Safer solid-state lithium metal batteries: Mechanisms and strategies
Shi-Jie Yang, Jiang-Kui Hu, Feng-Ni Jiang, Hong Yuan, Ho Seok Park, Jia-Qi Huang
Safer solid-state lithium metal batteries: Mechanisms and strategies
Solid-state batteries that employ solid-state electrolytes (SSEs) to replace routine liquid electrolytes are considered to be one of the most promising solutions for achieving high-safety lithium metal batteries. SSEs with high mechanical modulus, thermal stability, and non-flammability can not only inhibit the growth of lithium dendrites but also enhance the safety of lithium metal batteries. However, several internal materials/electrodes-related thermal hazards demonstrated by recent works show that solid-state lithium metal batteries (SSLMBs) are not impenetrable. Therefore, understanding the potential thermal hazards of SSLMBs is critical for their more secure and widespread applications. In this contribution, we provide a comprehensive overview of the thermal failure mechanism of SSLMBs from materials to devices. Also, strategies to improve the thermal safety performance of SSLMBs are included from the view of material enhancement, battery design, and external management. Consequently, the future directions are further provided. We hope that this work can shed bright insights into the path of constructing energy storage devices with high energy density and safety.
lithium metal batteries / safety improvements / solid-state batteries / thermal failures / thermal runaway
[1] |
Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater. 2018;30(33):1800561.
|
[2] |
Dechent P, Epp A, Jöst D, et al. Enpolite: comparing lithium-ion cells across energy, power, lifetime, and temperature. ACS Energy Lett. 2021;6(6):2351-2355.
|
[3] |
Yang SJ, Yao N, Xu XQ, et al. Formation mechanism of the solid electrolyte interphase in different ester electrolytes. J Mater Chem A. 2021;9(35):19664-19668.
|
[4] |
Yang SJ, Shen X, Cheng XB, et al. Plating current density distribution of lithium metal anodes in pouch cells. J Energy Chem. 2022;69:70-75.
|
[5] |
Xu L, Lu Y, Zhao CZ, et al. Toward the scale-up of solid-state lithium metal batteries: the gaps between lab-level cells and practical large-format batteries. Adv Energy Mater. 2020;11(4):2002360.
|
[6] |
Zhao Q, Stalin S, Zhao CZ, Archer LA. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater. 2020;5(3):229-252.
|
[7] |
Wang H, Sheng L, Yasin G, Wang L, Xu H, He X. Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater. 2020;33:188-215.
|
[8] |
Yang SJ, Xu XQ, Cheng XB, et al. Columnar lithium metal deposits: the role of non-aqueous electrolyte additive. Acta Phys Chim Sin. 2021;37(1):2007058.
|
[9] |
Zhang JG, Xu W, Xiao J, Cao X, Liu J. Lithium metal anodes with nonaqueous electrolytes. Chem Rev. 2020;120(24):13312-13348.
|
[10] |
Feng XN, Ren DS, He XM, Ouyang MG. Mitigating thermal runaway of lithium-ion batteries. Joule. 2020;4(4):743-770.
|
[11] |
Puthusseri D, Parmananda M, Mukherjee PP, Pol VG. Probing the thermal safety of Li metal batteries. J Electrochem Soc. 2020;167(12):120513.
|
[12] |
Huang XY, Xiao M, Han DM, et al. Thermal runaway features of lithium sulfur pouch cells at various states of charge evaluated by extended volume-accelerating rate calorimetry. J Power Sources. 2021;489:229503.
|
[13] |
Li H, Wen Z, Wu D, et al. Achieving a stable solid electrolyte interphase and enhanced thermal stability by a dual-functional electrolyte additive toward a high-loading LiNi0.8Mn0.1Co0.1O2/lithium pouch battery. ACS Appl Mater Interfaces. 2021;13(48):57142-57152.
|
[14] |
Feng X, Fang M, He X, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sources. 2014;255:294-301.
|
[15] |
Jin Y, Zhao Z, Miao S, Wang Q, Sun L, Lu H. Explosion hazards study of grid-scale lithium-ion battery energy storage station. J Energy Storage. 2021;42:102987.
|
[16] |
Liu P, Li Y, Mao B, Chen M, Huang Z, Wang Q. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery. Appl Therm Eng. 2021;192:116949.
|
[17] |
Liu J, Yuan H, Liu H, et al. Unlocking the failure mechanism of solid state lithium metal batteries. Adv Energy Mater. 2021;12(4):2100748.
|
[18] |
Wang X, Kerr R, Chen F, et al. Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv Mater. 2020;32(18):e1905219.
|
[19] |
Wang C, Liang J, Zhao Y, Zheng M, Li X, Sun X. All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ Sci. 2021;14(5):2577-2619.
|
[20] |
Xiao Y, Wang Y, Bo S-H, Kim JC, Miara LJ, Ceder G. Understanding interface stability in solid-state batteries. Nat Rev Mater. 2019;5(2):105-126.
|
[21] |
Hu J-K, Yuan H, Yang S-J, et al. Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-sulfur batteries. J Energy Chem. 2022;71:612-618.
|
[22] |
Fan L, Wei S, Li S, Li Q, Lu Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv Energy Mater. 2018;8(11):1702657.
|
[23] |
Wang S, Xiong P, Zhang J, Wang G. Recent progress on flexible lithium metal batteries: composite lithium metal anodes and solid-state electrolytes. Energy Storage Mater. 2020;29:310-331.
|
[24] |
Zheng Y, Yao Y, Ou J, et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem Soc Rev. 2020;49(23):8790-8839.
|
[25] |
Liao Y-L, Hu J-K, Fu Z-H, et al. Integrated interface configuration by in-situ interface chemistry enabling uniform lithium deposition in all-solid-state lithium metal batteries. J Energy Chem. 2023;80:458-465.
|
[26] |
Hu J, Yang S, Pei Y, et al. Perspective on powder technology for all-solid-state batteries: how to pair sulfide electrolyte with high-voltage cathode. Particuology. 2024;86:55-66.
|
[27] |
Huang L, Xu G, Du X, et al. Uncovering LiH triggered thermal runaway mechanism of a high-energy LiNi0.5Co0.2Mn0.3O2/graphite pouch cell. Adv Sci. 2021;8(14):e2100676.
|
[28] |
Zhang X, Huang L, Xie B, et al. Deciphering the thermal failure mechanism of anode-free lithium metal pouch batteries. Adv Energy Mater. 2023;13(8):2203648.
|
[29] |
Xu G, Huang L, Lu C, Zhou X, Cui G. Revealing the multilevel thermal safety of lithium batteries. Energy Storage Mater. 2020;31:72-86.
|
[30] |
Feng XN, Ouyang MG, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 2018;10:246-267.
|
[31] |
Chen YQ, Kang YQ, Zhao Y, et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J Energy Chem. 2021;59:83-99.
|
[32] |
Yang S-J, Jiang F-N, Hu J-K, et al. Life cycle safety issues of lithium metal batteries a perspective. Electron. 2023;1:e8.
|
[33] |
Feng X, Pan Y, He X, Wang L, Ouyang M. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm. J Energy Storage. 2018;18:26-39.
|
[34] |
Feng X, Weng C, Ouyang M, Sun J. Online internal short circuit detection for a large format lithium ion battery. Appl Energy. 2016;161:168-180.
|
[35] |
A comparison of different evaluation methods in modulated temperature DSC. Thermochim Acta. 1995;260:1-16.
|
[36] |
Liu R, Zhang T, Yang L, Zhou Z, Hu X. Research on thermal decomposition of trinitrophloroglucinol salts by DSC, TG and DVST. Open Chem. 2013;11(5):774-781.
|
[37] |
Gajan A, Lecourt C, Torres Bautista BE, Fillaud L, Demeaux J, Lucas IT. Solid electrolyte interphase instability in operating lithium-ion batteries unraveled by enhanced-Raman spectroscopy. ACS Energy Lett. 2021;6(5):1757-1763.
|
[38] |
Zhou Y, Doerrer C, Kasemchainan J, Bruce PG, Pasta M, Hardwick LJ. Observation of interfacial degradation of Li6PS5Cl against lithium metal and LiCoO2 via in situ electrochemical Raman microscopy. Batteries Supercaps. 2020;3(7):647-652.
|
[39] |
Sheng O, Jin C, Ju Z, et al. Stabilizing Li4SnS4 electrolyte from interface to bulk phase with a gradient lithium iodide/polymer layer in lithium metal batteries. Nano Lett. 2022;22(20):8346-8354.
