Double-ended passivator enables dark-current-suppressed colloidal quantum dot photodiodes for CMOS-integrated infrared imagers
Peilin Liu, Shuaicheng Lu, Jing Liu, Bing Xia, Gaoyuan Yang, Mo Ke, Xuezhi Zhao, Junrui Yang, Yuxuan Liu, Ciyu Ge, Guijie Liang, Wei Chen, Xinzheng Lan, Jianbing Zhang, Liang Gao, Jiang Tang
Double-ended passivator enables dark-current-suppressed colloidal quantum dot photodiodes for CMOS-integrated infrared imagers
Lead sulfide (PbS) colloidal quantum dot (CQD) photodiodes integrated with silicon-based readout integrated circuits (ROICs) offer a promising solution for the next-generation short-wave infrared (SWIR) imaging technology. Despite their potential, large-size CQD photodiodes pose a challenge due to high dark currents resulting from surface states on non-passivated (100) facets and trap states generated by CQD fusion. In this work, we present a novel approach to address this issue by introducing double-ended ligands that supplementally passivate (100) facets of halide-capped large-size CQDs, leading to suppressed bandtail states and reduced defect concentration. Our results demonstrate that the dark current density is highly suppressed by about an order of magnitude to 9.6 nA cm-2 at -10 mV, which is among the lowest reported for PbS CQD photodiodes. Furthermore, the performance of the photodiodes is exemplary, yielding an external quantum efficiency of 50.8% (which corresponds to a responsivity of 0.532 A W-1) and a specific detectivity of 2.5 × 1012 Jones at 1300 nm. By integrating CQD photodiodes with CMOS ROICs, the CQD imager provides high-resolution (640 × 512) SWIR imaging for infrared penetration and material discrimination.
CMOS integration / colloidal quantum dots / dark current suppression / double-ended passivation / infrared imager
[1] |
Rogalski A. Infrared detectors: an overview. Infrared Phys Technol. 2002;43(3-5):187-210.
|
[2] |
Chorier P, Tribolet PM, Fillon P, Manissadjian A. Application needs and trade-offs for short-wave infrared detectors. Infrared Technology and Applications XXIX. Vol 5074. SPIE; 2003:363-373.
|
[3] |
Kastberger G, Stachl R. Infrared imaging technology and biological applications. Behav Res Methods Instrum Comput. 2003;35(3):429-439.
|
[4] |
Marti E, de Miguel MA, Garcia F, Perez J. A review of sensor technologies for perception in automated driving. IEEE Intell Transp Syst Mag. 2019;11(4):94-108.
|
[5] |
Kagan CR, Lifshitz E, Sargent EH, Talapin DV. Building devices from colloidal quantum dots. Science. 2016;353(6302):aac5523.
|
[6] |
Rauch T, Böberl M, Tedde SF, et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat Photonics. 2009;3(6):332-336.
|
[7] |
Goossens S, Navickaite G, Monasterio C, et al. Broadband image sensor array based on graphene-CMOS integration. Nat Photonics. 2017;11(6):366-371.
|
[8] |
Pejovic V, Lee J, Georgitzikis E, et al. Thin-film photodetector optimization for high-performance short-wavelength infrared imaging. IEEE Electron Device Lett. 2021;42(8):1196-1199.
|
[9] |
Liu J, Liu P, Chen D, et al. A near-infrared colloidal quantum dot imager with monolithically integrated readout circuitry. Nat Electron. 2022;5(7):443-451.
|
[10] |
Gregory C, Hilton A, Violette K, Klem EJD. 66-3: invited paper: colloidal quantum dot photodetectors for large format NIR, SWIR, and eSWIR imaging arrays. SID Symp Dig Tech Pap. 2021;52(1):982-986.
|
[11] |
Pejovic V, Georgitzikis E, Lee J, et al. Infrared colloidal quantum dot image sensors. IEEE Trans Electron Devices. 2022;69(6):2840-2850.
|
[12] |
Tang J, Kemp KW, Hoogland S, et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater. 2011;10(10):765-771.
|
[13] |
Liu M, Voznyy O, Sabatini R, et al. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat Mater. 2017;16(2):258-263.
|
[14] |
Vafaie M, Fan JZ, Morteza Najarian A, et al. Colloidal quantum dot photodetectors with 10-ns response time and 80% quantum efficiency at 1,550 nm. Matter. 2021;4(3):1042-1053.
|
[15] |
Biondi M, Choi M, Wang Z, et al. Facet-oriented coupling enables fast and sensitive colloidal quantum dot photodetectors. Adv Mater. 2021;33(33):2101056.
