Electrohydrodynamic printing for high resolution patterning of flexible electronics toward industrial applications
Zhouping Yin, Dazhi Wang, Yunlong Guo, Zhiyuan Zhao, Liqiang Li, Wei Chen, Yongqing Duan
Electrohydrodynamic printing for high resolution patterning of flexible electronics toward industrial applications
Electrohydrodynamic (EHD) printing technique, which deposits micro/nanostructures through high electric force, has recently attracted significant research interest owing to their fascinating characteristics in high resolution (<1 μm), wide material applicability (ink viscosity 1-10 000 cps), tunable printing modes (electrospray, electrospinning, and EHD jet printing), and compatibility with flexible/wearable applications. Since the laboratory level of the EHD printed electronics' resolution and efficiency is gradually approaching the commercial application level, an urgent need for developing EHD technique from laboratory into industrialization have been put forward. Herein, we first discuss the EHD printing technique, including the ink design, droplet formation, and key technologies for promoting printing efficiency/accuracy. Then we summarize the recent progress of EHD printing in fabrication of displays, organic field-effect transistors (OFETs), transparent electrodes, and sensors and actuators. Finally, a brief summary and the outlook for future research effort are presented.
display / electrohydrodynamic printing / flexible electronics / organic field-effect transistor / printhead
[1] |
Shi X, Zuo Y, Zhai P, et al. Large-area display textiles integrated with functional systems. Nature. 2021;591(7849):240-245.
|
[2] |
Choi M, Park YJ, Sharma BK, Bae SR, Kim SY, Ahn JH. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor. Sci Adv. 2018;4(4):eaas8721.
|
[3] |
Su R, Park SH, Ouyang X, Ahn SI, McAlpine MC. 3D-printed flexible organic light-emitting diode displays. Sci Adv. 2022;8(1):eabl8798, 1.
|
[4] |
Wang C, Li X, Hu H, et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat Biomed Eng. 2018;2(9):687-695.
|
[5] |
Zhu C, Chortos A, Wang Y, et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat Electron. 2018;1(3):183-190.
|
[6] |
Chen C, Chen J, Han H, et al. Perovskite solar cells based on screen-printed thin films. Nature. 2022;612:266-271.
|
[7] |
Yang KJ, Kim S, Kim SY, et al. Flexible Cu2ZnSn(S,Se)4 solar cells with over 10% efficiency and methods of enlarging the cell area. Nat Commun. 2019;10(1):2959.
|
[8] |
Li K, Zhao J, Zhussupbekova A, et al. 4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage. Nat Commun. 2022;13(1):1-11.
|
[9] |
Liu RY, Wang ZL, Fukuda K, Someya T. Flexible self-charging power sources. Nat Rev Mater. 2022;7(11):870-886.
|
[10] |
Nayak L, Mohanty S, Nayak SK, Ramadoss A. A review on inkjet printing of nanoparticle inks for flexible electronics. J Mater Chem C. 2019;7(29):8771-8795.
|
[11] |
Yin Z, Huang Y, Bu N, Wang X, Xiong Y. Inkjet printing for flexible electronics: materials, processes and equipments. Chin Sci Bull. 2010;55(30):3383-3407.
|
[12] |
Park JU, Hardy M, Kang SJ, et al. High-resolution electrohydrodynamic jet printing. Nat Mater. 2007;6(10):782-789.
|
[13] |
Kwon H-j, Hong J, Nam SY, et al. Overview of recent progress in electrohydrodynamic jet printing in practical printed electronics: focus on variety of printable materials for each component. Mater Adv. 2021;2(17):5593-5615.
|
[14] |
Galliker P, Schneider J, Eghlidi H, Kress S, Sandoghdar V, Poulikakos D. Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets. Nat Commun. 2012;3(1):890.
|
[15] |
Mkhize N, Bhaskaran H. Electrohydrodynamic jet printing: introductory concepts and considerations. Small Sci. 2022;2(2):2100073.
|
[16] |
Rahman MK, Kim SJ, Phung TH, Lee JS, Yu J, Kwon KS. Three-dimensional surface printing method for interconnecting electrodes on opposite sides of substrates. Sci Rep. 2020;10(1):18645.
|
[17] |
Rahmati M, Mills DK, Urbanska AM, et al. Electrospinning for tissue engineering applications. Prog Mater Sci. 2021;117:100721.
|
[18] |
Gañán-Calvo AM, López-Herrera JM, Herrada MA, Ramos A, Montanero JM. Review on the physics of electrospray: from electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray. J Aerosol Sci. 2018;125(27):32-56.
|
[19] |
Zhao X, Deng W. Printing photovoltaics by electrospray. Opto-Electron Adv. 2020;3(6):190038.
|
[20] |
Duan Y, Ding Y, Bian J, Xu Z, Yin Z, Huang Y. Ultra-stretchable piezoelectric nanogenerators via large-scale aligned fractal inspired micro/nanofibers. Polymers (Basel). 2017;9(12):714.
