Close-packed layer spacing as a practical guideline for structure symmetry manipulation of IV-VI/I-V-VI2 thermoelectrics
Tao Jin , Long Yang , Xinyue Zhang , Wen Li , Yanzhong Pei
InfoMat ›› 2024, Vol. 6 ›› Issue (2) : e12502
Close-packed layer spacing as a practical guideline for structure symmetry manipulation of IV-VI/I-V-VI2 thermoelectrics
The crystal-structure symmetry in real space can be inherited in the reciprocal space, making high-symmetry materials the top candidates for thermoelectrics due to their potential for significant electronic band degeneracy. A practical indicator that can quantitatively describe structural changes would help facilitate the advanced thermoelectric material design. In face-centered cubic structures, the spatial environment of the same crystallographic plane family is isotropic, such that the distances between the close-packed layers can be derived from the atomic distances within the layers. Inspired by this, the relationship between inter- and intra-layer geometric information can be used to compare crystal structures with their desired cubic symmetry. The close-packed layer spacing was found to be a practical guideline of crystal structure symmetry in IV-VI chalcogenides and I-V-VI2 ternary semiconductors, both of which are historically important thermoelectrics. The continuous structural evolution toward high symmetry can be described by the layer spacing when temperature or/and composition change, which is demonstrated by a series of pristine and alloyed thermoelectric materials in this work. The layer-spacing-based guideline provides a quantitative pathway for manipulating crystal structures to improve the electrical and thermal properties of thermoelectric materials.
phase transition / structure manipulation / thermoelectric materials / x-ray diffraction
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
2023 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |