Advances in advanced solution-synthesis-based structural materials for tactile sensors and their intelligent applications

Hongsen Niu, Ning Li, Eun-Seoung Kim, Young Kee Shin, Nam-Young Kim, Guozhen Shen, Yang Li

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (1) : e12500. DOI: 10.1002/inf2.12500
REVIEW ARTICLE

Advances in advanced solution-synthesis-based structural materials for tactile sensors and their intelligent applications

Author information +
History +

Abstract

Intelligent applications, with tactile sensors at their core, represent significant advancement in the field of artificial intelligence. However, achieving perception abilities in tactile sensors that match or exceed human skin remains a formidable challenge. Consequently, the design and implementation of hierarchical structural materials are considered the optimal solution to this challenge. In contrast to conventional methods, such as complicated lithography and three-dimensional printing, the cost-effective and scalable nature of advanced solution-synthesis methods makes them ideal for preparing diverse tactile sensors with hierarchical structural materials. However, the process and applicability of advanced solution synthesis methods have yet to form a seamless system. Accordingly, the development and intellectualization of tactile sensors based on advanced solution synthesis methods are still in their early stages, and require a comprehensive and systematic review to usher in progress. This study delves into the advantages and disadvantages of various advanced solution synthesis methods, providing detailed insights. Furthermore, the positive effects of hierarchical structural materials constructed using these methods in tactile sensors and their intelligent applications are also discussed in depth. Finally, the challenges and future opportunities faced by this emerging field are summarized.

Keywords

aqueous phase reduction / artificial intelligence / hydrothermal growth / in situ polymerization / tactile sensor

Cite this article

Download citation ▾
Hongsen Niu, Ning Li, Eun-Seoung Kim, Young Kee Shin, Nam-Young Kim, Guozhen Shen, Yang Li. Advances in advanced solution-synthesis-based structural materials for tactile sensors and their intelligent applications. InfoMat, 2024, 6(1): e12500 https://doi.org/10.1002/inf2.12500

References

[1]
Lumpkin EA, Caterina MJ. Mechanisms of sensory transduction in the skin. Nature. 2007;445(7130):858-865.
[2]
Tee BCK, Chortos A, Berndt A, et al. A skin-inspired organic digital mechanoreceptor. Science. 2015;350(6258):313-316.
[3]
Niu H, Li H, Gao S, et al. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv Mater. 2022;34(31):2202622.
[4]
Wang J, Liu X, Li R, Fan Y. Biomimetic strategies and technologies for artificial tactile sensory systems. Trends Biotechnol. 2023;41(7):951-964.
[5]
Schwaller F, Bégay V, García-García G, et al. USH2A is a Meissner's corpuscle protein necessary for normal vibration sensing in mice and humans. Nat Neurosci. 2021;24(1):74-81.
[6]
Gould J. Superpowered skin. Nature. 2018;563(7732):S84-S85.
[7]
Handler A, Ginty DD. The mechanosensory neurons of touch and their mechanisms of activation. Nat Rev Neurosci. 2021;22(9):521-537.
[8]
Hammock ML, Chortos A, Tee BCK, Tok JBH, Bao Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater. 2013;25(42):5997-6038.
[9]
Wang J, Xu S, Zhang C, et al. Field effect transistor-based tactile sensors: from sensor configurations to advanced applications. InfoMat. 2022;5(1):e12376.
[10]
Zarei M, Lee G, Lee SG, Cho K. Advances in biodegradable electronic skin: material progress and recent applications in sensing, robotics, and human-machine interfaces. Adv Mater. 2023;35(4):2203193.
[11]
Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev. 2022;51(9):3380-3435.
[12]
Song JW, Ryu H, Bai W, et al. Bioresorbable, wireless, and battery-free system for electrotherapy and impedance sensing at wound sites. Sci Adv. 2023;9(8):eade4687.
[13]
Kwon K, Kim JU, Won SM, et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat Biomed Eng. 2023;7(10):1215-1228.
[14]
Wang HL, Chen T, Zhang B, et al. A dual-responsive artificial skin for tactile and touchless interfaces. Small. 2023;19(21):2206830.
[15]
Liu Y, Yiu C, Song Z, et al. Electronic skin as wireless human-machine interfaces for robotic VR. Sci Adv. 2022;8(2):eabl6700.
[16]
Kim KK, Kim M, Pyun K, et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat Electron. 2023;6(1):64-75.
[17]
Jung YH, Yoo JY, Vázquez-Guardado A, et al. A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nat Electron. 2022;5(6):374-385.
[18]
Xu R, She M, Liu J, et al. Skin-friendly and wearable iontronic touch panel for virtual-real handwriting interaction. ACS Nano. 2023;17(9):8293-8302.