|
[21] |
Ye D, Ding Y, Duan Y, Su J, Yin Z, Huang YA. Large-scale direct-writing of aligned nanofibers for flexible electronics. Small. 2018;14(21):1703521.
|
[22] |
Zheng X, Jia Y, Chen A. Azobenzene-containing liquid crystalline composites for robust ultraviolet detectors based on conversion of illuminance-mechanical stress-electric signals. Nat Commun. 2021;12(1):4875.
|
[23] |
Kim BH, Onses MS, Lim JB, et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 2015;15(2):969-973.
|
[24] |
Li H, Duan Y, Shao Z, et al. High-resolution pixelated light emitting diodes based on electrohydrodynamic printing and coffee-ring-free quantum dot film. Adv Mater Technol. 2020;5(10):2000401.
|
[25] |
Zhu M, Duan Y, Liu N, et al. Electrohydrodynamically printed high-resolution full-color hybrid perovskites. Adv Funct Mater. 2019;29(35):1903294.
|
[26] |
Duan Y, Yang W, Xiao J, et al. High density, addressable electrohydrodynamic printhead made of a silicon plate and polymer nozzle structure. Lab Chip. 2022;22(20):3877-3884.
|
[27] |
Li H, Liu N, Shao Z, et al. Coffee ring elimination and crystalline control of electrohydrodynamically printed high-viscosity perovskites. J Mater Chem C. 2019;7(47):14867-14873.
|
[28] |
Jeong YJ, Lee H, Lee BS, et al. Directly drawn poly(3-hexylthiophene) field-effect transistors by electrohydrodynamic jet printing: improving performance with surface modification. ACS Appl Mater Interfaces. 2014;6(13):10736-10743.
|
[29] |
Tang X, Kwon HJ, Li Z, et al. Strategy for selective printing of gate insulators customized for practical application in organic integrated devices. ACS Appl Mater Interfaces. 2021;13(1):1043-1056.
|
[30] |
Kwon HJ, Tang X, Kim S, et al. Molecular engineering of printed semiconducting blends to develop organic integrated circuits: crystallization, charge transport, and device application analyses. ACS Appl Mater Interfaces. 2022;14(20):23678-23691.
|
[31] |
Han Y, Dong J. Electrohydrodynamic (EHD) printing of molten metal ink for flexible and stretchable conductor with self-healing capability. Adv Mater Technol. 2017;3(3):1700268.
|
[32] |
Cui Z, Han Y, Huang Q, Dong J, Zhu Y. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale. 2018;10(15):6806-6811.
|
[33] |
Ren P, Dong J. Direct fabrication of VIA interconnects by electrohydrodynamic printing for multi-layer 3D flexible and stretchable electronics. Adv Mater Technol. 2021;6(9):2100280.
|
[34] |
Zhao K, Wang D, Wang Z, et al. Fabrication of piezoelectric thick-film stator using electrohydrodynamic jet printing for micro rotary ultrasonic motors. Ceram Int. 2020;46(16):26129-26135.
|
[35] |
Wang Q, Zhang G, Zhang H, Duan Y, Yin Z, Huang Y. High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Adv Funct Mater. 2021;31(28):2100857.
|
[36] |
Mkhize N, Murugappan K, Castell MR, Bhaskaran H. Electrohydrodynamic jet printed conducting polymer for enhanced chemiresistive gas sensors. J Mater Chem C. 2021;9(13):4591-4596.
|
[37] |
Duan Y, Li H, Yang W, et al. Mode-tunable, micro/nanoscale electrohydrodynamic deposition techniques for optoelectronic device fabrication. Nanoscale. 2022;14(37):13452-13472.
|
[38] |
Cai S, Sun Y, Wang Z, Yang W, Li X, Yu H. Mechanisms, influencing factors, and applications of electrohydrodynamic jet printing. Nanotechnol Rev. 2021;10(1):1046-1078.
|
[39] |
He J, Zhang B, Li Z, et al. High-resolution electrohydrodynamic bioprinting: a new biofabrication strategy for biomimetic micro/nanoscale architectures and living tissue constructs. Biofabrication. 2020;12(4):042002.
|
[40] |
Onses MS, Sutanto E, Ferreira PM, Alleyne AG, Rogers JA. Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small. 2015;11(34):4237-4266.
|
[41] |
Morad MR, Rajabi A, Razavi M, Sereshkeh SR. A very stable high throughput Taylor cone-jet in electrohydrodynamics. Sci Rep. 2016;6(1):38509.
|
[42] |
Lim S, Park SH, An TK, Lee HS, Kim SH. Electrohydrodynamic printing of poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) electrodes with ratio-optimized surfactant. RSC Adv. 2016;6(3):2004-2010.
|
[43] |
Li X, Jeong YJ, Jang J, Lim S, Kim SH. The effect of surfactants on electrohydrodynamic jet printing and the performance of organic field-effect transistors. Phys Chem Chem Phys. 2018;20(2):1210-1220.
