Atomic tracking of thermally-driven structural evolution in 2D crystals: Case of NbSe2

Baofei Hou, Teng Zhang, Tingting Wang, Hongyan Ji, Huixia Yang, Liangguang Jia, Xu Han, Jingsi Qiao, Yu Zhang, Liwei Liu, Hong-Jun Gao, Yeliang Wang

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (2) : e12501. DOI: 10.1002/inf2.12501
RESEARCH ARTICLE

Atomic tracking of thermally-driven structural evolution in 2D crystals: Case of NbSe2

Author information +
History +

Abstract

Advanced atomic tracking techniques play a critical role in characterizing structural evolution, elucidating fundamental mechanisms of exotic phenomena and tailoring delicate properties. Thermally driven structural modulation in 2D crystals, such as the charge density wave (CDW), often leads to intriguing quantum properties, making them a valuable platform for exploring fundamental physics and potential device applications. However, despite their significance, experimental studies addressing atomic tracking of thermally-driven structural evolution in 2D crystals have been limited. Herein, we utilize high-accuracy variable-temperature atomic tracking measurements with scanning tunneling microscopy (STM) to directly observe a series of structural transitions in a model 2D crystal, namely NbSe2. With the atomic tracking technique, we confirm the existence of the universal thermally-driven CDW transition hysteresis between the heating and cooling cycles. This transition hysteresis, characterized by a constant temperature offset, represents a new phenomenon of structural evolution. Our findings provide a feasible method to track CDW transitions at the atomic scale in 2D crystals, significantly contributing to a better understanding and the potential modulation of these materials' functions in nanodevices.

Keywords

2D crystal / atomic tracking technique / structural evolution / temperature hysteresis

Cite this article

Download citation ▾
Baofei Hou, Teng Zhang, Tingting Wang, Hongyan Ji, Huixia Yang, Liangguang Jia, Xu Han, Jingsi Qiao, Yu Zhang, Liwei Liu, Hong-Jun Gao, Yeliang Wang. Atomic tracking of thermally-driven structural evolution in 2D crystals: Case of NbSe2. InfoMat, 2024, 6(2): e12501 https://doi.org/10.1002/inf2.12501

