Multifunctional solar-blind ultraviolet photodetectors based on p-PCDTBT/n-Ga2O3 heterojunction with high photoresponse

Yifei Wang, Zhenhua Lin, Jingli Ma, Yongyi Wu, Haidong Yuan, Dongsheng Cui, Mengyang Kang, Xing Guo, Jie Su, Jinshui Miao, Zhifeng Shi, Tao Li, Jincheng Zhang, Yue Hao, Jingjing Chang

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (2) : e12503. DOI: 10.1002/inf2.12503
RESEARCH ARTICLE

Multifunctional solar-blind ultraviolet photodetectors based on p-PCDTBT/n-Ga2O3 heterojunction with high photoresponse

Author information +
History +

Abstract

Solar-blind ultraviolet (UV) photodetectors based on p-organic/n-Ga2O3 hybrid heterojunctions have attracted extensive attention recently. Herein, the multifunctional solar-blind photodetector based on p-type poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT)/n-type amorphous Ga2O3 (a-Ga2O3) is fabricated and investigated, which can work in the phototransistor mode coupling with self-powered mode. With the introduction of PCDTBT, the dark current of such the a-Ga2O3-based photodetector is decreased to 0.48 pA. Meanwhile, the photoresponse parameters of the a-Ga2O3-based photodetector in the phototransistor mode to solar-blind UV light are further increased, that is, responsivity (R), photo-detectivity (D*), and external quantum efficiency (EQE) enhanced to 187 A W-1, 1.3 × 1016 Jones and 9.1 × 104 % under the weak light intensity of 11 μW cm-2, respectively. Thanks to the formation of the built-in field in the p-PCDTBT/n-Ga2O3 type-II heterojunction, the PCDTBT/Ga2O3 multifunctional photodetector shows self-powered behavior. The responsivity of p-PCDTBT/n-Ga2O3 multifunctional photodetector is 57.5 mA W-1 at zero bias. Such multifunctional p-n hybrid heterojunction-based photodetectors set the stage for realizing high-performance amorphous Ga2O3 heterojunction-based photodetectors.

Keywords

amorphous Ga2O3 / heterojunction / multifunctional / PCDTBT / solar-blind photodetectors

Cite this article

Download citation ▾
Yifei Wang, Zhenhua Lin, Jingli Ma, Yongyi Wu, Haidong Yuan, Dongsheng Cui, Mengyang Kang, Xing Guo, Jie Su, Jinshui Miao, Zhifeng Shi, Tao Li, Jincheng Zhang, Yue Hao, Jingjing Chang. Multifunctional solar-blind ultraviolet photodetectors based on p-PCDTBT/n-Ga2O3 heterojunction with high photoresponse. InfoMat, 2024, 6(2): e12503 https://doi.org/10.1002/inf2.12503