[19]
Zhou Y, Xiao X, Chen G, Zhao X, Chen J. Self-powered sensing technologies for human Metaverse interfacing. Joule. 2022;6(7):1381-1389.
[20]
Niu H, Yin F, Kim ES, et al. Advances in flexible sensors for intelligent perception system enhanced by artificial intelligence. InfoMat. 2023;5(5):e12412.
[21]
Ruth SRA, Feig VR, Tran H, Bao Z. Microengineering pressure sensor active layers for improved performance. Adv Funct Mater. 2020;30(39):2003491.
[22]
Chang Y, Wang L, Li R, et al. First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv Mater. 2021;33(7):2003464.
[23]
Park J, Kim M, Lee Y, Lee HS, Ko H. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci Adv. 2015;1(9):e1500661.
[24]
Park J, Kang DH, Chae H, et al. Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interface. Sci Adv. 2022;8(12):eabj9220.
[25]
Wang S, Deng W, Yang T, et al. Bioinspired MXene-based piezoresistive sensor with two-stage enhancement for motion capture. Adv Funct Mater. 2023;33(18):2214503.
[26]
Sun Z, Zhu M, Shan X, Lee C. Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat Commun. 2022;13(1):5224.
[27]
Gou GY, Li XS, Jian JM, et al. Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Sci Adv. 2022;8(13):eabn2156.
[28]
Boutry CM, Negre M, Jorda M, et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci Robot. 2018;3(24):eaau6914.
[29]
Zhu M, Ji S, Luo Y, et al. A mechanically interlocking strategy based on conductive microbridges for stretchable electronics. Adv Mater. 2022;34(7):2101339.
[30]
Luo Y, Chen X, Li X, Tian H, Wang L, Shao J. A flexible dual-function capacitive sensor enhanced by loop-patterned fibrous electrode and doped dielectric pillars for spatial perception. Nano Res. 2023;16(5):7550-7558.
[31]
Park J, Kim J, Hong J, et al. Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins. NPG Asia Mater. 2018;10(4):163-176.
[32]
Pang C, Lee GY, Kim TI, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibers. Nat Mater. 2012;11(9):795-801.
[33]
Ge J, Wang X, Drack M, et al. A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat Commun. 2019;10(1):4405.
[34]
Zhang X, Lu M, Cao X, Zhao Y. Functional microneedles for wearable electronics. Smart Med. 2023;2(1):e20220023.
[35]
Lei M, Feng K, Ding S, et al. Breathable and waterproof electronic skin with three-dimensional architecture for pressure and strain sensing in nonoverlapping mode. ACS Nano. 2022;16(8):12620-12634.
[36]
Ji B, Zhou Q, Hu B, Zhong J, Zhou J, Zhou B. Bio-inspired hybrid dielectric for capacitive and triboelectric tactile sensors with high sensitivity and ultrawide linearity range. Adv Mater. 2021;33(27):2100859.
[37]
Peng S, Thirunavukkarasu N, Chen J, et al. Vat photopolymerization 3D printing of transparent, mechanically robust, and self-healing polyurethane elastomers for tailored wearable sensors. Chem Eng J. 2023;463:142312.
[38]
Guo Y, Li H, Li Y, et al. Wearable hybrid device capable of interactive perception with pressure sensing and visualization. Adv Funct Mater. 2022;32(44):2203585.
[39]
Zhang C, Zheng H, Sun J, et al. 3D printed, solid-state conductive ionoelastomer as a generic building block for tactile applications. Adv Mater. 2022;34(2):2105996.
[40]
Guo K, Gao S, Li Y, et al. A P(VDF-TrFE) nanofiber composites based multilayer structured dual-functional flexible sensor for advanced pressure-humidity sensing. Chem Eng J. 2023;461:141970.
[41]
Wang XM, Chai Y, Zhu C, Yu J, Chen X. Ultrasensitive and self-alarm pressure sensor based on laser-induced graphene and sea urchin-shaped Fe2O3 sandwiched structure. Chem Eng J. 2022;448:137664.
[42]
Zhao Y, Li X, Hou N, et al. Self-powered sensor integration system based on thorn-like polyaniline composites for smart home applications. Nano Energy. 2022;104:107966.
[43]
Wang XM, Tao LQ, Yuan M, et al. Sea urchin-like microstructure pressure sensors with an ultra-broad range and high sensitivity. Nat Commun. 2021;12(1):1776.
[44]
Sharma S, Chhetry A, Maharjan P, et al. Polyaniline-nanospines engineered nanofibrous membrane based piezoresistive sensor for high-performance electronic skins. Nano Energy. 2022;95:106970.
[45]
Shi L, Li Z, Chen M, Qin Y, Jiang Y, Wu L. Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density. Nat Commun. 2020;11(1):3529.
[46]
Niu H, Zhang H, Yue W, et al. Micro-nano processing of active layers in flexible tactile sensors via template methods: a review. Small. 2021;17(41):2100804.