|
[40] |
Li S, Yang SJ, Liu GX, et al. A dynamically stable mixed conducting interphase for all-solid-state lithium metal batteries. Adv Mater. 2023;35:e2307768.
|
[41] |
Sheng O, Zheng J, Ju Z, et al. In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by cryo-tem. Adv Mater. 2020;32(34):e2000223.
|
[42] |
Wang S, Wu Y, Li H, Chen L, Wu F. Improving thermal stability of sulfide solid electrolytes: an intrinsic theoretical paradigm. InfoMat. 2022;4(8):e12316.
|
[43] |
Rui X, Ren D, Liu X, et al. Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries. Energy Environ Sci. 2023;16(8):3552-3563.
|
[44] |
Richard MN, Dahn JR. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. J Electrochem Soc. 1999;146(6):2068-2077.
|
[45] |
Feng X, Zheng S, Ren D, et al. Key characteristics for thermal runaway of Li-ion batteries. Energy Procedia. 2019;158:4684-4689.
|
[46] |
Xu T, Xu L-P, Zhang X. Ultrasound propulsion of micro-/nanomotors. Appl Mater Today. 2017;9:493-503.
|
[47] |
Harry KJ, Hallinan DT, Parkinson DY, MacDowell AA, Balsara NP. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat Mater. 2014;13(1):69-73.
|
[48] |
Madsen KE, Bassett KL, Ta K, et al. Direct observation of interfacial mechanical failure in thiophosphate solid electrolytes with operando x-ray tomography. Adv Mater Interfaces. 2020;7(19):2000751.
|
[49] |
Yang S-J, Hu J-K, Jiang F-N, et al. Oxygen-induced thermal runaway mechanisms of Ah-level solid-state lithium metal pouch cells. eTransportation. 2023;18:100279.
|
[50] |
Chen RS, Nolan AM, Lu JZ, et al. The thermal stability of lithium solid electrolytes with metallic lithium. Joule. 2020;4(4):812-821.
|
[51] |
Huang L, Lu T, Xu GJ, et al. Thermal runaway routes of large-format lithium-sulfur pouch cell batteries. Joule. 2022;6(4):906-922.
|
[52] |
Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotech. 2017;12(3):194-206.
|
[53] |
Hart WA, Beumel OF, Whaley TP. The Chemistry of Lithium, Sodium, Potassium, Rubidium, Cesium and Francium. Royal Institute of Chemistry; 1973.
|
[54] |
Aurbach D, Zinigrad E, Cohen Y, Teller H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 2002;148(3-4):405-416.
|
[55] |
Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci. 2011;4(9):3243.
|
[56] |
Schiemann M, Bergthorson J, Fischer P, Scherer V, Taroata D, Schmid G. A review on lithium combustion. Appl Energy. 2016;162:948-965.
|
[57] |
Nisar U, Muralidharan N, Essehli R, Amin R, Belharouak I. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials. Energy Storage Mater. 2021;38:309-328.
|
[58] |
Yang X, Doyle-Davis K, Gao X, Sun X. Recent progress and perspectives on designing high-performance thick electrodes for all-solid-state lithium batteries. eTransportation. 2022;11:100152.
|
[59] |
Zuo W, Luo M, Liu X, et al. Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques. Energy Environ Sci. 2020;13(12):4450-4497.
|
[60] |
Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403-10473.
|
[61] |
Wang YY, Song X, Liu S, Li GR, Ye SH, Gao XP. Elucidating the effect of the dopant ionic radius on the structure and electrochemical performance of Ni-rich layered oxides for lithium-ion batteries. ACS Appl Mater Interfaces. 2021;13(47):56233-56241.
|
[62] |
Wu F, Li N, Su Y, et al. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett. 2014;14(6):3550-3555.
|
[63] |
Li JY, Hua HM, Kong XB, et al. In-situ probing the near-surface structural thermal stability of high-nickel layered cathode materials. Energy Storage Mater. 2022;46:90-99.
|
[64] |
Zhang L, Zhao C, Qin X, et al. Heterogeneous degradation in thick nickel-rich cathodes during high-temperature storage and mitigation of thermal instability by regulating cationic disordering. Small. 2021;17(34):e2102055.
|
[65] |
Bak SM, Hu E, Zhou Y, et al. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl Mater Interfaces. 2014;6(24):22594-22601.