|
[44] |
An S, Lee MW, Kim NY, et al. Effect of viscosity, electrical conductivity, and surface tension on direct-current-pulsed drop-on-demand electrohydrodynamic printing frequency. Appl Phys Lett. 2014;105(21):214102.
|
[45] |
Scheideler WJ, Chen C-H. The minimum flow rate scaling of Taylor cone-jets issued from a nozzle. Appl Phys Lett. 2014;104(2):024103.
|
[46] |
Guo L, Duan Y, Huang Y, Yin Z. Experimental study of the influence of ink properties and process parameters on ejection volume in electrohydrodynamic jet printing. Micromachines. 2018;9(10):522.
|
[47] |
Mampallil D, Eral HB. A review on suppression and utilization of the coffee-ring effect. Adv Colloid Interface. 2018;252:38-54.
|
[48] |
Lyu B, Im S, Jing H, et al. Work function engineering of electrohydrodynamic-jet-printed PEDOT:PSS electrodes for high-performance printed electronics. ACS Appl Mater Interfaces. 2020;12(15):17799-17805.
|
[49] |
Rahman K, Ali K, Muhammad NM, Hyun M-t, Choi K-h. Fine resolution drop-on-demand electrohydrodynamic patterning of conductive silver tracks on glass substrate. Appl Phys A Mater Sci Process. 2012;111(2):593-600.
|
[50] |
Wang D, Lu L, Zhao Z, et al. Large area polymer semiconductor sub-microwire arrays by coaxial focused electrohydrodynamic jet printing for high-performance OFETs. Nat Commun. 2022;13(1):6214.
|
[51] |
Yang J, Jiang Y, Tu Z, et al. High-performance ambipolar polymers based on electron-withdrawing group substituted bay-annulated indigo. Adv Funct Mater. 2019;29(7):1804839.
|
[52] |
Chen J, Kuang J, Liu Y, et al. Regioregular pyridal[1,2,3]triazole-based polymer semiconductors for high mobility and near-infrared light emission applications. Adv Opt Mater. 2022;10(21):2201243.
|
[53] |
Kim H, Lee JA, Ambulo CP, et al. Intelligently actuating liquid crystal elastomer-carbon nanotube composites. Adv Funct Mater. 2019;29(48):1905063.
|
[54] |
Zhang G, Zhang H, Yu R, Duan Y, Huang Y, Yin Z. Critical size/viscosity for coffee-ring-free printing of perovskite micro/nanopatterns. ACS Appl Mater Interfaces. 2022;14(12):14712-14720.
|
[55] |
Yakunin S, Chaaban J, Benin BM, et al. Radiative lifetime-encoded unicolour security tags using perovskite nanocrystals. Nat Commun. 2021;12(1):981.
|
[56] |
Meng T, Zheng Y, Zhao D, et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat Photonics. 2022;16(4):297-303.
|
[57] |
Duan M, Feng Z, Wu Y, et al. Inkjet-printed micrometer-thick patterned perovskite quantum dot films for efficient blue-to-green photoconversion. Adv Mater Technol. 2019;4(12):1900779.
|
[58] |
Chen J, Jiang Y, Yang J, et al. Copolymers of bis-diketopyrrolopyrrole and benzothiadiazole derivatives for high-performance ambipolar field-effect transistors on flexible substrates. ACS Appl Mater Interfaces. 2018;10(31):25858-25865.
|
[59] |
Yang J, Yang X, Chen J, et al. A multihalogenation strategy for ambipolar transistors and high-gain inverters with good noise margin. Sci Bull. 2022;67(18):1849-1853.
|
[60] |
Light fantastic: printing a flexible image display. Nature. 2022;601(7893):301.
|
[61] |
Li H, Duan Y, Jin J, et al. 32.2: Multifunctional electrohydrodynamic printing and its industrial applications in flat panel display manufacturing. Paper presented at: SID Symposium Digest of Technical Papers. 2018.
|
[62] |
Liu J, Xiao L, Rao Z, Dong B, Yin Z, Huang Y. High-performance, micrometer thick/conformal, transparent metal-network electrodes for flexible and curved electronic devices. Adv Mater Technol. 2018;3(8):1800155.
|
[63] |
Aydemir C, Altay BN, Akyol M. Surface analysis of polymer films for wettability and ink adhesion. Color Res Appl. 2020;46(2):489-499.
|
[64] |
Raut NC, Al-Shamery K. Inkjet printing metals on flexible materials for plastic and paper electronics. J Mater Chem C. 2018;6(7):1618-1641.
|
[65] |
Zeleny J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys Rev. 1914;3(2):69-91.
|
[66] |
Panahi A, Pishevar AR, Tavakoli MR. Experimental investigation of electrohydrodynamic modes in electrospraying of viscoelastic polymeric solutions. Phys Fluids. 2020;32(1):012116.