[47]
Liu H, Zhang H, Han W, et al. 3D printed flexible strain sensors: from printing to devices and signals. Adv Mater. 2021;33(8):2004782.
[48]
Xu T, Wang W, Bian X, et al. High resolution skin-like sensor capable of sensing and visualizing various sensations and three dimensional shape. Sci Rep. 2015;5(1):12997.
[49]
Dellon ES, Mourey R, Dellon AL. Human pressure perception values for constant and moving one-and two-point discrimination. Plast Reconstr Surg. 1992;90(1):112-117.
[50]
Bai N, Wang L, Wang Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat Commun. 2020;11(1):209.
[51]
Craig JC, Kisner JM. Factors affecting tactile spatial acuity. Somatosens Mot Res. 1998;15(1):29-45.
[52]
Pyo S, Lee J, Bae K, Sim S, Kim J. Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv Mater. 2021;33(47):2005902.
[53]
Boutry CM, Nguyen A, Lawal QO, Chortos A, Rondeau-Gagné S, Bao Z. A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Adv Mater. 2015;27(43):6954-6961.
[54]
Liu Q, Liu Z, Li C, et al. Highly transparent and flexible iontronic pressure sensors based on an opaque to transparent transition. Adv Sci. 2020;7(10):2000348.
[55]
Nie Z, Kwak JW, Han M, Rogers JA. Mechanically active materials and devices for bio-interfaced pressure sensors—a review. Adv Mater. 2022;2205609.
[56]
Oh J, Kim JO, Kim Y, et al. Highly uniform and low hysteresis piezoresistive pressure sensors based on chemical grafting of polypyrrole on elastomer template with uniform pore size. Small. 2019;15(33):1901744.
[57]
Bergström JS, Boyce MC. Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids. 1998;46(5):931-954.
[58]
Han S, Kim J, Won SM, et al. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci Transl Med. 2018;10(435):eaan4950.
[59]
Han M, Chen L, Aras K, et al. Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery. Nat Biomed Eng. 2020;4(10):997-1009.
[60]
Kang SK, Murphy RKJ, Hwang SW, et al. Bioresorbable silicon electronic sensors for the brain. Nature. 2016;530(7588):71-76.
[61]
Takahashi H, Nakai A, Thanh-Vinh N, Matsumoto K, Shimoyama I. A triaxial tactile sensor without crosstalk using pairs of piezoresistive beams with sidewall doping. Sens Actuator A Phys. 2013;199:43-48.
[62]
Rim YS, Bae SH, Chen H, Marco ND, Yang Y. Recent progress in materials and devices toward printable and flexible sensors. Adv Mater. 2016;28(22):4415-4440.
[63]
Yan C, Wang J, Kang W, et al. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv Mater. 2014;26(13):2022-2027.
[64]
Choong CL, Shim MB, Lee BS, et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater. 2014;26(21):3451-3458.
[65]
Lai YT, Chen YM, Liu T, Yang YJ. A tactile sensing array with tunable sensing ranges using liquid crystal and carbon nanotubes composites. Sens Actuator A Phys. 2012;177:48-53.
[66]
Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 2008;56(13):2929-2936.
[67]
Lichtenecker K. Dielectric constant of natural and synthetic mixtures. Phys Z. 1926;27:115.
[68]
Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST, Hu GH. Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog Mater Sci. 2012;57(4):660-723.
[69]
Niu H, Yue W, Li Y, et al. Ultrafast-response/recovery capacitive humidity sensor based on arc-shaped hollow structure with nanocone arrays for human physiological signals monitoring. Sens Actuators B Chem. 2021;334:129637.
[70]
Curie J, Curie P. Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées. Bull Minéral. 1880;3(4):90-93.
[71]
Wu Y, Ma Y, Zheng H, Ramakrishna SJM. Design piezoelectric materials for flexible and wearable electronics: a review. Mater Des. 2021;211:110164.
[72]
Zhu M, He T, Lee C. Technologies toward next generation human machine interfaces: from machine learning enhanced tactile sensing to neuromorphic sensory systems. Appl Phys Rev. 2020;7(3):031305.
[73]
Yang T, Pan H, Tian G, et al. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy. 2020;72:104706.
[74]
Huang L, Zeng R, Tang D, Cao X. Bioinspired and multiscale hierarchical design of a pressure sensor with high sensitivity and wide linearity range for high-throughput biodetection. Nano Energy. 2022;99:107376.
[75]
Lee D, Lee H, Jeong Y, Ahn Y, Nam G, Lee Y. Highly sensitive, transparent, and durable pressure sensors based on sea-urchin shaped metal nanoparticles. Adv Mater. 2016;28(42):9364-9369.
[76]
Zhu B, Ling Y, Yap LW, et al. Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring. ACS Appl Mater Interfaces. 2019;11(32):29014-29021.