|
[66] |
Jung SK, Kim H, Song SH, Lee S, Kim J, Kang K. Unveiling the role of transition-metal ion in the thermal degradation of layered Ni-Co-Mn cathodes for lithium rechargeable batteries. Adv Funct Mater. 2021;32(13):2108790.
|
[67] |
Yan P, Zheng J, Chen T, et al. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nat Commun. 2018;9(1):2437.
|
[68] |
Koerver R, Aygün I, Leichtweiß T, et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem Mater. 2017;29(13):5574-5582.
|
[69] |
Shurtz RC. A thermodynamic reassessment of lithium-ion battery cathode calorimetry. J Electrochem Soc. 2020;167(14):140544.
|
[70] |
Golubkov AW, Scheikl S, Planteu R, et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes—impact of state of charge and overcharge. RSC Adv. 2015;5(70):57171-57186.
|
[71] |
Eum D, Kim B, Song JH, et al. Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides. Nat Mater. 2022;21(6):664-672.
|
[72] |
Li H, Xu Z, Yang J, Wang J, Hirano S-i. Polymer electrolytes for rechargeable lithium metal batteries. Sustain Energy Fuels. 2020;4(11):5469-5487.
|
[73] |
Quartarone E, Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev. 2011;40(5):2525-2540.
|
[74] |
Agrawal RC, Pandey GP. Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D. 2008;41(22):223001.
|
[75] |
Cui Y, Wan J, Ye Y, Liu K, Chou LY, Cui Y. A fireproof, lightweight, polymer-polymer solid-state electrolyte for safe lithium batteries. Nano Lett. 2020;20(3):1686-1692.
|
[76] |
Isreb A, Baj K, Wojsz M, Isreb M, Peak M, Alhnan MA. 3D printed oral theophylline doses with innovative ‘radiator-like’ design: impact of polyethylene oxide (PEO) molecular weight. Int J Pharm. 2019;564:98-105.
|
[77] |
Pielichowski K, Flejtuch K. Non-oxidative thermal degradation of poly(ethylene oxide): kinetic and thermoanalytical study. J Anal Appl Pyrol. 2005;73(1):131-138.
|
[78] |
Li W, Gao J, Tian H, et al. SnF2-catalyzed formation of polymerized dioxolane as solid electrolyte and its thermal decomposition behavior. Angew Chem Int Ed. 2022;61(6):e202114805.
|
[79] |
Liu X, Zhang C, Gao S, et al. A novel polyphosphonate flame-retardant additive towards safety-reinforced all-solid-state polymer electrolyte. Mater Chem Phys. 2020;239:122014.
|
[80] |
Liu J, Shen X, Zhou J, et al. Nonflammable and high-voltage-tolerated polymer electrolyte achieving high stability and safety in 4.9 V-class lithium metal battery. ACS Appl Mater Interfaces. 2019;11(48):45048-45056.
|
[81] |
Li W, Pang Y, Liu J, Liu G, Wang Y, Xia Y. A peo-based gel polymer electrolyte for lithium ion batteries. RSC Adv. 2017;7(38):23494-23501.
|
[82] |
Liu FQ, Wang WP, Yin YX, et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci Adv. 2018;4(10):eaat5383.
|
[83] |
Brousse T, Fragnaud P, Marchand R, Schleich DM, Bohnke O, West K. All oxide solid-state lithium-ion cells. J Power Sources. 1997;68(2):412-415.
|
[84] |
Zallocco VM, Freitas JM, Bocchi N, Rodrigues ACM. Electrochemical stability of a nasicon solid electrolyte from the lithium aluminum germanium phosphate (LAGP) series. Solid State Ion. 2022;378:115888.
|
[85] |
Knauth P. Inorganic solid Li ion conductors: an overview. Solid State Ion. 2009;180(14-16):911-916.
|
[86] |
Kobi S, Mukhopadhyay A. Structural (in)stability and spontaneous cracking of Li-Za-zirconate cubic garnet upon exposure to ambient atmosphere. J Eur Ceram Soc. 2018;38(14):4707-4718.
|
[87] |
Ye L, Li X. A dynamic stability design strategy for lithium metal solid state batteries. Nature. 2021;593(7858):218-222.
|
[88] |
Nikodimos Y, Huang C-J, Taklu BW, Su W-N, Hwang BJ. Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy Environ Sci. 2022;15(3):991-1033.
