In situ construction of PtSe2/Ge Schottky junction array with interface passivation for broadband infrared photodetection and imaging

Xue Li, Shuo-En Wu, Di Wu, Tianxiang Zhao, Pei Lin, Zhifeng Shi, Yongtao Tian, Xinjian Li, Longhui Zeng, Xuechao Yu

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (4) : e12499. DOI: 10.1002/inf2.12499
RESEARCH ARTICLE

In situ construction of PtSe2/Ge Schottky junction array with interface passivation for broadband infrared photodetection and imaging

Author information +
History +

Abstract

Infrared (IR) detection is vital for various military and civilian applications. Recent research has highlighted the potential of two-dimensional (2D) topological semimetals in IR detection due to their distinctive advantages, including van der Waals (vdW) stacking, gapless electronic structure, and Van Hove singularities in the electronic density of states. However, challenges such as large-scale patterning, poor photoresponsivity, and high dark current of photodetectors based on 2D topological semimetals significantly impede their wider applications in low-energy photon sensing. Here, we demonstrate the in situ fabrication of PtSe2/Ge Schottky junction by directly depositing 2D PtSe2 films with a vertical layer structure on a Ge substrate with an ultrathin AlOx layer. Due to high quality junction, the photodetector features a broadband response of up to 4.6 μm, along with a high specific detectivity of ~1012 Jones, and operates with remarkable stability in ambient conditions as well. Moreover, the highly integrated device arrays based on PtSe2/AlOx/Ge Schottky junction showcases excellent Mid-IR (MIR) imaging capability at room temperature. These findings highlight the promising prospects of 2D topological semimetals for uncooled IR photodetection and imaging applications.

Keywords

broadband photodetection / imaging / platinum diselenide / Schottky junction / van der Waals integration

Cite this article

Download citation ▾
Xue Li, Shuo-En Wu, Di Wu, Tianxiang Zhao, Pei Lin, Zhifeng Shi, Yongtao Tian, Xinjian Li, Longhui Zeng, Xuechao Yu. In situ construction of PtSe2/Ge Schottky junction array with interface passivation for broadband infrared photodetection and imaging. InfoMat, 2024, 6(4): e12499 https://doi.org/10.1002/inf2.12499

