-supported proton-conducting solid oxide cells. Solid State Ion. 2019;332:25-33.
[153]
Ding D, Li X, Lai SY, Gerdes K, Liu M. Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ Sci. 2014;7(2):552-575.
[154]
Vohs JM, Gorte RJ. High-performance SOFC cathodes prepared by infiltration. Adv Mater. 2009;21(9):943-956.
[155]
Chen Y, Choi Y, Yoo S, et al. A highly efficient multi-phase catalyst dramatically enhances the rate of oxygen reduction. Joule. 2018;2(5):938-949.
[156]
Kim KJ, Rath MK, Kwak HH, et al. A highly active and redox-stable SrGdNi0.2Mn0.8Oδ anode with in situ exsolution of nanocatalysts. ACS Catal. 2019;9(2):1172-1182.
[157]
Neagu D, Tsekouras G, Miller DN, Menard H, Irvine JT. In situ growth of nanoparticles through control of non-stoichiometry. Nat Chem. 2013;5(11):916-923.
[158]
Kim JH, Yoo S, Murphy R, et al. Promotion of oxygen reduction reaction on a double perovskite electrode by a water-induced surface modification. Energy Environ Sci. 2021;14(3):1506-1516.
[159]
Sun C, Yang S, Lu Y, Wen J, Ye X, Wen Z. Tailoring a micro-nanostructured electrolyte-oxygen electrode interface for proton-conducting reversible solid oxide cells. J Power Sources. 2020;449:227498.
[160]
Meng Y, Zheng H, Duffy J, et al. Enhanced electrolysis performance through hierarchical nanoparticle formation in the BaCo0.4Fe0.4Zr0.1Y0.1O3–δ cathode materials system. J Power Sources. 2023;560:232724.
[161]
Fu L, Zhou J, Yang J, et al. Exsolution of Cu nanoparticles in (LaSr)0.9Fe0.9Cu0.1O4 Ruddlesden-Popper oxide as symmetrical electrode for solid oxide cells. Appl Surf Sci. 2020;511:145525.
[162]
Liu Z, Zhou M, Chen M, et al. A high-performance intermediate-to-low temperature protonic ceramic fuel cell with in-situ exsolved nickel nanoparticles in the anode. Ceram Int. 2020;46(12):19952-19959.
[163]
Neagu D, Oh TS, Miller DN, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat Commun. 2015;6(1):8120.
[164]
Lee C, Shin SS, Kim J, Choi J, Choi M, Shin HH. Tailoring an interface microstructure for high-performance reversible protonic ceramic electrochemical cells via soft lithography. ACS Appl Mater Interfaces. 2022;14(28):32124-32133.
[165]
Mu S, Hong Y, Huang H, et al. A novel laser 3D printing method for the advanced manufacturing of protonic ceramics. Membranes. 2020;10(5):98.
[166]
Tang C, Wang N, Zhu R, Kitano S, Habazaki H, Aoki Y. Design of anode functional layers for protonic solid oxide electrolysis cells. J Mater Chem A. 2022;10(29):15719-15730.
[167]
Tang C, Akimoto K, Wang N, et al. The effect of an anode functional layer on the steam electrolysis performances of protonic solid oxide cells. J Mater Chem A. 2021;9(24):14032-14042.
[168]
Shimada H, Yamaguchi Y, Ryuma MM, et al. Protonic ceramic fuel cell with Bi-layered structure of BaZr0.1Ce0.7Y0.1Yb0.1O3–δ functional interlayer and BaZr0.8Yb0.2O3–δ electrolyte. J Electrochem Soc. 2021;168(12):124504.
[169]
Hyodo J, Tsujikawa K, Shiga M, Okuyama Y, Yamazaki Y. Accelerated discovery of proton-conducting perovskite oxide by capturing physicochemical fundamentals of hydration. ACS Energy Lett. 2021;6(8):2985-2992.
[170]
Shimada H, Yamaguchi T, Kishimoto H, et al. Nanocomposite electrodes for high current density over 3 A cm−2 in solid oxide electrolysis cells. Nat Commun. 2019;10(1):5432.
[171]
Lee S, Kim J, Son JW, et al. High performance air electrode for solid oxide regenerative fuel cells fabricated by infiltration of nano-catalysts. J Power Sources. 2014;250:15-20.