|
[67] |
Hailong L, Honglei W, Ding Y, Jiaqi C, Junfeng W. A study of the temperature effect on the spray characteristics in the cone-jet mode of electrohydrodynamic atomization (EHDA) with viscous liquids. Phys Fluids. 2023;35(4):043338.
|
[68] |
Cheng J-b, Yang L-j, Fu Q-f, et al. Pulsating modes of a Taylor cone under an unsteady electric field. Phys Fluids. 2022;34(1): 012007.
|
[69] |
Ponce-Torres A, Rebollo-Muñoz N, Herrada MA, Gañán-Calvo AM, Montanero JM. The steady cone-jet mode of electrospraying close to the minimum volume stability limit. J Fluid Mech. 2018;857:142-172.
|
[70] |
Sahay R, Teo CJ, Chew YT. New correlation formulae for the straight section of the electrospun jet from a polymer drop. J Fluid Mech. 2013;735:150-175.
|
[71] |
Bu N, Huang Y, Duan Y, Ding Y, Yin Z. Near-field behavior of electrified jet under moving substrate constrains. AIP Adv. 2015;5(1):017138.
|
[72] |
Maktabi S, Chiarot PR. Electrohydrodynamic printing of organic polymeric resistors on flat and uneven surfaces. J Appl Phys. 2016;120(8):084903.
|
[73] |
Jaworek A, Sobczyk AT. Electrospraying route to nanotechnology: an overview. J Electrostat. 2008;66(3-4):197-219.
|
[74] |
Grigoriev DA, Edirisinghe MJ, Bao X, Evans JRG, Luklinska ZB. Preparation of silicon carbide by electrospraying of a polymeric precursor. Philos Mag Lett. 2001;81(4):285-291.
|
[75] |
Jaworek A. Micro- and nanoparticle production by electrospraying. Powder Technol. 2007;176(1):18-35.
|
[76] |
Barrero A, Lopez-Herrera JM, Boucard A, Loscertales IG, Marquez M. Steady cone-jet electrosprays in liquid insulator baths. J Colloid Interf Sci. 2004;272(1):104-108.
|
[77] |
Thompson CJ, Chase GG, Yarin AL, Reneker DH. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer. 2007;48(23):6913-6922.
|
[78] |
Park JH, Braun PV. Coaxial electrospinning of self-healing coatings. Adv Mater. 2010;22(4):496-499.
|
[79] |
Brown TD, Dalton PD, Hutmacher DW. Direct writing by way of melt electrospinning. Adv Mater. 2011;23(47):5651-5657.
|
[80] |
Park JU, Lee S, Unarunotai S, et al. Nanoscale, electrified liquid jets for high-resolution printing of charge. Nano Lett. 2010;10(2):584-591.
|
[81] |
Onses MS, Song C, Williamson L, et al. Hierarchical patterns of three-dimensional block-copolymer films formed by electrohydrodynamic jet printing and self-assembly. Nat Nanotechnol. 2013;8(9):667-675.
|
[82] |
Onses MS, Ramirez-Hernandez A, Hur SM, et al. Block copolymer assembly on nanoscale patterns of polymer brushes formed by electrohydrodynamic jet printing. ACS Nano. 2014;8(7):6606-6613.
|
[83] |
Li K, Wang D, Wang Q, et al. Thermally assisted electrohydrodynamic jet high-resolution printing of high-molecular weight biopolymer 3D structures. Macromol Mater Eng. 2018;303(11):1800345.
|
[84] |
Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246(4926):64-71.
|
[85] |
Armano M, Audley H, Auger G, et al. Sub-Femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results. Phys Rev Lett. 2016;116(23):231101.
|
[86] |
Rosell-Llompart J, Grifoll J, Loscertales IG. Electrosprays in the cone-jet mode: from Taylor cone formation to spray development. J Aerosol Sci. 2018;125:2-31.
|
[87] |
Guastaferro M, Baldino L, Cardea S, Reverchon E. Supercritical CO2 assisted electrospray of PVP-Rutin mixtures using a liquid collector. J Supercrit Fluids. 2022;188:105684.
|
[88] |
Pu F, Ugrin SA, Radosevich AJ, et al. High-throughput intact protein analysis for drug discovery using infrared matrix-assisted laser desorption electrospray ionization mass spectrometry. Anal Chem. 2022;94(39):13566-13574.
|
[89] |
Riboux G, MarÍN ÁG, Loscertales IG, Barrero A. Whipping instability characterization of an electrified visco-capillary jet. J Fluid Mech. 2011;671:226-253.
|
[90] |
Li J, Zhang D, Yang T, Yang S, Yang X, Zhu H. Nanofibrous membrane of graphene oxide-in-polyacrylonitrile composite with low filtration resistance for the effective capture of PM2.5. J Membrane Sci. 2018;551:85-92.
|
[91] |
Xu W, Min SY, Hwang H, Lee TW. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci Adv. 2016;2(6):e1501326.