[77]
Fang J, Du S, Lebedkin S, et al. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett. 2010;10(12):5006-5013.
[78]
El-Nagar GA, Lauermann I, Sarhan RM, Roth C. Hierarchically structured iron-doped silver (Ag-Fe) lotus flowers for an efficient oxygen reduction reaction. Nanoscale. 2018;10(15):7304-7310.
[79]
Zhang H, Zhang D, Zhang B, Wang D, Tang M. Wearable pressure sensor array with layer-by-layer assembled MXene nanosheets/Ag nanoflowers for motion monitoring and human-machine interfaces. ACS Appl Mater Interfaces. 2022;14(43):48907-48916.
[80]
Lu M, Huang C, Xu Z, et al. A skin-bioinspired urchin-like microstructure-contained photothermal-therapy flexible electronics for ultrasensitive human-interactive sensing. Adv Funct Mater. 2023;33(40):2306591.
[81]
Wang Y, Gong S, Wang SJ, et al. Standing enokitake-like nanowire films for highly stretchable elastronics. ACS Nano. 2018;12(10):9742-9749.
[82]
Gong S, Zhang X, Nguyen XA, et al. Hierarchically resistive skins as specific and multimetric on-throat wearable biosensors. Nat Nanotechnol. 2023;18(8):889-897.
[83]
Li N, Gao S, Li Y, Liu J, Song W, Shen G. Multi-attribute wearable pressure sensor based on multilayered modulation with high constant sensitivity over a wide range. Nano Res. 2023;16(5):7583-7592.
[84]
Chen D, Zhang T, Geng W, et al. An intelligent tactile sensor based on interlocked carbon nanotube array for ultrasensitive physiological signal detection and real-time monitoring. Adv Mater Technol. 2022;7(11):2200290.
[85]
Lee S, Reuveny A, Reeder J, et al. A transparent bending-insensitive pressure sensor. Nat Nanotechnol. 2016;11(5):472-478.
[86]
Son D, Kang J, Vardoulis O, et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat Nanotechnol. 2018;13(11):1057-1065.
[87]
Zhang YZ, Lee KH, Anjum DH, et al. MXenes stretch hydrogel sensor performance to new limits. Sci Adv. 2018;4(6):eaat0098.
[88]
Wei X, Li H, Yue W, et al. A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter. 2022;5(5):1481-1501.
[89]
Tian Q, Yan W, Chen T, Ho D. Multi-length scale hierarchical architecture overcoming pressure sensing range-speed tradeoff for skin electronics. J Mater Chem C. 2021;9(47):17129-17135.
[90]
Yu Z, Ying WB, Pravarthana D, et al. Stretchable tactile sensor with high sensitivity and dynamic stability based on vertically aligned urchin-shaped nanoparticles. Mater Today Phys. 2020;14:100219.
[91]
Zou Z, Zhu C, Li Y, Lei X, Zhang W, Xiao J. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci Adv. 2018;4(2):eaaq0508.
[92]
Guo H, Tan YJ, Chen G, et al. Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nat Commun. 2020;11(1):5747.
[93]
Tian K, Sui G, Yang P, Deng H, Fu Q. Ultrasensitive thin-film pressure sensors with a broad dynamic response range and excellent versatility toward pressure, vibration, bending, and temperature. ACS Appl Mater Interfaces. 2020;12(18):20998-21008.
[94]
Fowler RH, Nordheim L. Electron emission in intense electric fields. Proc R Soc Lond A. 1929;119(781):173-181.
[95]
Kim T, Hong I, Kim M, et al. Ultra-stable and tough bioinspired crack-based tactile sensor for small legged robots. npj Flex Electron. 2023;7(1):22.
[96]
Li X, Fan YJ, Li HY, et al. Ultracomfortable hierarchical nanonetwork for highly sensitive pressure sensor. ACS Nano. 2020;14(8):9605-9612.
[97]
Jiang Z, Nayeem MOG, Fukuda K, et al. Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement. Adv Mater. 2019;31(37):1903446.
[98]
Meng L, Wang W, Xu B, Qin J, Zhang K, Liu H. Solution-processed flexible transparent electrodes for printable electronics. ACS Nano. 2023;17(5):4180-4192.
[99]
Guo Y, Tian Q, Wang T, Wang S, He X, Ji L. Silver nanoparticles decorated meta-aramid nanofibrous membrane with advantageous properties for high-performance flexible pressure sensor. J Colloid Interface Sci. 2023;629:535-545.
[100]
Zhang Y, Liu S, Yan J, et al. Superior flexibility in oxide ceramic crystal nanofibers. Adv Mater. 2021;33(44):2105011.
[101]
Fu M, Zhang J, Jin Y, Zhao Y, Huang S, Guo CF. A highly sensitive, reliable, and high-temperature-resistant flexible pressure sensor based on ceramic nanofibers. Adv Sci. 2020;7(17):2000258.