[172]
Ai N, He S, Li N, et al. Suppressed Sr segregation and performance of directly assembled La0.6Sr0.4Co0.2Fe0.8O3–δ oxygen electrode on Y2O3-ZrO2 electrolyte of solid oxide electrolysis cells. J Power Sources. 2018;384:125-135.
[173]
Wu W, Ding D, He T. Development of high performance intermediate temperature proton-conducting solid oxide electrolysis cells. ECS Trans. 2017;80(9):167-173.
[174]
Zhao Z, Liu L, Zhang X, et al. High- and low- temperature behaviors of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode operating under CO2/H2O-containing atmosphere. Int J Hydrogen Energy. 2013;38(35):15361-15370.
[175]
Irvine JTS, Neagu D, Verbraeken MC, Chatzichristodoulou C, Graves C, Mogensen MB. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat Energy. 2016;1(1):15014.
[176]
Cai Z, Kuru Y, Han JW, Chen Y, Yildiz B. Surface electronic structure transitions at high temperature on perovskite oxides: the case of strained La0.8Sr0.2CoO3 thin films. J Am Chem Soc. 2011;133(44):17696-17704.
[177]
Han JW, Yildiz B. Mechanism for enhanced oxygen reduction kinetics at the (La,Sr)CoO3−δ/(La,Sr)2CoO4+δ hetero-interface. Energy Environ Sci. 2012;5(9):8598-8599.
[178]
Guo R, Li D, Guan R, et al. Sn–Dy–Cu triply doped BaZr0.1Ce0.7Y0.2O3−δ: a chemically stable and highly proton-conductive electrolyte for low-temperature solid oxide fuel cells. ACS Sustain Chem Eng. 2022;10(16):5352-5362.
[179]
Li S, Yan R, Wu G, Xie K, Cheng J. Composite oxygen electrode LSM-BCZYZ impregnated with Co3O4 nanoparticles for steam electrolysis in a proton-conducting solid oxide electrolyzer. Int J Hydrogen Energy. 2013;38(35):14943-14951.
[180]
Li H, Chen X, Chen S, Wu Y, Xie K. Composite manganate oxygen electrode enhanced with iron oxide nanocatalyst for high temperature steam electrolysis in a proton-conducting solid oxide electrolyzer. Int J Hydrogen Energy. 2015;40(25):7920-7931.
[181]
Gan L, Ye L, Liu M, Tao S, Xie K. A scandium-doped manganate anode for a proton-conducting solid oxide steam electrolyzer. RSC Adv. 2016;6(1):641-647.
[182]
Huan D, Wang W, Xie Y, et al. Investigation of real polarization resistance for electrode performance in proton-conducting electrolysis cells. J Mater Chem A. 2018;6(58):18508-18517.
[183]
Zhu F, He F, Liu D, et al. A surface reconfiguration of a perovskite air electrode enables an active and durable reversible protonic ceramic electrochemical cell. Energy Storage Mater. 2022;53:754-762.
[184]
Heras-Juaristi G, Pérez-Coll D, Mather GC. Temperature dependence of partial conductivities of the BaZr0.7Ce0.2Y0.1O3–δ proton conductor. J Power Sources. 2017;364:52-60.
[185]
Zhu H, Ricote S, Duan C, O'Hayre RP, Tsvetkov DS, Kee RJ. Defect incorporation and transport within dense BaZr0.8Y0.2O3−δ (BZY20) proton-conducting membranes. J Electrochem Soc. 2018;165(9):F581-F588.
[186]
Zhu H, Ricote S, Duan C, O'Hayre RP, Kee RJ. Defect chemistry and transport within dense BaCe0.7Zr0.1Y0.1Yb0.1O3−δ (BCZYYb) proton-conducting membranes. J Electrochem Soc. 2018;165(10):F845-F853.
[187]
Kreuer KD, Paddison SJ, Spohr E, Schuster M. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev. 2004;104(10):4637-4678.
[188]
Matsuzaki Y, Tachikawa Y, Baba Y, et al. Suppression of leakage current in proton-conducting BaZr0.8Y0.2O3−δ electrolyte by forming hole-blocking layer. J Electrochem Soc. 2020;167(8):084515.