|
[92] |
Yang G, Wang J, Wang Y, Li L, Guo X, Zhou S. An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy. ACS Nano. 2015;9(2):1161-1174.
|
[93] |
Cheon S, Kang H, Kim H, et al. High-performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride-silver nanowire composite nanofibers. Adv Funct Mater. 2018;28(2): 1703778.
|
[94] |
Sun D, Chang C, Li S, Lin L. Near-field electrospinning. Nano Lett. 2006;6(4):839-842.
|
[95] |
Bu N, Huang Y, Wang X, Yin Z. Continuously tunable and oriented nanofiber direct-written by mechano-electrospinning. Mater Manuf Process. 2012;27(12):1318-1323.
|
[96] |
Duan Y, Ding Y, Xu Z, Huang Y, Yin Z. Helix electrohydrodynamic printing of highly aligned serpentine micro/nanofibers. Polymers (Basel). 2017;9(9):434.
|
[97] |
Mishra S, Barton KL, Alleyne AG, Ferreira PM, Rogers JA. High-speed and drop-on-demand printing with a pulsed electrohydrodynamic jet. J Micromech Microeng. 2010;20(9):095026.
|
[98] |
Choi HK, Park J-U, Park OO, Ferreira PM, Georgiadis JG, Rogers JA. Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing. Appl Phys Lett. 2008;92(12):123109.
|
[99] |
Chen CH, Saville DA, Aksay IA. Scaling laws for pulsed electrohydrodynamic drop formation. Appl Phys Lett. 2006;89(12):124103.
|
[100] |
Kim J, Oh H, Kim SS. Electrohydrodynamic drop-on-demand patterning in pulsed cone-jet mode at various frequencies. J Aerosol Sci. 2008;39(9):819-825.
|
[101] |
Marginean I, Nemes P, Parvin L, Vertes A. How much charge is there on a pulsating Taylor cone? Appl Phys Lett. 2006;89(6):064104.
|
[102] |
Parvin L, Galicia MC, Gauntt JM, et al. Electrospray diagnostics by Fourier analysis of current oscillations and fast imaging. Anal Chem. 2005;77(13):3908-3915.
|
[103] |
Stachewicz U, Yurteri CU, Marijnissen JC, Dijksman JF. Stability regime of pulse frequency for single event electrospraying. Appl Phys Lett. 2009;95(22):224105.
|
[104] |
Kim S, Kang H, Kang K, Lee S, Cho K, Hwang J. Effect of meniscus damping ratio on drop-on-demand electrohydrodynamic jetting. Appl Sci. 2018;8(2):164.
|
[105] |
Kim H, Yang J, Chung J. Resonant oscillation phenomena of a sessile droplet on electrohydrodynamic jetting nozzle. Jpn J Appl Phys. 2014;53(5S3):05HC03.
|
[106] |
Li H, Yang W, Duan Y, et al. Enhancing pulsed electrohydrodynamic printing frequency via high-order-mode ejection. Phys Fluids. 2021;33(8):081704.
|
[107] |
Yang J, Cho B, Chung J. Optimization of pulsed voltage waveform for electrohydrodynamic jetting on-demand. J Mech Sci Technol. 2018;32(8):3775-3786.
|
[108] |
Wei C, Qin H, Ramírez-Iglesias NA, Chiu C-P, Lee Y-s, Dong J. High-resolution ac-pulse modulated electrohydrodynamic jet printing on highly insulating substrates. J Micromech Microeng. 2014;24(4):045010.
|
[109] |
Richner P, Eghlidi H, Kress SJ, Schmid M, Norris DJ, Poulikakos D. Printable nanoscopic metamaterial absorbers and images with diffraction-limited resolution. ACS Appl Mater Interfaces. 2016;8(18):11690-11697.
|
[110] |
Li H, Yang W, Duan Y, et al. Residual oscillation suppression via waveform optimization for stable electrohydrodynamic drop-on-demand printing. Addit Manuf. 2022;55:102849.
|
[111] |
Chen H, Chen J, Jiang J, et al. Fast on-off controlling of electrohydrodynamic printing based on AC oscillation induced voltage. Sci Rep. 2023;13(1):3790.
|
[112] |
Ball AK, Roy SS, Kisku DR, Murmu NC. A new approach to quantify the uniformity grade of the electrohydrodynamic inkjet printed features and optimization of process parameters using nature-inspired algorithms. Int J Precis Eng Manuf. 2019;21(3):387-402.
|
[113] |
Qian L, Lan H, Zhang G. A theoretical model for predicting the feature size printed by electrohydrodynamic jet printing. Appl Phys Lett. 2018;112(20):203505.
|
[114] |
Chaaban J. On Droplet Microfluidics and Security Feature Microfabrication with Scalable Electrohydrodynamic Nanoprinting. ETH Zurich; 2021.
|
[115] |
Yang W, Duan Y, Gao J, Li H, Huang Y, Yin Z. Addressable electrohydrodynamic jetting via tuning the potential drop of liquid within the printhead. Phys Fluids. 2022;34(9):092005.
|
[116] |
Pan Y, Chen X, Zeng L, Huang Y, Yin Z. Fabrication and evaluation of a protruding Si-based printhead for electrohydrodynamic jet printing. J Micromech Microeng. 2017;27(12):125004.
|
[117] |
Lojewski B, Yang W, Duan H, Xu C, Deng W. Design, fabrication, and characterization of linear multiplexed electrospray atomizers micro-machined from metal and polymers. Aerosol Sci Tech. 2013;47(2):146-152.
|
[118] |
Garcia-Lopez E, Olvera-Trejo D, Velasquez-Garcia LF. 3D printed multiplexed electrospinning sources for large-scale production of aligned nanofiber mats with small diameter spread. Nanotechnology. 2017;28(42):425302.
|
[119] |
Zou W, Yu H, Zhou P, Liu L. Tip-assisted electrohydrodynamic jet printing for high-resolution microdroplet deposition. Mater Des. 2019;166:107609.
|
[120] |
Liu Y, Huang Y. Theoretical and experimental studies of electrostatic focusing for electrohydrodynamic jet printing. J Micromech Microeng. 2019;29(6):065002.
|
[121] |
Tse L, Barton K. A field shaping printhead for high-resolution electrohydrodynamic jet printing onto non-conductive and uneven surfaces. Appl Phys Lett. 2014;104(14):143510.
|
[122] |
Tse L, Barton K. Airflow assisted printhead for high-resolution electrohydrodynamic jet printing onto non-conductive and tilted surfaces. Appl Phys Lett. 2015;107(5):054103.
|
[123] |
Qian L, Lan H, Zhang G, Zhao J, Zou S. A novel microscale 3D printing based on electric-field-driven jet deposition. Paper presented at: International Manufacturing Science and Engineering Conference. 2018.
|
[124] |
Wang D, Zhao X, Lin Y, et al. Nanoscale coaxial focused electrohydrodynamic jet printing. Nanoscale. 2018;10(21):9867-9879.
|
[125] |
Liu Z, Sun DD, Guo P, Leckie JO. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett. 2007;7(4):1081-1085.
|
[126] |
Regele J, Papac M, Rickard M, Dunn-Rankin D. Effects of capillary spacing on EHD spraying from an array of cone jets. J Aerosol Sci. 2002;33(11):1471-1479.
|
[127] |
Wu X, Oleschuk RD, Cann NM. Characterization of microstructured fibre emitters: in pursuit of improved nano electrospray ionization performance. Analyst. 2012;137(18):4150-4161.
|
[128] |
Wang Z, Chen X, Zhang J, et al. Fabrication and evaluation of controllable deposition distance for aligned pattern by multi-nozzle near-field electrospinning. AIP Adv. 2018;8(7):075111.
|
[129] |
Quang Tran Si B, Byun D, Lee S. Experimental and theoretical study of a cone-jet for an electrospray microthruster considering the interference effect in an array of nozzles. J Aerosol Sci. 2007;38(9):924-934.
|
[130] |
Peng L, Pan Y, Wang Z, Feng Y, Liu Z. Design and evaluation of a linear nozzle array with double auxiliary electrodes for restraining cross-talk effect in parallel electrohydrodynamic jet printing. J Micromech Microeng. 2022;32(10):105009.
|
[131] |
Sutanto E, Shigeta K, Kim YK, et al. A multimaterial electrohydrodynamic jet (E-jet) printing system. J Micromech Microeng. 2012;22(4):045008.
|
[132] |
Pan Y, Huang Y, Guo L, Ding Y, Yin Z. Addressable multi-nozzle electrohydrodynamic jet printing with high consistency by multi-level voltage method. AIP Adv. 2015;5(4):047108.
|
[133] |
Khan A, Rahman K, Ali S, Khan S, Wang B, Bermak A. Fabrication of circuits by multi-nozzle electrohydrodynamic inkjet printing for soft wearable electronics. J Mater Res. 2021;36(18):1-11.
|
[134] |
Deng W, Klemic JF, Li X, Reed MA, Gomez A. Increase of electrospray throughput using multiplexed microfabricated sources for the scalable generation of monodisperse droplets. J Aerosol Sci. 2006;37(6):696-714.
|
[135] |
Lee K, Lim B, Lee H, et al. Multi nozzle electrohydrodynamic inkjet printing head by batch fabrication. IEEE. 2013;1165-1168.
|
[136] |
Tang K, Lin Y, Matson DW, Kim T, Smith RD. Generation of multiple electrosprays using microfabricated emitter arrays for improved mass spectrometric sensitivity. Anal Chem. 2001;73(8):1658-1663.
|
[137] |
Olvera-Trejo D, Velasquez-Garcia LF. Additively manufactured MEMS multiplexed coaxial electrospray sources for high-throughput, uniform generation of core-shell microparticles. Lab Chip. 2016;16(21):4121-4132.