|
[89] |
Ohtomo T, Hayashi A, Tatsumisago M, Kawamoto K. Characteristics of the Li2O-Li2S-P2S5 glasses synthesized by the two-step mechanical milling. J Non Cryst Solids. 2013;364:57-61.
|
[90] |
Chen R, Yao C, Yang Q, et al. Enhancing the thermal stability of nasicon solid electrolyte pellets against metallic lithium by defect modification. ACS Appl Mater Interfaces. 2021;13(16):18743-18749.
|
[91] |
Chung H, Kang B. Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell. Chem Mater. 2017;29(20):8611-8619.
|
[92] |
Murata K. An overview of the research and development of solid polymer electrolyte batteries. Electrochim Acta. 1995;40(14-15):2177-2184.
|
[93] |
Mirsakiyeva A, Ebadi M, Araujo CM, Brandell D, Broqvist P, Kullgren J. Initial steps in PEO decomposition on a Li metal electrode. J Phys Chem C. 2019;123(37):22851-22857.
|
[94] |
Matsuda S, Nakamura K. Effect of confining pressure on the Li/Li7La3Zr2O12 interface during Li dissolution/deposition cycles. ACS Appl Energy Mater. 2020;3(11):11113-11118.
|
[95] |
Luo S, Wang Z, Li X, et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat Commun. 2021;12(1):6968.
|
[96] |
Lv Q, Jiang Y, Wang B, et al. Suppressing lithium dendrites within inorganic solid-state electrolytes. Cell Rep Phys Sci. 2022;3(1):100706.
|
[97] |
Lewis JA, Lee C, Liu Y, et al. Role of areal capacity in determining short circuiting of sulfide-based solid-state batteries. ACS Appl Mater Interfaces. 2022;14(3):4051-4060.
|
[98] |
Dollé M, Sannier L, Beaudoin B, Trentin M, Tarascon J-M. Live scanning electron microscope observations of dendritic growth in lithium/polymer cells. Electrochem Solid State Lett. 2002;5(12):A286.
|
[99] |
Lewis JA, Cortes FJQ, Boebinger MG, et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett. 2019;4(2):591-599.
|
[100] |
Parejiya A, Amin R, Essehli R, Wood DL, Belharouak I. Electrochemical healing of dendrites in garnet-based solid electrolytes. ACS Energy Lett. 2020;5(11):3368-3373.
|
[101] |
Sun M, Liu T, Yuan Y, et al. Visualizing lithium dendrite formation within solid-state electrolytes. ACS Energy Lett. 2021;6(2):451-458.
|
[102] |
Zhang H, Wu H, Wang L, Xu H, He X. Benzophenone as indicator detecting lithium metal inside solid state electrolyte. J Power Sources. 2021;492:229661.
|
[103] |
Xu L, Tang S, Cheng Y, et al. Interfaces in solid-state lithium batteries. Joule. 2018;2(10):1991-2015.
|
[104] |
Ning Z, Li G, Melvin DLR, et al. Dendrite initiation and propagation in lithium metal solid-state batteries. Nature. 2023;618(7964):287-293.
|
[105] |
Sulas DB, Johnston S, Seitzman N, Platt H, al-Jassim M, Guthrey H. Defect detection in solid-state battery electrolytes using lock-in thermal imaging. J Electrochem Soc. 2018;165(13):A3205-A3211.
|
[106] |
Otoyama M, Suyama M, Hotehama C, et al. Visualization and control of chemically induced crack formation in all-solid-state lithium-metal batteries with sulfide electrolyte. ACS Appl Mater Interfaces. 2021;13(4):5000-5007.
|
[107] |
Rosso M, Brissot C, Teyssot A, et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim Acta. 2006;51(25):5334-5340.
|
[108] |
Zhu Y, He X, Mo Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces. 2015;7(42):23685-23693.
|
[109] |
Hawley WB, Du Z, Kukay AJ, et al. Deconvoluting sources of failure in lithium metal batteries containing nmc and PEO-based electrolytes. Electrochim Acta. 2022;404:139579.
|
[110] |
Bartsch T, Strauss F, Hatsukade T, et al. Gas evolution in all-solid-state battery cells. ACS Energy Lett. 2018;3(10):2539-2543.