[189]
Bausá N, Solís C, Strandbakke R, Serra JM. Development of composite steam electrodes for electrolyzers based on barium zirconate. Solid State Ion. 2017;306:62-68.
[190]
Brauna RJ, Duboisa A, Fergusona K, et al. Development of kW-scale protonic ceramic fuel cells and systems. ECS Trans. 2019;91(1):997-1008.
[191]
Liu J, Co AC, Paulson S, Birss VI. Oxygen reduction at sol-gel derived La0.8Sr0.2Co0.8Fe0.2O3 cathodes. Solid State Ionics. 2006;177(3-4):377-387.
[192]
Zhou W, Ran R, Shao Z, Jin W, Xu N. Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ (x>0) perovskite as a solid-oxide fuel cell cathode. J Power Sources. 2008;182(1):24-31.
[193]
Duan C, Hook D, Chen Y, Tong J, O'Hayre R. Zr and Y co-doped perovskite as a stable, high performance cathode for solid oxide fuel cells operating below 500°C. Energy Environ Sci. 2017;10(1):176-182.
[194]
Andersson AKE, Selbach SM, Knee CS, Grande T. Chemical expansion due to hydration of proton-conducting perovskite oxide ceramics. J Am Ceram Soc. 2014;97(8):2654-2661.
[195]
Zhou W, Shao Z, Ran R, Cai R. Novel SrSc0.2Co0.8O3-δ as a cathode material for low temperature solid-oxide fuel cell. Electrochem Commun. 2008;10(10):1647-1651.
[196]
Zhang Y, Chen B, Guan D, et al. Thermal-expansion offset for high-performance fuel cell cathodes. Nature. 2021;591(7849):246-251.
[197]
Koo JY, Kwon H, Ahn M, et al. Suppression of cation segregation in (La,Sr)CoO3−δ by elastic energy minimization. ACS Appl Mater Interfaces. 2018;10(9):8057-8065.
[198]
Tsvetkov N, Lu Q, Sun L, Crumlin E, Yildiz B. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. Nat Mater. 2016;15(9):1010-1016.
[199]
Kim D, Bliem R, Hess F, Gallet J, Yildiz B. Electrochemical polarization dependence of the elastic and electrostatic driving forces to aliovalent dopant segregation on LaMnO3. J Am Chem Soc. 2020;142(7):3548-3563.
[200]
Cai Z, Kubicek M, Fleig J, Yildiz B. Chemical heterogeneities on La0.6Sr0.4CoO3−δ thin films-correlations to cathode surface activity and stability. Chem Mater. 2012;24(6):1116-1127.
[201]
Zhong Z. Stability and conductivity study of the BaCe0.9−xZrxY0.1O2.95 systems. Solid State Ion. 2007;178(3-4):213-220.
[202]
An H, Lee HW, Kim BK, et al. A 5 × 5 cm2 protonic ceramic fuel cell with a power density of 1.3 W cm−2 at 600 °C. Nat Energy. 2018;3(10):870-875.
[203]
Ferguson K, Dubois A, Albrecht K, Braun RJ. High performance protonic ceramic fuel cell systems for distributed power generation. Energy Convers Manag. 2021;248:114763.
[204]
Dailly J, Ancelin M, Marrony M. Long term testing of BCZY-based protonic ceramic fuel cell PCFC: micro-generation profile and reversible production of hydrogen and electricity. Solid State Ion. 2017;306:69-75.
[205]
Gan Y, Zhang J, Li Y, Li S, Xie K, Irvineb JTS. Composite oxygen electrode based on LSCM for steam electrolysis in a proton conducting solid oxide electrolyzer. J Electrochem Soc. 2012;159(11):F763-F767.
[206]
Meng Y, Gao J, Huang H, et al. A high-performance reversible protonic ceramic electrochemical cell based on a novel Sm-doped BaCe0.7Zr0.1Y0.2O3–δ electrolyte. J Power Sources. 2019;439:227093.
[207]
Priya R, Aluru NR. Accelerated design and discovery of perovskites with high conductivity for energy applications through machine learning. npj Comput Mater. 2021;7(1):90.

RIGHTS & PERMISSIONS

2023 2023 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/