|
[16] |
Onat BM, Huang W, Masaun N, Lange M, Ettenberg MH, Dries C. Ultra-low dark current InGaAs technology for focal plane arrays for low-light level visible-shortwave infrared imaging. Infrared Technology and Applications XXXIII. Vol 6542. SPIE; 2007:233-241.
|
[17] |
Yuan P, Chang J, Boisvert JC, Karam N. Low-dark current 1024 × 1280 InGaAs PIN arrays. Infrared Technology and Applications XL. Vol 9070. SPIE; 2014:56-61.
|
[18] |
Dolas MH, Atesal O, Caliskan MD, Bek A, Ozbay E. Low dark current diffusion limited planar type InGaAs photodetectors. Infrared Sensors, Devices, and Applications IX. Vol 11129. SPIE; 2019:91-96.
|
[19] |
Carrère JP, Place S, Oddou JP, Benoit D, Roy F. CMOS image sensor: process impact on dark current. IEEE International Reliability Physics Symposium. IEEE; 2014:3C.1.1-3C.1.6.
|
[20] |
Simone G, Dyson MJ, Meskers SCJ, Janssen RAJ, Gelinck GH. Organic photodetectors and their application in large area and flexible image sensors: the role of dark current. Adv Funct Mater. 2020;30(20):1904205.
|
[21] |
Rogalski A. Infrared detectors: status and trends. Prog Quant Electron. 2003;27(2-3):59-210.
|
[22] |
Mendis SK, Kemeny SE, Gee RC, et al. CMOS active pixel image sensors for highly integrated imaging systems. IEEE J Solid State Circuits. 1997;32(2):187-197.
|
[23] |
Shockley W. The theory of p-n junctions in semiconductors and p-n junction transistors. Bell Syst Tech J. 1949;28(3):435-489.
|
[24] |
Wróbel J, Plis E, Gawron W, et al. Analysis of temperature dependence of dark current mechanisms in mid-wavelength infrared pin type-II superlattice photodiodes. Sens Mater. 2014;26(4):235-244.
|
[25] |
Jung BK, Woo HK, Shin C, et al. Suppressing the dark current in quantum dot infrared photodetectors by controlling carrier statistics. Adv Opt Mater. 2022;10(2):2101611.
|
[26] |
Giansante C, Infante I. Surface traps in colloidal quantum dots: a combined experimental and theoretical perspective. J Phys Chem Lett. 2017;8(20):5209-5215.
|
[27] |
Fan JZ, Andersen NT, Biondi M, et al. Mixed lead halide passivation of quantum dots. Adv Mater. 2019;31(48):1904304.
|
[28] |
Choi H, Ko JH, Kim YH, Jeong S. Steric-hindrance-driven shape transition in PbS quantum dots: understanding size-dependent stability. J Am Chem Soc. 2013;135(14):5278-5281.
|
[29] |
Beygi H, Sajjadi SA, Babakhani A, Young JF, van Veggel FCJM. Surface chemistry of as-synthesized and air-oxidized PbS quantum dots. Appl Surf Sci. 2018;457:1-10.
|
[30] |
Xia Y, Chen W, Zhang P, et al. Facet control for trap-state suppression in colloidal quantum dot solids. Adv Funct Mater. 2020;30(22):2000594.
|
[31] |
van Huis MA, Kunneman LT, Overgaag K, et al. Low-temperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy. Nano Lett. 2008;8(11):3959-3963.
|
[32] |
Choi JJ, Bealing CR, Bian K, et al. Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage. J Am Chem Soc. 2011;133(9):3131-3138.
|
[33] |
Hughes BK, Blackburn JL, Kroupa D, et al. Synthesis and spectroscopy of PbSe fused quantum-dot dimers. J Am Chem Soc. 2014;136(12):4670-4679.
|
[34] |
Ip AH, Kiani A, Kramer IJ, et al. Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression. ACS Nano. 2015;9(9):8833-8842.
|
[35] |
Gilmore RH, Liu Y, Shcherbakov-Wu W, et al. Epitaxial dimers and auger-assisted detrapping in PbS quantum dot solids. Matter. 2019;1(1):250-265.
|
[36] |
Parmar DH, M. Pina J, Zhu T, et al. Controlled crystal plane orientations in the ZnO transport layer enable high-responsivity, low-dark-current infrared photodetectors. Adv Mater. 2022;34(17):2200321.
|
[37] |
Yang J, Lu S, Xia B, et al. Excess PbBr2 passivation of large PbS colloidal quantum dots to reduce dark-current density for near-infrared detection. Phys Rev Appl. 2023;19:014021.
|
[38] |
Lu S, Liu P, Yang J, et al. High-performance colloidal quantum dot photodiodes via suppressing Interface defects. ACS Appl Mater Interfaces. 2023;15(9):12061-12069.