References

[1]
Hao Y. Gallium oxide: promise to provide more efficient life. J Semicond. 2019;40(1):010301.
[2]
Wang Y, Su J, Lin Z, Zhang J, Chang J, Hao Y. Recent progress on the effects of impurities and defects on the properties of Ga2O3. J Mater Chem C. 2022;10(37):13395-13436.
[3]
Wang Y, Su J, Yuan H, et al. Impurity level properties in transition metal doped α-Ga2O3 for optoelectronic applications. Semicond Sci Technol. 2021;36(9):095026.
[4]
Cheng Y, Ye J, Lai L, Fang S, Guo D. Ambipolarity regulation of deep-UV photocurrent by controlling crystalline phases in Ga2O3 nanostructure for switchable logic applications. Adv Electron Mater. 2023;9(4):2201216.
[5]
Wu C, Wu F, Hu H, Wang S, Liu A, Guo D. Review of self-powered solar-blind photodetectors based on Ga2O3. Mater Today Phys. 2022;28:100883.
[6]
Wang Y, Xue Y, Su J, et al. Realization of cost-effective and high-performance solar-blind ultraviolet photodetectors based on amorphous Ga2O3 prepared at room temperature. Mater Today Adv. 2022;16:100324.
[7]
Naveen K, Kanika A, Mukesh K. Flexible and room temperature grown amorphous Ga2O3 solar-blind photodetector with amorphous indium-zinc-oxide transparent conducting electrodes. J Phys D Appl Phys. 2019;52(33):335103.
[8]
Qin Y, Li L, Yu Z, et al. Ultra-high performance amorphous Ga2O3 photodetector arrays for solar-blind imaging. Adv Sci. 2021;8(20):2101106.
[9]
Liang H, Han Z, Mei Z. Recent progress of deep ultraviolet photodetectors using amorphous gallium oxide thin films. Phys Status Solidi Appl Mater Sci. 2021;218(1):2000339.
[10]
Xi Z, Yang L, Shu L, et al. The growth and expansive applications of amorphous Ga2O3: a review. Chin Phys B. 2023;32(8):088502.
[11]
Ahn J, Ma J, Lee D, et al. Ultrahigh deep-ultraviolet responsivity of a β-Ga2O3/MgO heterostructure-based phototransistor. ACS Photonics. 2021;8(2):557-566.
[12]
Chen X, Xu Y, Zhou D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures. ACS Appl Mater Interfaces. 2017;9(42):36997-37005.
[13]
Wang Y, Li H, Cao J, et al. Ultrahigh gain solar blind avalanche photodetector using an amorphous Ga2O3-based heterojunction. ACS Nano. 2021;15(10):16654-16663.
[14]
Li Z, Cheng Y, Xu Y, et al. High-performance β-Ga2O3 solar-blind Schottky barrier photodiode with record detectivity and ultrahigh gain via carrier multiplication process. IEEE Electron Device Lett. 2020;41(12):1794-1797.
[15]
Zhang Q, Li N, Zhang T, et al. Enhanced gain and detectivity of unipolar barrier solar blind avalanche photodetector via lattice and band engineering. Nat Commun. 2023;14(1):418.
[16]
Lin Y, Zou J, Wang W, Liu X, Gao J, Lu Z. High-performance self-powered ultraviolet photodetector based on PEDOT:PSS/CuO/ZnO nanorod array sandwich structure. Appl Surf Sci. 2022;599:153956.
[17]
Li X, Wang X, Luo J, et al. Fully-transparent self-powered ultraviolet photodetector based on GaOx/ZnO heterojunction for solar-blind imaging. Mater Today Commun. 2023;35:106118.
[18]
Zhu Y, Liu K, Huang X, et al. Self-powered p-GaN/i-ZnGa2O4/n-ITO heterojunction broadband ultraviolet photodetector with high working temperature. IEEE Electron Device Lett. 2023;44(5):737-740.
[19]
Han D, Liu K, Chen X, et al. Performance enhancement of a self-powered solar-blind UV photodetector based on ZnGa2O4/Si heterojunction via interface pyroelectric effect. Appl Phys Lett. 2021;118(25):251101.
[20]
Li K, Alfaraj N, Kang C, et al. Deep-ultraviolet photodetection using single-crystalline β-Ga2O3/NiO heterojunctions. ACS Appl Mater Interfaces. 2019;11(38):35095-35104.
[21]
Jia M, Wang F, Tang L, Xiang J, Teng K, Lau S. High-performance deep ultraviolet photodetector based on NiO/β-Ga2O3 heterojunction. Nanoscale Res Lett. 2020;15(1):47.
[22]
Budde M, Splith D, Mazzolini P, et al. SnO/β-Ga2O3 vertical Pn heterojunction diodes. Appl Phys Lett. 2020;117(25):252106.
[23]
Li S, Zhi Y, Lu C, et al. Broadband ultraviolet self-powered photodetector constructed on exfoliated β-Ga2O3/CuI core-shell microwire heterojunction with superior reliability. J Phys Chem Lett. 2021;12(1):447-453.
[24]
Sun W, Sun B, Li S. Broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction. Chin Phys B. 2022;31(2):024205.
[25]
Li S, Yan Z, Liu Z, et al. A self-powered solar-blind photodetector with large: Voc enhancing performance based on the PEDOT:PSS/Ga2O3 organic-inorganic hybrid heterojunction. J Mater Chem C. 2020;8(4):1292-1300.
[26]
Yan Z, Li S, Yue J, et al. Reinforcement of double built-in electric fields in Spiro-MeOTAD/Ga2O3/Si p-i-n structure for a high-sensitivity solar-blind UV photovoltaic detector. J Mater Chem C. 2021;9(41):14788-14798.
[27]
Qi X, Ji X, Yue J, et al. A deep-ultraviolet photodetector of a hybrid organic-inorganic p-CoPc/n-Ga2O3 heterostructure highlighting ultra-sensitive. CrystEngComm. 2022;12(9):1284.
[28]
Cho S, Seo J, Park S, Beaupré S, Leclerc M, Heeger A. A thermally stable semiconducting polymer. Adv Mater. 2010;22(11):1253-1257.
[29]
Beaupré S, Leclerc M. PCDTBT: en route for low cost plastic solar cells. J Mater Chem A. 2013;1(37):11097.
[30]
Xu Y, Cheng Y, Li Z, et al. High performance gate tunable solar blind ultraviolet phototransistors based on amorphous Ga2O3 films grown by mist chemical vapor deposition. Nano Select. 2021;2(11):2112-2120.
[31]
Zhou C, Liu K, Chen X, et al. Performance improvement of amorphous Ga2O3 ultraviolet photodetector by annealing under oxygen atmosphere. J Alloys Compd. 2020;840:155585.
[32]
He F, Wang Y, Lin Z, et al. Aqueous solution-deposited aluminum-gallium-oxide alloy gate dielectrics for low voltage fully oxide thin film transistors. Appl Phys Lett. 2021;119(11):112102.
[33]
He F, Qin Y, Wan L, et al. Metal oxide heterojunctions for high performance solution grown oxide thin film transistors. Appl Surf Sci. 2020;527:146774.
[34]
Xiao X, Liang L, Pei Y, et al. Solution-processed amorphous Ga2O3:CdO TFT-type deep-UV photodetectors. Appl Phys Lett. 2020;116(19):192102.
[35]
Tournebize A, Bussière P, Chung W, et al. Impact of Uv-visible light on the morphological and photochemical behavior of a low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv Energy Mater. 2013;3(4):478-487.
[36]
Blouin N, Michaud A, Leclerc M. A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv Mater. 2007;19(17):2295-2300.
[37]
Tan S, Anuar F, Sarkar R, Sarjadi M. Effect of unsymmetrically branched alkyl chains on the electrochemical band gap and thermal stability of the PCDTBT. ChemistrySelect. 2019;4(3):936-940.
[38]
Qian L, Wu Z, Zhang Y, Lai P, Liu X, Li Y. Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide. ACS Photonics. 2017;4(9):2203-2211.
[39]
Dong L, Zhou S, Pu K, et al. Electrical contacts in monolayer Ga2O3 field-effect transistors. Appl Surf Sci. 2021;564:150386.
[40]
Lan T, Bélanger F, Soavi F, Santato C. Ambient-stable, ion-gated poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) transistors and phototransistors. Org Electron. 2019;74(6):265-268.
[41]
Wang H, Xiao Y, Chen Z, Xu W, Long M, Xu J. Solution-processed PCDTBT capped low-voltage InGaZnOx thin film phototransistors for visible-light detection. Appl Phys Lett. 2015;106(24):242102.
[42]
Ho D, Jeong H, Choi S, Kim C. Organic materials as a passivation layer for metal oxide semiconductors. J Mater Chem C. 2020;8(43):14983-14995.
[43]
Wang H, Ma J, Cong L, et al. Solar-blind UV photodetector with low-dark current and high-gain based on ZnO/Au/Ga2O3 sandwich structure. Mater Today Phys. 2022;24:100673.
[44]
Chen S, Fu Y, Ishaq M, et al. Carrier recombination suppression and transport enhancement enable high-performance self-powered broadband Sb2Se3 photodetectors. InfoMat. 2023;5(4):1-17.
[45]
Ling K, Li K, Zhang W, Liu X. Highly sensitive and stable self-powered UV photodetector based on amorphous ZnGa2O4/NiO type-II p-n heterojunction via low-temperature and band alignment. Adv Opt Mater. 2023;11(7):2202456.
[46]