References

[1]
Rodriguez-Palomo A, Lutz-Bueno V, Cao X, Kadar R, Andersson M, Liebi M. In situ visualization of the structural evolution and alignment of lyotropic liquid crystals in confined flow. Small. 2021;17(7):e2006229.
[2]
Wang J, You JL, Sobol AA, et al. In-situ high temperature Raman spectroscopic study on the structural evolution of Na2W2O7 from the crystalline to molten states. J Raman Spectrosc. 2017;48(2):298-304.
[3]
Jiang H, Zheng L, Liu Z, Wang X. Two-dimensional materials: from mechanical properties to flexible mechanical sensors. InfoMat. 2019;2(6):1077-1094.
[4]
Xi X, Zhao L, Wang Z, et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat Nanotechnol. 2015;10(9):765-769.
[5]
Arguello CJ, Chockalingam SP, Rosenthal EP, et al. Visualizing the charge density wave transition in 2H-NbSe2 in real space. Phys Rev B. 2014;89(23):235115.
[6]
Luo X, Hao R, Wang H, et al. Unraveling the microstructure of inorganic halide perovskites during thermally driven phase transition and degradation. J Phys Chem C. 2023;127(24):11632-11640.
[7]
Zhang Z, Guo J, Dehm G, Pippan R. In-situ tracking the structural and chemical evolution of nanostructured CuCr alloys. Acta Mater. 2017;138:42-51.
[8]
Lingenfelder M, Tomba G, Costantini G, Colombi Ciacchi L, De Vita A, Kern K. Tracking the chiral recognition of adsorbed dipeptides at the single-molecule level. Angew Chem Int ed. 2007;119(24):4576-4579.
[9]
Gu L, Xiao D, Hu YS, Li H, Ikuhara Y. Atomic-scale structure evolution in a quasi-equilibrated electrochemical process of electrode materials for rechargeable batteries. Adv Mater. 2015;27(13):2134-2149.
[10]
Li G, Yang H, Jiang P, et al. Chirality locking charge density waves in a chiral crystal. Nat Commun. 2022;13(1):2914.
[11]
Song X, Liu L, Chen Y, et al. Atomic-scale visualization of chiral charge density wave superlattices and their reversible switching. Nat Commun. 2022;13(1):1843.
[12]
Han S, Tang CS, Li L, et al. Orbital-hybridization-driven charge density wave transition in CsV3Sb5 Kagome superconductor. Adv Mater. 2023;35(8):e2209010.
[13]
Zhang W, Wong PKJ, Zhu R, Wee ATS. Van der Waals magnets: wonder building blocks for two-dimensional spintronics? InfoMat. 2019;1(4):479-495.
[14]
Shen S, Yuan X, Wen C, et al. Melting of charge density wave and Mott gap collapse on 1T-TaS2 induced by interfacial water. Phys Rev Mater. 2020;4(6):064007.
[15]
Cossu F, Palotás K, Sarkar S, Di Marco I, Akbari A. Strain-induced stripe phase in charge-ordered single layer NbSe2. NPG Asia Mater. 2020;12(1):24.
[16]
Khestanova E, Birkbeck J, Zhu M, et al. Unusual suppression of the superconducting energy gap and critical temperature in atomically thin NbSe2. Nano Lett. 2018;18(4):2623-2629.
[17]
Chen Y, Wu L, Xu H, et al. Visualizing the anomalous charge density wave states in graphene/NbSe2 heterostructures. Adv Mater. 2020;32(45):e2003746.
[18]
Hwang J, Jin Y, Zhang C, et al. A novel √19 × √19 superstructure in epitaxially grown 1T-TaTe2. Adv Mater. 2022;34(38):e2204579.
[19]
Zhao M, Li J, Sebek M, et al. Electrostatically tunable near-infrared plasmonic resonances in solution-processed atomically thin NbSe2. Adv Mater. 2021;33(32):e2101950.
[20]
Wan W, Dreher P, Munoz-Segovia D, et al. Observation of superconducting collective modes from competing pairing instabilities in single-layer NbSe2. Adv Mater. 2022;34(41):e2206078.
[21]
Zheng S, Zhao M, Sun L, Yang H. Classical and quantum phases in hexagonal boron nitride-combined van der Waals heterostructures. InfoMat. 2020;3(3):252-270.
[22]
Yang S, Chen Y, Jiang C. Strain engineering of two-dimensional materials: methods, properties, and applications. InfoMat. 2021;3(4):397-420.
[23]
Wilson JA, Di Salvo FJ, Mahajan S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv Phys. 1975;24(2):117-201.
[24]
Ugeda MM, Bradley AJ, Zhang Y, et al. Characterization of collective ground states in single-layer NbSe2. Nat Phys. 2015;12(1):92-97.
[25]
Xi X, Berger H, Forro L, Shan J, Mak KF. Gate tuning of electronic phase transitions in two-dimensional NbSe2. Phys Rev Lett. 2016;117(10):106801.
[26]
Cao Y, Mishchenko A, Yu GL, et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 2015;15(8):4914-4921.
[27]
Chatterjee U, Zhao J, Iavarone M, et al. Emergence of coherence in the charge-density wave state of 2H-NbSe2. Nat Commun. 2015;6(1):6313.
[28]
de la Barrera SC, Sinko MR, Gopalan DP, et al. Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides. Nat Commun. 2018;9(1):1427.
[29]
Wu P, Peng X, Luo C, Li Z, Zhong J. Charge density waves in monolayer and few-layer NbS2 and phase modulation by doping, thickness, and temperature. Phys Rev B. 2022;105(17):174105.
[30]
Huang Z, Song X, Chen Y, et al. Size dependence of charge-density-wave orders in single-layer NbSe2 hetero/homophase junctions. J Phys Chem Lett. 2022;13(8):1901-1907.
[31]
Yang H, Zhang T, Huang Z, et al. Visualization of charge-density-wave reconstruction and electronic superstructure at the edge of correlated insulator 1T-NbSe2. ACS Nano. 2022;16(1):1332-1338.
[32]
Zheng F, Zhou Z, Liu X, Feng J. First-principles study of charge and magnetic ordering in monolayer NbSe2. Phys Rev B. 2018;97(8):081101.
[33]
Zhang Q, Hou Y, Zhang T, et al. Visualizing spatial evolution of electron-correlated interface in two-dimensional heterostructures. ACS Nano. 2021;15(10):16589-16596.
[34]
Gye G, Oh E, Yeom HW. Topological landscape of competing charge density waves in 2H-NbSe2. Phys Rev Lett. 2019;122(1):016403.
[35]
Repicky J, Wu PK, Liu T, et al. Atomic-scale visualization of topological spin textures in the chiral magnet MnGe. Science. 2021;374(6574):1484-1487.
[36]
Wang B, Bagues N, Liu T, Kawakami RK, McComb DW. Extracting weak magnetic contrast from complex background contrast in plan-view FeGe thin films. Ultramicroscopy. 2022;232:113395.
[37]
Wang YD, Yao WL, Xin ZM, et al. Band insulator to Mott insulator transition in 1T-TaS2. Nat Commun. 2020;11(1):4215.
[38]
Mutka H, Zuppiroli L, Molinié P, Bourgoin JC. Charge-density waves and localization in electron-irradiated1T-TaS2. Phys Rev B. 1981;23(10):5030-5037.
[39]
Zwick F, Berger H, Vobornik I, et al. Spectral consequences of broken phase coherence in 1T-TaS2. Phys Rev Lett. 1998;81(5):1058-1061.
[40]
Li LJ, Lu WJ, Liu Y, Qu Z, Ling LS, Sun YP. Influence of defects on charge-density-wave and superconductivity in 1T-TaS2 and 2H-TaS2 systems. Physica C Supercond. 2013;492:64-67.
[41]
Fu W, Chen Y, Lin J, et al. Controlled synthesis of atomically thin 1T-TaS2 for tunable charge density wave phase transitions. Chem Mater. 2016;28(21):7613-7618.
[42]
Gnanarajan S, Frindt RF. Hysteresis in the thermopower of 2H-TaSe2 in the charge-density-wave state. Phys Rev B. 1986;33(2):1443-1445.
[43]
Oh E, Gye G, Yeom HW. Defect-selective charge-density-wave condensation in 2H-NbSe2. Phys Rev Lett. 2020;125(3):036804.

RIGHTS & PERMISSIONS

2023 2023 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/