|
[138] |
Barton K, Mishra S, Alleyne A, Ferreira P, Rogers J. Control of high-resolution electrohydrodynamic jet printing. Control Eng Pract. 2011;19(11):1266-1273.
|
[139] |
Li Z, Al-Milaji KN, Zhao H, Chen D-R. Ink bridge control in the electrohydrodynamic printing with a coaxial nozzle. J Manuf Process. 2020;60:418-425.
|
[140] |
Carter W, Popell GC, Samuel J, Mishra S. A fundamental study and modeling of the micro-droplet formation process in near-field electrohydrodynamic jet printing. J Micro Nano-Manuf. 2014;2(2):021005.
|
[141] |
Kien Nguyen T, Nguyen VD, Seong B, Hoang N, Park J, Byun D. Control and improvement of jet stability by monitoring liquid meniscus in electrospray and electrohydrodynamic jet. J Aerosol Sci. 2014;71:29-39.
|
[142] |
Altın B, Tse LYL, Barton K. Visual feedback based droplet size regulation in electrohydrodynamic jet printing. Am Soc Mech Eng. 2014;V002T35A003.
|
[143] |
Singh R, Zhang X, Chen Y, Zheng J, Qin H. In-situ real-time characterization of micro-filaments for electrohydrodynamic ink-jet printing using machine vision. Paper presented at: Procedia Manuf. 2018.
|
[144] |
Zhang X, Lies B, Lyu H, Qin H. In-situ monitoring of electrohydrodynamic inkjet printing via scalar diffraction for printed droplets. J Manuf Syst. 2019;53:1-10.
|
[145] |
Murata K, Masuda K. Accessed Feb. 2023.
|
[146] |
Murata K, Masuda K. Super inkjet printer technology and its properties. Convertech e-Print. 2011;1:108-111.
|
[147] |
Byun D. Accessed Feb. 2023.
|
[148] |
Ma S.
|
[149] |
Zhang Z, Chen J, Yang H, Yin Z. Accurate measurements of droplet volume with coherence scanning interferometry. IEEE Trans Instrum Meas. 2023;72:725006015.
|
[150] |
Kim K, Kim G, Lee BR, et al. High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes. Nanoscale. 2015;7(32):13410-13415.
|
[151] |
Wang H, Zhang Y, Liu Y, et al. High-efficiency and high-resolution patterned quantum dot light emitting diodes by electrohydrodynamic printing. Nanoscale Adv. 2023;5(4):1183-1189.
|
[152] |
An HS, Park YG, Kim K, Nam YS, Song MH, Park JU. High-resolution 3D printing of freeform, transparent displays in ambient air. Adv Sci. 2019;6(23):1901603.
|
[153] |
Mu L, Jiang C, Wang J, et al. 34-3: OLED display with high resolution fabricated by electrohydrodynamic printing. Paper presented at: SID Symposium Digest of Technical Papers. 2020.
|
[154] |
Yang X, Yan ZJ, Zhong CM, et al. Electrohydrodynamically printed high-resolution arrays based on stabilized CsPbBr3 quantum dot inks. Adv Opt Mater. 2023;11(9):2202673.
|
[155] |
Richner P, Galliker P, Lendenmann T, et al. Full-spectrum flexible color printing at the diffraction limit. ACS Photon. 2016;3(5):754-757.
|
[156] |
Altintas Y, Torun I, Yazici AF, et al. Multiplexed patterning of cesium lead halide perovskite nanocrystals by additive jet printing for efficient white light generation. Chem Eng J. 2020;380:122493.
|
[157] |
Sekitani T, Noguchi Y, Zschieschang U, Klauk H, Someya T. Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proc Natl Acad Sci U S A. 2008;105(13):4976-4980.
|
[158] |
Yokota T, Sekitani T, Kato Y, et al. Low-voltage organic transistor with subfemtoliter inkjet source-drain contacts. MRS Commun. 2011;1(1):3-6.
|
[159] |
Zhang J, Geng B, Duan S, et al. High-resolution organic field-effect transistors manufactured by electrohydrodynamic inkjet printing of doped electrodes. J Mater Chem C. 2020;8(43):15219-15223.
|
[160] |
Kim K, Bae J, Noh SH, Jang J, Kim SH, Park CE. Direct writing and aligning of small-molecule organic semiconductor crystals via “dragging mode” electrohydrodynamic jet printing for flexible organic field-effect transistor arrays. J Phys Chem Lett. 2017;8(22):5492-5500.
|
[161] |
Kim K, Oh SM, Hong J, et al. Electrohydrodynamic jet printing of small-molecule semiconductor crystals on chemically patterned surface for high-performance organic field-effect transistors. Mater Chem Phys. 2022;285:126165.
|
[162] |
Prasetyo FD, Yudistira HT, Nguyen VD, Byun D. Ag dot morphologies printed using electrohydrodynamic (EHD) jet printing based on a drop-on-demand (DOD) operation. J Micromech Microeng. 2013;23(9):095028.