[102]
Shen D, Xiao M, Zou G, Liu L, Duley WW, Zhou YN. Self-powered wearable electronics based on moisture enabled electricity generation. Adv Mater. 2018;30(18):1705925.
[103]
Han R, Liu Y, Mo Y, et al. High anti-jamming flexible capacitive pressure sensors based on core-shell structured AgNWs@TiO2. Adv Funct Mater. 2023;2305531.
[104]
Zhou Y, Wang Q, Zhang X, et al. Piezoionic transfer effect in topological borophene-bismuthene derivative micro-leaves for robust supercapacitive electronic skins. Nano Energy. 2022;104:107970.
[105]
Hong GW, Kim J, Lee JS, Shin K, Jung D, Kim JH. A flexible tactile sensor using seedless hydrothermal growth of ZnO nanorods on fabrics. J Phys Commun. 2020;4(4):045002.
[106]
Niu H, Gao S, Yue W, Li Y, Zhou W, Liu H. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small. 2020;16(4):1904774.
[107]
Niu H, Chen Y, Kim ES, Zhou W, Li Y, Kim NY. Ultrasensitive capacitive tactile sensor with heterostructured active layers for tiny signal perception. Chem Eng J. 2022;450:138258.
[108]
Niu H, Li H, Li Y, et al. Cocklebur-inspired “branch-seed-spininess” 3D hierarchical structure bionic electronic skin for intelligent perception. Nano Energy. 2023;107:108144.
[109]
Choi D, Jo H, Yoon T, et al. Transparent, flexible, and highly sensitive piezocomposite capable of harvesting and monitoring kinetic movements of microbubbles in liquid. Adv Funct Mater. 2023;33(43):2307607.
[110]
Joshi B, Seol J, Samuel E, et al. Supersonically sprayed PVDF and ZnO flowers with built-in nanocuboids for wearable piezoelectric nanogenerators. Nano Energy. 2023;112:108447.
[111]
Chen F, Zhang S, Hu L, et al. Bio-inspired artificial perceptual devices for neuromorphic computing and gesture recognition. Adv Funct Mater. 2023;33(24):2300266.
[112]
Xi B, Wang L, Yang B, Xia Y, Chen D, Wang X. Boosting output performance of triboelectric nanogenerator based on BaTiO3:La embedded nanofiber membrane for energy harvesting and wireless power transmission. Nano Energy. 2023;110:108385.
[113]
Wang Z, Liu Z, Zhao G, et al. Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors. ACS Nano. 2022;16(1):1661-1670.
[114]
Yan J, Han Y, Xia S, et al. Polymer template synthesis of flexible BaTiO3 crystal nanofibers. Adv Funct Mater. 2019;29(51):1907919.
[115]
Tian G, Deng W, Gao Y, et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy. 2019;59:574-581.
[116]
He W, Guo Y, Zhao YB, et al. Self-supporting smart air filters based on PZT/PVDF electrospun nanofiber composite membrane. Chem Eng J. 2021;423:130247.
[117]
Park KI, Lee M, Liu Y, et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater. 2012;24(22):2999-3004.
[118]
Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater. 2007;17(16):3207-3215.
[119]
Alluri NR, Chandrasekhar A, Vivekananthan V, et al. Scavenging biomechanical energy using high-performance, flexible BaTiO3 nanocube/PDMS composite films. ACS Sustainable Chem Eng. 2017;5(6):4730-4738.
[120]
Zhang G, Zhao P, Zhang X, et al. Flexible three-dimensional interconnected piezoelectric ceramic foam based composites for highly efficient concurrent mechanical and thermal energy harvesting. Energy Environ Sci. 2018;11(8):2046-2056.
[121]
Hu D, Yao M, Fan Y, Ma C, Fan M, Liu M. Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy. 2019;55:288-304.
[122]
Wu Y, Ma F, Qu J, et al. Vertically-aligned lead-free BCTZY nanofibers with enhanced electrical properties for flexible piezoelectric nanogenerators. Appl Surf Sci. 2019;469:283-291.
[123]
Jian G, Jiao Y, Meng Q, Shao H, Wang F, Wei Z. 3D BaTiO3 flower based polymer composites exhibiting excellent piezoelectric energy harvesting properties. Adv Mater Interfaces. 2020;7(16):2000484.
[124]
Ha M, Lim S, Park J, Um D-S, Lee Y, Ko H. Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins. Adv Funct Mater. 2015;25(19):2841-2849.
[125]
Sun Y, Liu Y, Zheng Y, et al. Enhanced energy harvesting ability of ZnO/PAN hybrid piezoelectric nanogenerators. ACS Appl Mater Interfaces. 2020;12(49):54936-54945.