|
[111] |
Kim T, Kim K, Lee S, Song G, Jung MS, Lee KT. Thermal runaway behavior of Li6PS5Cl solid electrolytes for LiNi0.8Co0.1Mn0.1O2 and LiFePO4 in all-solid-state batteries. Chem Mater. 2022;34(20):9159-9171.
|
[112] |
Xia Y, Fujieda T, Tatsumi K, Prosini PP, Sakai T. Thermal and electrochemical stability of cathode materials in solid polymer electrolyte. J Power Sources. 2001;92(1-2):234-243.
|
[113] |
Uhlenbruck S, Dornseiffer J, Lobe S, et al. Cathode-electrolyte material interactions during manufacturing of inorganic solid-state lithium batteries. J Electroceram. 2016;38(2-4):197-206.
|
[114] |
Yang L, Zhang J, Xue W, et al. Anomalous thermal decomposition behavior of polycrystalline LiNi0.8Mn0.1Co0.1O2 in PEO-based solid polymer electrolyte. Adv Funct Mater. 2022;32(23):2200096.
|
[115] |
Judez X, Eshetu GG, Li C, Rodriguez-Martinez LM, Zhang H, Armand M. Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes. Joule. 2018;2(11):2208-2224.
|
[116] |
Hubaud AA, Schroeder DJ, Ingram BJ, Okasinski JS, Vaughey JT. Thermal expansion in the garnet-type solid electrolyte (Li7−xAlx/3)La3Zr2O12 as a function of al content. J Alloy Compd. 2015;644:804-807.
|
[117] |
Bertrand M, Rousselot S, Aymé-Perrot D, Dollé M. Compatibility assessment of solid ceramic electrolytes and active materials based on thermal dilatation for the development of solid-state batteries. Mater Adv. 2021;2(9):2989-2999.
|
[118] |
Spotnitza R, Franklinb J. Abuse behavior of high-power, lithium-ion cells. J Power Sources. 2003;113(1):81-100.
|
[119] |
Lyu P, Liu X, Qu J, et al. Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Mater. 2020;31:195-220.
|
[120] |
Wu Y, Wang S, Li H, Chen L, Wu F. Progress in thermal stability of all-solid-state-Li-ion-batteries. InfoMat. 2021;3(8):827-853.
|
[121] |
Inoue T, Mukai K. Are all-solid-state lithium-ion batteries really safe?—verification by differential scanning calorimetry with an all-inclusive microcell. ACS Appl Mater Interfaces. 2017;9(2):1507-1515.
|
[122] |
Ren D, Feng X, Liu L, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition. Energy Storage Mater. 2021;34:563-573.
|
[123] |
Wang Z, Yuan J, Zhu X, et al. Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: a comparison study. J Energy Chem. 2021;55:484-498.
|
[124] |
Zhang G, Wei X, Chen S, et al. Comprehensive investigation of a slight overcharge on degradation and thermal runaway behavior of lithium-ion batteries. ACS Appl Mater Interfaces. 2021;13(29):35054-35068.
|
[125] |
Guo R, Lu L, Ouyang M, Feng X. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries. Sci Rep. 2016;6(1):30248.
|
[126] |
Fang J, Cai J, He X. Experimental study on the vertical thermal runaway propagation in cylindrical lithium-ion batteries: effects of spacing and state of charge. Appl Therm Eng. 2021;197:117399.
|
[127] |
Cui X, Garg A, Trang Thao N, Trung NT. Machine learning approach for solving inconsistency problems of Li-ion batteries during the manufacturing stage. Int J Energ Res. 2020;44(11):9194-9204.
|
[128] |
Liu K, Li K, Peng Q, Zhang C. A brief review on key technologies in the battery management system of electric vehicles. Front Mech Eng. 2018;14(1):47-64.
|
[129] |
Fu L, Wan M, Zhang B, et al. A lithium metal anode surviving battery cycling above 200°C. Adv Mater. 2020;32(29):e2000952.
|
[130] |
Liu H, Cheng X-B, Huang J-Q, et al. Alloy anodes for rechargeable alkali-metal batteries: progress and challenge. ACS Mater Lett. 2019;1(2):217-229.
|
[131] |
Hayashi A, Muramatsu H, Ohtomo T, Hama S, Tatsumisago M. Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles. J Mater Chem A. 2013;1(21):6320.