References

[1]
Wang P, Xia H, Li Q, et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers. Small. 2019;15(46):e1904396.
[2]
Peng M, Xie R, Wang Z, et al. Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Sci Adv. 2021;7(16):eabf7358.
[3]
Wang H, Li Z, Li D, et al. Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Adv Funct Mater. 2021;31(30):2103106.
[4]
Jiao H, Wang X, Chen Y, et al. HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector. Sci Adv. 2022;8(19):eabn1811.
[5]
Cao G, Wang F, Peng M, et al. Multicolor broadband and fast photodetector based on InGaAs-insulator-graphene hybrid heterostructure. Adv Electron Mater. 2020;6(3):1901007.
[6]
Li X, Sun T, Zhou K, et al. Broadband InSb/Si heterojunction photodetector with graphene transparent electrode. Nanotechnology. 2020;31(31):315204.
[7]
Zhu H, Chen Y, Zhao Y, et al. Growth and characterization of InGaAs/InAsSb superlattices by metal-organic chemical vapor deposition for mid-wavelength infrared photodetectors. Superlattices Microstruct. 2020;146:106655.
[8]
Sizov F. Terahertz radiation detectors: the state-of-the-art. Semicond Sci Technol. 2018;33(12):123001.
[9]
Rogalski A. New material systems for third generation infrared photodetectors. Opto-Electron Rev. 2008;16(4):458-482.
[10]
Wang F, Zhang Y, Gao Y, et al. 2D metal chalcogenides for IR photodetection. Small. 2019;15(30):e1901347.
[11]
Rao G, Wang X, Wang Y, et al. Two-dimensional heterostructure promoted infrared photodetection devices. InfoMat. 2019;1(3):272-288.
[12]
Liu Y, Weiss NO, Duan X, Cheng H, Huang Y, Duan X. Van der Waals heterostructures and devices. Nat Rev Mater. 2016;1(9):16042.
[13]
Liu J, Xia F, Xiao D, Garcia de Abajo FJ, Sun D. Semimetals for high-performance photodetection. Nat Mater. 2020;19(8):830-837.
[14]
Dong Z, Yu W, Zhang L, et al. Wafer-scale patterned growth of type-II Dirac semimetal platinum ditelluride for sensitive room-temperature terahertz photodetection. InfoMat. 2023;5(5):e12403.
[15]
Britnell L, Ribeiro RM, Eckmann A, et al. Strong light–matter interactions in heterostructures of atomically thin films. Science. 2013;340(6138):1311-1314.
[16]
Yu X, Yu P, Wu D, et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat Commun. 2018;9(1):1545.
[17]
Zeng L, Wu D, Jie J, et al. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 microm. Adv Mater. 2020;32(52):e2004412.
[18]
Wu D, Guo C, Zeng L, et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light Sci Appl. 2023;12(1):5.
[19]
Zhou J, Lin J, Huang X, et al. A library of atomically thin metal chalcogenides. Nature. 2018;556(7701):355-359.
[20]
Shim J, Bae SH, Kong W, et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science. 2018;362(6415):665-670.
[21]
Tong X, Liu K, Zeng M, Fu L. Vapor-phase growth of high-quality wafer-scale two-dimensional materials. InfoMat. 2019;1(4):460-478.
[22]
Jariwala D, Marks TJ, Hersam MC. Mixed-dimensional van der Waals heterostructures. Nat Mater. 2017;16(2):170-181.
[23]
Tian W, Sun HX, Chen L, et al. Low-dimensional nanomaterial/Si heterostructure-based photodetectors. Inf Dent. 2019;1(2):140-163.
[24]
Zeng L, Lin S, Li Z, et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv Funct Mater. 2018;28(16):1705970.
[25]
Lu Y, Wang Y, Xu C, et al. Construction of PtSe2/Ge heterostructure-based short-wavelength infrared photodetector array for image sensing and optical communication applications. Nanoscale. 2021;13(16):7606-7612.
[26]
Zhang Z, Zeng L, Tong X, et al. Ultrafast, self-driven, and air-stable photodetectors based on multilayer PtSe2/perovskite heterojunctions. J Phys Chem Lett. 2018;9(6):1185-1194.
[27]
Sefidmooye Azar N, Bullock J, Shrestha VR, et al. Long-wave infrared photodetectors based on 2D platinum diselenide atop optical cavity substrates. ACS Nano. 2021;15(4):6573-6581.
[28]
Cao B, Ye Z, Yang L, Gou L, Wang Z. Recent progress in Van der Waals 2D PtSe2. Nanotechnology. 2021;32(41):412001.
[29]
Zhuo R, Zeng L, Yuan H, et al. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 2019;12(1):183-189.
[30]
Wu D, Zhao Z, Lu W, et al. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed. Nano Res. 2021;14(6):1973-1979.
[31]
Zeng L, Lin S, Lou Z, et al. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater. 2018;10(4):352-362.
[32]
Wu D, Guo J, Wang C, et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano. 2021;15(6):10119-10129.
[33]
Mao J, Zhang B, Shi Y, et al. Conformal MoS2/silicon nanowire array heterojunction with enhanced light trapping and effective interface passivation for ultraweak infrared light detection. Adv Funct Mater. 2022;32(11):2108174.
[34]
Wu D, Guo J, Du J, et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano. 2019;13(9):9907-9917.
[35]
Zeng L, Han W, Wu S, Wu D, Lau SP, Tsang YH. Graphene/PtSe2/pyramid Si Van der Waals Schottky junction for room-temperature broadband infrared light detection. IEEE Trans Electron Devices. 2022;69(11):6212-6216.
[36]
Lai J, Liu X, Ma J, et al. Anisotropic broadband photoresponse of layered type-II Weyl semimetal MoTe2. Adv Mater. 2018;30(22):e1707152.
[37]
Long M, Gao A, Wang P, et al. Room-temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci Adv. 2017;3(6):e1700589.
[38]
Casalino M, Russo R, Russo C, et al. Free-space schottky graphene/silicon photodetectors operating at 2 μm. ACS Photonics. 2018;5(11):4577-4585.
[39]
Liu X, Zhou Q, Luo S, et al. Infrared photodetector based on the photothermionic effect of graphene-nanowall/silicon heterojunction. ACS Appl Mater Interfaces. 2019;11(19):17663-17669.
[40]
Mahyavanshi RD, Kalita G, Ranade A, et al. Photovoltaic action with broadband photoresponsivity in germanium-MoS2 ultrathin heterojunction. IEEE Trans Electron Devices. 2018;65(10):4434-4440.
[41]
Massicotte M, Schmidt P, Vialla F, et al. Photo-thermionic effect in vertical graphene heterostructures. Nat Commun. 2016;7(1):12174.
[42]
Liu C, Guo J, Yu L, et al. Silicon/2D-material photodetectors: from near-infrared to mid-infrared. Light Sci Appl. 2021;10(1):123.
[43]
Goykhman I, Sassi U, Desiatov B, et al. On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain. Nano Lett. 2016;16(5):3005-3013.
[44]
Luo L, Wang D, Xie C, Hu J, Zhao X, Liang F. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv Funct Mater. 2019;29(22):1900849.
[45]
Xie C, Zeng L, Zhang Z, Tsang Y, Luo L, Lee J. High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate. Nanoscale. 2018;10(32):15285-15293.
[46]
Zeng L, Wang M, Hu H, et al. Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl Mater Interfaces. 2013;5(19):9362-9366.
[47]
Yao J, Chen F, Li J, et al. A high-performance short-wave infrared phototransistor based on a 2D tellurium/MoS2 van der Waals heterojunction. J Mater Chem C. 2021;9(38):13123-13131.
[48]
Zhang J, Duan L, Zhou N, et al. Modulating the function of GeAs/ReS2 van der Waals heterojunction with its potential application for short-wave infrared and polarization-sensitive photodetection. Small. 2023;19(33):2303335.
[49]
Chen Y, Wang Y, Wang Z, et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat Electron. 2021;4(5):357-363.
[50]
Chi S, Li Z, Xie Y, et al. A wide-range photosensitive Weyl semimetal single crystal-TaAs. Adv Mater. 2018;30(43):1801372.
[51]
Peng L, Liu L, Du S, et al. Macroscopic assembled graphene nanofilms based room temperature ultrafast mid-infrared photodetectors. InfoMat. 2022;4(6):e12309.
[52]
Wang Y, Wu P, Wang Z, et al. Air-stable low-symmetry narrow-bandgap 2D sulfide niobium for polarization photodetection. Adv Mater. 2020;32(45):e2005037.
[53]
Bullock J, Amani M, Cho J, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat Photonics. 2018;12(10):601-607.
[54]
Yin C, Gong C, Chu J, et al. Ultrabroadband photodetectors up to 10.6 μm based on 2D Fe3O4 nanosheets. Adv Mater. 2020;32(25):2002237.

RIGHTS & PERMISSIONS

2023 2023 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/