[126]
Liu H, Lin X, Zhang S, Huan Y, Huang S, Cheng X. Enhanced performance of piezoelectric composite nanogenerator based on gradient porous PZT ceramic structure for energy harvesting. J Mater Chem A. 2020;8(37):19631-19640.
[127]
Li J, Yang Y, Jiang H, et al. 3D interpenetrating piezoceramic-polymer composites with high damping and piezoelectricity for impact energy-absorbing and perception. Compos B Eng. 2022;232:109617.
[128]
Choi M, Murillo G, Hwang S, et al. Mechanical and electrical characterization of PVDF-ZnO hybrid structure for application to nanogenerator. Nano Energy. 2017;33:462-468.
[129]
Hwang GT, Annapureddy V, Han JH, et al. Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Adv Energy Mater. 2016;6(13):1600237.
[130]
Chen X, Wang C, Wang Y, et al. In-situ immobilization cobalt-based metal-organic frameworks nanosheets on carbon composites for supercapacitors. J Energy Storage. 2022;55:105319.
[131]
Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2011;112(2):933-969.
[132]
Kirchon A, Feng L, Drake HF, Joseph EA, Zhou HC. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem Soc Rev. 2018;47(23):8611-8638.
[133]
Kalaj M, Bentz KC, Ayala S, et al. MOF-polymer hybrid materials: from simple composites to tailored architectures. Chem Rev. 2020;120(16):8268-8302.
[134]
Fu X, Zhao L, Yuan Z, et al. Hierarchical MXene@ZIF-67 film based high performance tactile sensor with large sensing range from motion monitoring to sound wave detection. Adv Mater Technol. 2022;7(8):2101511.
[135]
Rana SMS, Rahman MT, Zahed MA, et al. Zirconium metal-organic framework and hybridized Co-NPC@MXene nanocomposite-coated fabric for stretchable, humidity-resistant triboelectric nanogenerators and self-powered tactile sensors. Nano Energy. 2022;104:107931.
[136]
Fu X, Li J, Li D, et al. MXene/ZIF-67/PAN nanofiber film for ultra-sensitive pressure sensors. ACS Appl Mater Interfaces. 2022;14(10):12367-12374.
[137]
Zhou K, Zhang C, Xiong Z, et al. Template-directed growth of hierarchical MOF hybrid arrays for tactile sensor. Adv Funct Mater. 2020;30(38):2001296.
[138]
Zhao Y, Hou N, Wang Y, et al. All-fiber structure covered with two-dimensional conductive MOF materials to construct a comfortable, breathable and high-quality self-powered wearable sensor system. J Mater Chem A. 2022;10(3):1248-1256.
[139]
Sun J, Tu K, Büchele S, et al. Functionalized wood with tunable tribopolarity for efficient triboelectric nanogenerators. Matter. 2021;4(9):3049-3066.
[140]
Zhang G, Li Y, Xiao X, et al. In situ anchoring polymetallic phosphide nanoparticles within porous Prussian blue analogue nanocages for boosting oxygen evolution catalysis. Nano Lett. 2021;21(7):3016-3025.
[141]
Bai Y, Zhang G, Zhang S, Li Q, Pang H, Xu Q. Pyridine-modulated Ni/Co bimetallic metal-organic framework nanoplates for electrocatalytic oxygen evolution. Sci China Mater. 2021;64(1):137-148.
[142]
Wang Y, Yan L, Dastafkan K, et al. Lattice matching growth of conductive hierarchical porous MOF/LDH heteronanotube arrays for highly efficient water oxidation. Adv Mater. 2021;33(8):2006351.
[143]
Lin Y, Li WH, Wen Y, Wang GE, Ye XL, Xu G. Layer-by-layer growth of preferred-oriented MOF thin film on nanowire array for high-performance chemiresistive sensing. Angew Chem Int Ed Engl. 2021;60(49):25758-25761.
[144]
Yao MS, Tang WX, Wang GE, Nath B, Xu G. MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv Mater. 2016;28(26):5229-5234.
[145]
Hajra S, Sahu M, Padhan AM, et al. A green metal-organic framework-cyclodextrin MOF: a novel multifunctional material based triboelectric nanogenerator for highly efficient mechanical energy harvesting. Adv Funct Mater. 2021;31(28):2101829.
[146]
Wen R, Guo J, Yu A, Zhai J, Wang ZL. Humidity-resistive triboelectric nanogenerator fabricated using metal organic framework composite. Adv Funct Mater. 2019;29(20):1807655.
[147]
Khandelwal G, Chandrasekhar A, Raj NPMJ, Kim SJ. Metal-organic framework: a novel material for triboelectric nanogenerator-based self-powered sensors and systems. Adv Energy Mater. 2019;9(14):1803581.
[148]
Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 2014;10(6):2341-2353.