|
[163] |
Jang Y, Kim J, Byun D. Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing. J Phys D Appl Phys. 2013;46(15):155103.
|
[164] |
Schneider J, Rohner P, Thureja D, Schmid M, Galliker P, Poulikakos D. Electrohydrodynamic NanoDrip printing of high aspect ratio metal grid transparent electrodes. Adv Funct Mater. 2016;26(6):833-840.
|
[165] |
Feng X, Wang L, Huang YYS, et al. Cost-effective fabrication of uniformly aligned silver nanowire microgrid-based transparent electrodes with higher than 99% transmittance. ACS Appl Mater Interfaces. 2022;14(34):39199-39210.
|
[166] |
Lee KH, Lee SS, Ahn DB, Lee J, Byun D, Lee SY. Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing. Sci Adv. 2020;6(10):eaaz1692.
|
[167] |
Zhou P, Yu H, Zou W, Wang Z, Liu L. High-resolution and controllable nanodeposition pattern of Ag nanoparticles by electrohydrodynamic jet printing combined with coffee ring effect. Adv Mater Interfaces. 2019;6(20):1900912.
|
[168] |
Lee H, Seong B, Kim J, Jang Y, Byun D. Direct alignment and patterning of silver nanowires by electrohydrodynamic jet printing. Small. 2014;10(19):3918-3922.
|
[169] |
Li D, Lai WY, Feng F, Huang W. Post-treatment of screen-printed silver nanowire networks for highly conductive flexible transparent films. Adv Mater Interfaces. 2021;8(13): 2100548.
|
[170] |
Li H, Zi D, Zhu X, et al. Electric field driven printing of repeatable random metal meshes for flexible transparent electrodes. Opt Laser Technol. 2023;157:108730.
|
[171] |
Cheng T, Wu YW, Chen YL, Zhang YZ, Lai WY, Huang W. Inkjet-printed high-performance flexible micro-supercapacitors with porous nanofiber-like electrode structures. Small. 2019;15(34):e1901830.
|
[172] |
Myers RT, Ayers J. A nitric oxide sensor fabricated through e-jet printing towards use in bioelectronics interfaces. J Appl Electrochem. 2018;49(2):229-239.
|
[173] |
Choi KH, Zubair M, Dang HW. Characterization of flexible temperature sensor fabricated through drop-on-demand electrohydrodynamics patterning. Jpn J Appl Phys. 2014;53(5S3):05HB02.
|
[174] |
Zeeshan Yousaf HM, Kim SW, Hassan G, Karimov K, Choi KH, Sajid M. Highly sensitive wide range linear integrated temperature compensated humidity sensors fabricated using electrohydrodynamic printing and electrospray deposition. Sens Actuators B Chem. 2020;308:127680.
|
[175] |
Dong H, Zhang L, Wu T, et al. Flexible pressure sensor with high sensitivity and fast response for electronic skin using near-field electrohydrodynamic direct writing. Org Electron. 2021;89:106044.
|
[176] |
Ali S, Hassan A, Hassan G, Bae J, Lee CH. All-printed humidity sensor based on graphene/methyl-red composite with high sensitivity. Carbon. 2016;105:23-32.
|
[177] |
Ahmad S, Rahman K, Shakeel M, Qasuria TAK, Cheema TA, Khan A. A low-cost printed humidity sensor on cellulose substrate by EHD printing. J Mater Res. 2021;36(18):3667-3678.
|
[178] |
Park JU, Lee JH, Paik U, Lu Y, Rogers JA. Nanoscale patterns of oligonucleotides formed by electrohydrodynamic jet printing with applications in biosensing and nanomaterials assembly. Nano Lett. 2008;8(12):4210-4216.
|
[179] |
Cao Y, Dong J. High-performance low-voltage soft electrothermal actuator with directly printed micro-heater. Sens Actuators A Phys. 2019;297:111546.
|
[180] |
Ma S, Dahiya AS, Dahiya R. Out-of-plane electronics on flexible substrates using inorganic nanowires grown on high-aspect-ratio printed gold micropillars. Adv Mater. 2023;35(26):e2210711.
|
[181] |
Go EB, Kim HT, Kim CY. Synthesis of one-dimensional pillar arrays by electrohydrodynamic jet printing for glucose sensor. J Biomed Nanotechnol. 2017;13(1):61-67.
|
[182] |
Ali S, Hassan A, Hassan G, et al. Disposable all-printed electronic biosensor for instantaneous detection and classification of pathogens. Sci Rep. 2018;8(1):5920.
|
[183] |
Kim K-H, Yoo S-J, Kim J-J. Boosting triplet harvest by reducing nonradiative transition of exciplex toward fluorescent organic light-emitting diodes with 100% internal quantum efficiency. Chem Mater. 2016;28(6):1936-1941.
|
/
〈 | 〉 |