|
[132] |
Hayashi A, Muramatsu H, Ohtomo T, Hama S, Tatsumisago M. Improved chemical stability and cyclability in Li2S-P2S5-P2O5-ZnO composite electrolytes for all-solid-state rechargeable lithium batteries. J Alloy Compd. 2014;591:247-250.
|
[133] |
Zhu L, Wang Y, Wu Y, et al. Boron nitride-based release agent coating stabilizes Li1.3Al0.3Ti1.7(PO4)3/Li interface with superior lean-lithium electrochemical performance and thermal stability. Adv Funct Mater. 2022;32(29):2201136.
|
[134] |
Kwak H, Wang S, Park J, et al. Emerging halide superionic conductors for all-solid-state batteries: design, synthesis, and practical applications. ACS Energy Lett. 2022;7(5):1776-1805.
|
[135] |
Zhang Y, Yu L, Zhang X-D, et al. A smart risk-responding polymer membrane for safer batteries. Sci Adv. 2023;9(5):eade5802.
|
[136] |
Zhou J, Qian T, Liu J, Wang M, Zhang L, Yan C. High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte. Nano Lett. 2019;19(5):3066-3073.
|
[137] |
Zhou B, Yang M, Zuo C, et al. Flexible, self-healing, and fire-resistant polymer electrolytes fabricated via photopolymerization for all-solid-state lithium metal batteries. ACS Macro Lett. 2020;9(4):525-532.
|
[138] |
Zhou Y, Wang X, Zhu H, et al. Solid-state lithium conductors for lithium metal batteries based on electrospun nanofiber/plastic crystal composites. ChemSusChem. 2017;10(15):3135-3145.
|
[139] |
Li Z, Sha WX, Guo X. Three-dimensional garnet framework-reinforced solid composite electrolytes with high lithium-ion conductivity and excellent stability. ACS Appl Mater Interfaces. 2019;11(30):26920-26927.
|
[140] |
Zhang Y, Fei H, An Y, Wei C, Feng J. High voltage, flexible and low cost all-solid-state lithium metal batteries with a wide working temperature range. ChemistrySelect. 2020;5(3):1214-1219.
|
[141] |
Sheng O, Jin C, Ding X, et al. A decade of progress on solid-state electrolytes for secondary batteries: advances and contributions. Adv Funct Mater. 2021;31(27):2100891.
|
[142] |
Lou S, Zhang F, Fu C, et al. Interface issues and challenges in all-solid-state batteries: lithium, sodium, and beyond. Adv Mater. 2021;33(6):e2000721.
|
[143] |
Cabañero Martínez MA, Boaretto N, Naylor AJ, et al. Are polymer-based electrolytes ready for high-voltage lithium battery applications? An overview of degradation mechanisms and battery performance. Adv Energy Mater. 2022;12(32):2201264.
|
[144] |
Wang H, Wu L, Xue B, et al. Improving cycling stability of the lithium anode by a spin-coated high-purity Li3PS4 artificial SEI layer. ACS Appl Mater Interfaces. 2022;14(13):15214-15224.
|
[145] |
Qian SS, Xing C, Zheng MT, et al. CuCl2-modified lithium metal anode via dynamic protection mechanisms for dendrite-free long-life charging/discharge processes. Adv Energy Mater. 2022;12(15):2103480.
|
[146] |
Lu J, Zhou J, Chen R, et al. 4.2 V poly(ethylene oxide)-based all-solid-state lithium batteries with superior cycle and safety performance. Energy Storage Mater. 2020;32:191-198.
|
[147] |
Han Y, Jung SH, Kwak H, et al. Single- or poly-crystalline Ni-rich layered cathode, sulfide or halide solid electrolyte: which will be the winners for all-solid-state batteries? Adv Energy Mater. 2021;11(21):2100126.
|
[148] |
Hong Z, Dong H, Han S, et al. Nail penetration-safe LiNi0.6Co0.2Mn0.2O2 pouch cells enabled by LiMn0.7Fe0.3PO4 cathode safety additive. J Power Sources. 2021;512:230505.
|
[149] |
Sun F, Yang C, Manke I, Chen L, Dong S. Li-based anode: is dendrite-free sufficient? Mater Today. 2020;38:7-9.
|
[150] |
Sun F, Zhou D, He X, et al. Morphological reversibility of modified Li-based anodes for next-generation batteries. ACS Energy Lett. 2019;5(1):152-161.