[149]
Mariano A, Lubrano C, Bruno U, Ausilio C, Dinger NB, Santoro F. Advances in cell-conductive polymer biointerfaces and role of the plasma membrane. Chem Rev. 2021;122(4):4552-4580.
[150]
Shi Y, Peng L, Ding Y, Zhao Y, Yu G. Nanostructured conductive polymers for advanced energy storage. Chem Soc Rev. 2015;44(19):6684-6696.
[151]
Zhang L, Du W, Nautiyal A, Liu Z, Zhang X. Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Sci China Mater. 2018;61(3):303-352.
[152]
Zhang H, Yin F, Shang S, et al. A high-performance, biocompatible, and degradable piezoresistive-triboelectric hybrid device for cross-scale human activities monitoring and self-powered smart home system. Nano Energy. 2022;102:107687.
[153]
Clevenger M, Kim H, Song HW, No K, Lee S. Binder-free printed PEDOT wearable sensors on everyday fabrics using oxidative chemical vapor deposition. Sci Adv. 2021;7(42):eabj8958.
[154]
Ji Z, Zhai B, Wang N, et al. Transferring and retaining of different polyaniline nanofeatures via electrophoretic deposition for enhanced sensing performance. Small. 2023;19(21):2300182.
[155]
Yu S, Li L, Wang J, et al. Light-boosting highly sensitive pressure sensors based on bioinspired multiscale surface structures. Adv Funct Mater. 2020;30(16):1907091.
[156]
Yang T, Deng W, Chu X, et al. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano. 2021;15(7):11555-11563.
[157]
Wang P, Wang M, Zhu J, et al. Surface engineering via self-assembly on PEDOT:PSS fibers: biomimetic fluff-like morphology and sensing application. Chem Eng J. 2021;425:131551.
[158]
Chen S, Li J, Liu H, Shi W, Peng Z, Liu L. Pruney fingers-inspired highly stretchable and sensitive piezoresistive fibers with isotropic wrinkles and robust interfaces. Chem Eng J. 2022;430:133005.
[159]
Ma Y, Shi L, Chen M, Li Z, Wu L. Bioinspired hierarchical polydimethylsiloxane/polyaniline array for ultrasensitive pressure monitoring. Chem Eng J. 2022;441:136028.
[160]
Wang Y, Chao M, Wan P, Zhang L. A wearable breathable pressure sensor from metal-organic framework derived nanocomposites for highly sensitive broad-range healthcare monitoring. Nano Energy. 2020;70:104560.
[161]
Wan Q, Chen Q, Freithaler MA, et al. Toward real-time blood pressure monitoring via high-fidelity iontronic tonometric sensors with high sensitivity and large dynamic ranges. Adv Healthc Mater. 2023;12(17):2202461.
[162]
Luo Y, Shao J, Chen S, et al. Flexible capacitive pressure sensor enhanced by tilted micropillar arrays. ACS Appl Mater Interfaces. 2019;11(19):17796-17803.
[163]
Yang J, Luo S, Zhou X, et al. Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl Mater Interfaces. 2019;11(16):14997-15006.
[164]
Park S, Lee Y, Baek J, et al. Spatiotemporal measurement of arterial pulse waves enabled by wearable active-matrix pressure sensor arrays. ACS Nano. 2022;16(1):368-377.
[165]
Zhou Q, Ji B, Wei Y, et al. A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range. J Mater Chem A. 2019;7(48):27334-27346.
[166]
Asghar W, Li F, Zhou Y, et al. Piezocapacitive flexible e-skin pressure sensors having magnetically grown microstructures. Adv Mater Technol. 2020;5(2):1900934.
[167]
Zhou Q, Ji B, Hu F, et al. Magnetized microcilia array-based self-powered electronic skin for micro-scaled 3D morphology recognition and high-capacity communication. Adv Funct Mater. 2022;32(46):2208120.
[168]
Cai L, Chen G, Tian J, Su B, He M. Three-dimensional printed ultrahighly sensitive bioinspired ionic skin based on submicrometer-scale structures by polymerization shrinkage. Chem Mater. 2021;33(6):2072-2079.
[169]
Lee J, So H. 3D-printing-assisted flexible pressure sensor with a concentric circle pattern and high sensitivity for health monitoring. Microsyst Nanoeng. 2023;9(1):44.
[170]
Guo X, Zhou D, Hong W, et al. Biologically emulated flexible sensors with high sensitivity and low hysteresis: toward electronic skin to a sense of touch. Small. 2022;18(32):2203044.
[171]
Wu Y, Cai L, Chen G, Yang F, He M. 3D printed, environment tolerant all-solid-state capacitive ionic skin. J Mater Chem A. 2022;10(35):18218-18225.
[172]
Bao R, Tao J, Zhao J, Dong M, Li J, Pan C. Integrated intelligent tactile system for a humanoid robot. Sci Bull. 2023;68(10):1027-1037.