|
[39] |
Kim J, Ouellette O, Voznyy O, et al. Butylamine-catalyzed synthesis of nanocrystal inks enables efficient infrared CQD solar cells. Adv Mater. 2018;30(45):1803830.
|
[40] |
Kim JH, Kim SG, Park NG. Effect of chemical bonding nature of post-treatment materials on photovoltaic performance of perovskite solar cells. ACS Energy Lett. 2021;6(10):3435-3442.
|
[41] |
Ahmed GH, Yin J, Bose R, et al. Pyridine-induced dimensionality change in hybrid perovskite nanocrystals. Chem Mater. 2017;29(10):4393-4400.
|
[42] |
Hong J, Hou B, Lim J, et al. Enhanced charge carrier transport properties in colloidal quantum dot solar cells via organic and inorganic hybrid surface passivation. J Mater Chem A. 2016;4(48):18769-18775.
|
[43] |
Xia Y, Liu S, Wang K, et al. Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv Funct Mater. 2020;30(4):1907379.
|
[44] |
Melikova SM, Rutkowski KS, Gurinov AA, Denisov GS, Rospenk M, Shenderovich IG. FTIR study of the hydrogen bond symmetry in protonated homodimers of pyridine and collidine in solution. J Mol Struct. 2012;1018:39-44.
|
[45] |
Tang H, Zhong J, Chen W, et al. Lead sulfide quantum dot photodetector with enhanced responsivity through a two-step ligand-exchange method. ACS Appl Nano Mater. 2019;2(10):6135-6143.
|
[46] |
Chen W, Tang H, Chen Y, et al. Spray-deposited PbS colloidal quantum dot solid for near-infrared photodetectors. Nano Energy. 2020;78:105254.
|
[47] |
He J, Luo M, Hu L, et al. Flexible lead sulfide colloidal quantum dot photodetector using pencil graphite electrodes on paper substrates. J Alloys Compd. 2014;596:73-78.
|
[48] |
Voznyy O, Levina L, Fan JZ, et al. Machine learning accelerates discovery of optimal colloidal quantum dot synthesis. ACS Nano. 2019;13(10):11122-11128.
|
[49] |
Kim T, Park S, Jeong S. Diffusion dynamics controlled colloidal synthesis of highly monodisperse InAs nanocrystals. Nat Commun. 2021;12(1):3013.
|
[50] |
Dutta AK, Islam MS. Novel broadband photodetector for optical communication. Active and Passive Optical Components for WDM Communications V. Vol 6014. SPIE; 2005:88-97.
|
[51] |
Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev. 1953;92(5):1324.
|
[52] |
Voznyy O, Levina L, Fan F, et al. Origins of stokes shift in PbS nanocrystals. Nano Lett. 2017;17(12):7191-7195.
|
[53] |
Chuang CHM, Brown PR, Bulović V, Bawendi MG. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater. 2014;13(8):796-801.
|
[54] |
Bozyigit D, Jakob M, Yarema O, Wood V. Deep level transient spectroscopy (DLTS) on colloidal-synthesized nanocrystal solids. ACS Appl Mater Interfaces. 2013;5(8):2915-2919.
|
[55] |
Wen X, Chen C, Lu S, et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nat Commun. 2018;9(1):2179.
|
[56] |
Tang R, Wang X, Lian W, et al. Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency. Nat Energy. 2020;5(8):587-595.
|
[57] |
Lian W, Jiang C, Yin Y, et al. Revealing composition and structure dependent deep-level defect in antimony trisulfide photovoltaics. Nat Commun. 2021;12(1):3260.
|
[58] |
Yao Z, Xu Z, Zhao W, et al. Enhanced efficiency of inorganic CsPbI3-xBrx perovskite solar cell via self-regulation of antisite defects. Adv Energy Mater. 2021;11(23):2100403.
|
[59] |
Hartley CL, Dempsey JL. Revealing the molecular identity of defect sites on PbS quantum dot surfaces with redox-active chemical probes. Chem Mater. 2021;33(7):2655-2665.
|
[60] |
Shi G, Wang H, Zhang Y, et al. The effect of water on colloidal quantum dot solar cells. Nat Commun. 2021;12(1):4381.
|
[61] |
Xu J, Voznyy O, Liu M, et al. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nat Nanotechnol. 2018;13(6):456-462.
|
[62] |
Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953-17979.
|
[63] |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169-11186.
|
[64] |
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865-3868.
|
[65] |
Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13(12):5188-5192.
|
[66] |
Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst. 2011;44(6):1272-1276.
|
/
〈 | 〉 |