|
[151] |
Sun F, Osenberg M, Dong K, et al. Correlating morphological evolution of Li electrodes with degrading electrochemical performance of Li/LiCoO2 and Li/S battery systems: investigated by synchrotron x-ray phase contrast tomography. ACS Energy Lett. 2018;3(2):356-365.
|
[152] |
Tang F, Wu Z, Yang C, et al. Synchrotron x-ray tomography for rechargeable battery research: fundamentals, setups and applications. Small Methods. 2021;5(9):2100557.
|
[153] |
Zheng Y, Zhang S, Ma J, et al. Codependent failure mechanisms between cathode and anode in solid state lithium metal batteries: mediated by uneven ion flux. Sci Bull. 2023;68(8):813-825.
|
[154] |
Sun F, Duchêne L, Osenberg M, et al. Na electrodeposits: a new decaying mechanism for all-solid-state na batteries revealed by synchrotron x-ray tomography. Nano Energy. 2021;82:105762.
|
[155] |
Sun F, Wang C, Osenberg M, et al. Clarifying the electro-chemo-mechanical coupling in Li10SnP2S12 based all-solid-state batteries. Adv Energy Mater. 2022;12(13):2103714.
|
[156] |
He F, Tang W, Zhang X, Deng L, Luo J. High energy density solid state lithium metal batteries enabled by sub-5 microm solid polymer electrolytes. Adv Mater. 2021;33(45):e2105329.
|
[157] |
Zhao Q, Liu XT, Stalin S, Khan K, Archer LA. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat Energy. 2019;4(5):365-373.
|
[158] |
Zhang S, Sun F, Du X, et al. In situ-polymerized lithium salt as a polymer electrolyte for high-safety lithium metal batteries. Energy Environ Sci. 2023;16(6):2591-2602.
|
[159] |
Zhang J, Wu H, Du X, et al. Smart deep eutectic electrolyte enabling thermally induced shutdown toward high-safety lithium metal batteries. Adv Energy Mater. 2022;13(3):2202529.
|
[160] |
Lee MJ, Han J, Lee K, et al. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature. 2022;601(7892):217-222.
|
[161] |
Yue QL, He CX, Jiang HR, Wu MC, Zhao TS. A hybrid battery thermal management system for electric vehicles under dynamic working conditions. Int J Heat Mass Trans. 2021;164:120528.
|
[162] |
Zhang W, Liang Z, Yin X, Ling G. Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling. Appl Therm Eng. 2021;184:116380.
|
[163] |
Jiang K, Liao G, Jiaqiang E, et al. Thermal management technology of power lithium-ion batteries based on the phase transition of materials: a review. J Energy Storage. 2020;32:101816.
|
[164] |
Zhou H, Dai C, Liu Y, Fu X, Du Y. Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid. J Power Sources. 2020;473:228545.
|
[165] |
Zhi M, Fan R, Yang X, et al. Recent research progress on phase change materials for thermal management of lithium-ion batteries. J Energy Storage. 2022;45:103694.
|
[166] |
Zhang X, Sun Q, Zhen C, et al. Recent progress in flame-retardant separators for safe lithium-ion batteries. Energy Storage Mater. 2021;37:628-647.
|
[167] |
Yusuf A, Li Z, Yuan X, Wang DY. Toward a new generation of fire-safe energy storage devices: recent progress on fire-retardant materials and strategies for energy storage devices. Small Methods. 2022;6(3):e2101428.
|
[168] |
Cao W, Qiu Y, Peng P, Jiang F. A full-scale electrical-thermal-fluidic coupling model for Li-ion battery energy storage systems. Appl Therm Eng. 2021;185:116360.
|
[169] |
Huo H, Huang K, Luo W, et al. Evaluating interfacial stability in solid-state pouch cells via ultrasonic imaging. ACS Energy Lett. 2022;7(2):650-658.
|
[170] |
Shin SS, Kim JS, Choi S, et al. Quantitative determination of lithium depletion during rapid cycling in sulfide-based all-solid-state batteries. Chem Commun. 2021;57(28):3453-3456.
|
[171] |
Lu Y, Zhao CZ, Zhang R, et al. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Sci Adv. 2021;7(38):eabi5520.
|
[172] |
Wu H, Zhuo D, Kong D, Cui Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat Commun. 2014;5(1):5193.
|
/
〈 | 〉 |