[173]
Wang S, Xu J, Wang W, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature. 2018;555(7694):83-88.
[174]
Shi J, Dai Y, Cheng Y, et al. Embedment of sensing elements for robust, highly sensitive, and cross-talk-free iontronic skins for robotics applications. Sci Adv. 2023;9(9):eadf8831.
[175]
Yu X, Xie Z, Yu Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature. 2019;575(7783):473-479.
[176]
Yao K, Zhou J, Huang Q, et al. Encoding of tactile information in hand via skin-integrated wireless haptic interface. Nat Mach Intell. 2022;4(10):893-903.
[177]
Kim JS, Choi H, Hwang HJ, Choi D, Kim DH. All-printed electronic skin based on deformable and ionic mechanotransducer array. Macromol Biosci. 2020;20(11):2000147.
[178]
Pu X, Liu M, Chen X, et al. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv. 2017;3(5):e1700015.
[179]
Chen Q, Tang H, Liu J, et al. Silk-based pressure/temperature sensing bimodal ionotronic skin with stimulus discriminability and low temperature workability. Chem Eng J. 2021;422:130091.
[180]
Zhao C, Wang Y, Tang G, et al. Ionic flexible sensors: mechanisms, materials, structures, and applications. Adv Funct Mater. 2022;32(17):2110417.
[181]
Peng Y, Que M, Lee HE, et al. Achieving high-resolution pressure mapping via flexible GaN/ZnO nanowire LEDs array by piezo-phototronic effect. Nano Energy. 2019;58:633-640.
[182]
Zhu Z, Wang Y, Hu X, Sun X, Chang L, Lu P. An easily fabricated high performance ionic polymer based sensor network. Appl Phys Lett. 2016;109(7):073504.
[183]
Zirkl M, Sawatdee A, Helbig U, et al. An all-printed ferroelectric active matrix sensor network based on only five functional materials forming a touchless control interface. Adv Mater. 2011;23(18):2069-2074.
[184]
Lai QT, Zhao XH, Sun QJ, Tang Z, Tang XG, Roy VAL. Emerging MXene-based flexible tactile sensors for health monitoring and haptic perception. Small. 2023;19(27):2300283.
[185]
Min S, Kim DH, Joe DJ, et al. Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring. Adv Mater. 2023;35(26):2301627.
[186]
Gu G, Xu H, Peng S, et al. Integrated soft ionotronic skin with stretchable and transparent hydrogel-elastomer ionic sensors for hand-motion monitoring. Soft Robot. 2019;6(3):368-376.
[187]
Ni N. Flexible and highly sensitive ionic skins with multiple dielectric layers for finger joint bending angle monitoring. Alex Eng J. 2021;60(6):5991-6000.
[188]
Li Y, Wang R, Wang GE, et al. Mutually noninterfering flexible pressure-temperature dual-modal sensors based on conductive metal-organic framework for electronic skin. ACS Nano. 2021;16(1):473-484.
[189]
Khan SM, Qaiser N, Shaikh SF, Hussain MM. Design analysis and human tests of foil-based wheezing monitoring system for asthma detection. IEEE Trans Electron Devices. 2019;67(1):249-257.
[190]
Cui X, Huang F, Zhang X, et al. Flexible pressure sensors via engineering microstructures for wearable human-machine interaction and health monitoring applications. iScience. 2022;25(4):104148.
[191]
Tang X, Wu C, Gan L, et al. Multilevel microstructured flexible pressure sensors with ultrahigh sensitivity and ultrawide pressure range for versatile electronic skins. Small. 2019;15(10):1804559.
[192]
Heng W, Solomon S, Gao W. Flexible electronics and devices as human-machine interfaces for medical robotics. Adv Mater. 2022;34(16):2107902.
[193]
Yu Y, Li J, Solomon SA, et al. All-printed soft human-machine interface for robotic physicochemical sensing. Sci Robot. 2022;7(67):eabn0495.
[194]
Du R, Bao T, Zhu T, et al. A low-hysteresis and highly stretchable ionogel enabled by well dispersed slidable cross-linker for rapid human-machine interaction. Adv Funct Mater. 2023;33(30):2212888.
[195]
Shi Q, Dong B, He T, et al. Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things. InfoMat. 2020;2(6):1131-1162.
[196]
Lai YC, Deng J, Zhang SL, Niu S, Guo H, Wang ZL. Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv Funct Mater. 2017;27(1):1604462.
[197]
Huo Z, Wang X, Zhang Y, et al. High-performance Sb-doped p-ZnO NW films for self-powered piezoelectric strain sensors. Nano Energy. 2020;73:104744.
[198]
Wen F, Zhang Z, He T, Lee C. AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat Commun. 2021;12(1):5378.
[199]
Zhou Z, Chen K, Li X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron. 2020;3(9):571-578.

RIGHTS & PERMISSIONS

2023 2023 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/