Fang Y, Armin A, Meredith P, Huang J. Accurate characterization of next-generation thin-film photodetectors. Nat Photonics. 2019;13(1):1-4.
[47]
Wang Z, Wei L, Wang S, et al. 2D SiP2/h-BN for a gate-controlled phototransistor with ultrahigh sensitivity. ACS Appl Mater Interfaces. 2023;15(12):15810-15818.
[48]
Yoo S, Kim D, Hong W, et al. Enhanced ultraviolet photoresponse characteristics of indium gallium zinc oxide photo-thin-film transistors enabled by surface functionalization of biomaterials for real-time ultraviolet monitoring. ACS Appl Mater Interfaces. 2021;13(40):47784-47792.
[49]
Han Z, Song S, Liang H, et al. High-performance IGZO/Ga2O3 dual-active-layer thin film transistor for deep UV detection. Appl Phys Lett. 2022;120(26):262102.
[50]
Nakagomi S, Sakai T, Kikuchi K, Kokubun Y. β-Ga2O3/p-type 4H-SiC heterojunction diodes and applications to deep-UV photodiodes. Phys Status Solidi Appl Mater Sci. 2019;216(5):1700796.
[51]
Yu J, Wang Y, Li H, Huang Y, Tang W, Wu Z. Tailoring the solar-blind photoresponse characteristics of β-Ga2O3 epitaxial films through lattice mismatch and crystal orientation. J Phys D Appl Phys. 2020;53(24):24LT01.
[52]
Guo D, Su Y, Shi H, et al. Self-powered ultraviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/Sn:Ga2O3 Pn junction. ACS Nano. 2018;12(12):12827-12835.
[53]
Su Q, Fang M, Zhu D, et al. Ultrahigh-responsivity deep-UV photodetector based on heterogeneously integrated AZO/a-Ga2O3 vertical structure. J Alloys Compd. 2022;889:161599.
[54]
Guo D, Liu H, Li P, et al. Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction. ACS Appl Mater Interfaces. 2017;9(2):1619-1628.
[55]
Chen X, Mi W, Wu J, et al. A solar-blind photodetector based on β-Ga2O3 film deposited on MgO (100) substrates by RF magnetron sputtering. Vacuum. 2020;180:109632.
[56]
Sorifi S, Kaushik S, Sheoran H, Singh R. Investigation of a vertical 2D/3D semiconductor heterostructure based on GaSe and Ga2O3. J Phys D Appl Phys. 2022;55(36):365105.
[57]
Dong L, Pang T, Yu J, et al. Performance-enhanced solar-blind photodetector based on a CH3NH3PbI3/β-Ga2O3 hybrid structure. J Mater Chem C. 2019;7(45):14205-14211.
[58]
Arora K, Goel N, Kumar M, Kumar M. Ultrahigh performance of self-powered β-Ga2O3 thin film solar-blind photodetector grown on cost-effective Si substrate using high-temperature seed layer. ACS Photonics. 2018;5(6):2391-2401.
[59]
Kong W, Wu G, Wang K, et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv Mater. 2016;28(48):10725-10731.
[60]
Guo D, Shi H, Qian Y, et al. Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection. Semicond Sci Technol. 2017;32(3):03LT01.
[61]
Wu C, Wu F, Ma C, et al. A general strategy to ultrasensitive Ga2O3 based self-powered solar-blind photodetectors. Mater Today Phys. 2022;23:100643.
[62]
Sun X, Chen X, Hao J, et al. Self-powered solar-blind photodetector based on polyaniline/α-Ga2O3 p-n heterojunction. Appl Phys Lett. 2021;119(14):141601.
[63]
Chen W, Xu X, Li M, Kuang S, Zhang H, Cheng Q. A fast self-powered solar-blind ultraviolet photodetector realized by Ga2O3/GaN PIN heterojunction with a fully depleted active region. Adv Opt Mater. 2023;11(8):2202847.
[64]
Wu C, Wu F, Deng L, et al. Solution-processed Y-doped SnSrO3 electron transport layer for Ga2O3 based heterojunction solar-blind photodetector with high sensitivity. Vacuum. 2022;201:111064.
[65]
Zhao B, Li K, Liu Q, Liu X. Ultrasensitive self-powered deep-ultraviolet photodetector based on in situ epitaxial GaO/BiSe heterojunction. IEEE Trans Electron Devices. 2022;69(4):1894-1899.
[66]
Yu J, Yu M, Wang Z, et al. Improved photoresponse performance of self-powered β-GaO/NiO heterojunction UV photodetector by surface plasmonic effect of Pt nanoparticles. IEEE Trans Electron Devices. 2020;67(8):3199-3204.
[67]
Zhao B, Wang F, Chen H, et al. Ultrahigh responsivity (9.7 mA W−1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv Funct Mater. 2017;27(17):1700264.

RIGHTS & PERMISSIONS

2023 2023 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/