High sensitivity of semimetal photodetection via Bose-Einstein condensation

Tuntan Wu, Qinxi Qiu, Yongzhen Li, Qiangguo Zhou, Wanli Ma, Jingbo Li, Lin Jiang, Wei Zhou, Zhiming Huang

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (2) : e12492. DOI: 10.1002/inf2.12492
RESEARCH ARTICLE

High sensitivity of semimetal photodetection via Bose-Einstein condensation

Author information +
History +

Abstract

The discovery of semiconductor has witnessed remarkable strides toward high performance of photodetectors attributed to its excellent carrier properties. However, semimetal, owning to the high carrier concentration and low carrier mobility compared to those of semiconductor, is generally considered unsuitable for photodetection. Herein, we demonstrate an outstanding photodetection in a layered semimetal titanium diselenide (TiSe2) in Bose-Einstein condensation (BEC) state. High sensitivity of semimetal photodetector is realized in the range of visible, infrared and terahertz bands. The noise equivalent power (NEP) has threefold improvement at the visible and infrared wavebands, and significant decrease by one order of magnitude in the terahertz frequencies via BEC phenomenon, attributed to the electrical parameter variation after condensation. The best NEP value in the terahertz frequency is comparable to that of commercial Si photodetector. Our results show another recipe to fabricate high performance of photodetection via semimetal except for semiconductor and pave the way to exploit macroscopic quantum phenomena for optoelectronics.

Keywords

Bose-Einstein condensation / electromagnetic induced well effect / photodetector / semimetal

Cite this article

Download citation ▾
Tuntan Wu, Qinxi Qiu, Yongzhen Li, Qiangguo Zhou, Wanli Ma, Jingbo Li, Lin Jiang, Wei Zhou, Zhiming Huang. High sensitivity of semimetal photodetection via Bose-Einstein condensation. InfoMat, 2024, 6(2): e12492 https://doi.org/10.1002/inf2.12492

References

[1]
Grotevent MJ, Yakunin S, Bachmann D, et al. Integrated photodetectors for compact Fourier-transform waveguide spectrometers. Nat Photonics. 2023;17(1):59-64.
[2]
Zhu DL, Jiang W, Ma ZT, et al. Organic donor-acceptor heterojunctions for high performance circularly polarized light detection. Nat Commun. 2022;13(1):3454.
[3]
Jin P, Tang YJ, Li DW, et al. Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite x-ray detector and image array by dark-current-shunting strategy. Nat Commun. 2023;14(1):626.
[4]
Najarian AM, Vafaie M, Johnston A, et al. Sub-millimetre light detection and ranging using perovskites. Nat Electron. 2022;5(8):511-518.
[5]
de Arquer FPG, Armin A, Meredith P, Sargent EH. Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater. 2017;2(3):16100.
[6]
Yan RX, Gargas D, Yang PD. Nanowire photonics. Nat Photonics. 2009;3(10):569-576.
[7]
Michel J, Liu JF, Kimerling LC. High-performance Ge-on-Si photodetectors. Nat Photonics. 2010;4(8):527-534.
[8]
Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics. 2016;10(4):216-226.
[9]
Sablon KA, Sergeev A, Najmaei S, Dubey M. High-response hybrid quantum dots-2D conductor phototransistors: recent progress and perspectives. Nanophotonics. 2017;6(6):1263-1280.
[10]
Srivastav V, Sharma RK, Bhan RK, Dhar V, Venkataraman V. Exploring novel methods to achieve sensitivity limits for high operating temperature infrared detectors. Infrared Phys Technol. 2013;61:290-298.
[11]
Liu J, Xia FN, Xiao D, de Abajo FJG, Sun D. Semimetals for high-performance photodetection. Nat Mater. 2020;19(8):830-837.
[12]
Cheng Y, Zong A, Li J, et al. Light-induced dimension crossover dictated by excitonic correlations. Nat Commun. 2022;13(1):963.
[13]
Fukutani K, Stania R, Kwon CI, et al. Detecting photoelectrons from spontaneously formed excitons. Nat Phys. 2021;17(9):1024-1030.
[14]
Bok JM, Hwang J, Choi HY. Excitonic insulator emerging from semiconducting normal state in 1T-TiSe2. Phys Rev B. 2021;103(20):205108.
[15]
Bretscher HM, Andrich P, Murakami Y, et al. Imaging the coherent propagation of collective modes in the excitonic insulator Ta2NiSe5 at room temperature. Sci Adv. 2021;7(28):eabd6147.
[16]
Leggett AJ. Perspective—Quantum liquids. Science. 2008;319(5867):1203-1205.
[17]
Cornell EA, Wieman CE. Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev Mod Phys. 2002;74(3):875-893.
[18]
Wang ZF, Rhodes DA, Watanabe K, et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature. 2019;574(7776):76-80.
[19]
Liu XM, Watanabe K, Taniguchi T, Halperin BI, Kim P. Quantum Hall drag of exciton condensate in graphene. Nat Phys. 2017;13(8):746-750.
[20]
Rivera P, Schaibley JR, Jones AM, et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat Commun. 2015;6(1):6242.
[21]
Monney C, Puppin M, Nicholson CW, et al. Revealing the role of electrons and phonons in the ultrafast recovery of charge density wave correlations in 1T-TiSe2. Phys Rev B. 2016;94(16):165165.
[22]
Chen P, Chan YH, Fang XY, et al. Charge density wave transition in single-layer titanium diselenide. Nat Commun. 2015;6(1):8943.
[23]
Monney C, Cercellier H, Clerc F, et al. Spontaneous exciton condensation in 1T-TiSe2: BCS-like approach. Phys Rev B. 2009;79(4):045116.
[24]
Monney C, Battaglia C, Cercellier H, Aebi P, Beck H. Exciton condensation driving the periodic lattice distortion of 1T-TiSe2. Phys Rev Lett. 2011;106(10):106404.
[25]
Lian C, Ali ZA, Wong BM. Charge density wave hampers exciton condensation in 1T-TiSe2. Phys Rev B. 2019;100(20):205423.
[26]
Kogar A, Rak MS, Vig S, et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science. 2017;358(6368):1315-1317.
[27]
Monney C, Schwier EF, Garnier MG, et al. Temperature-dependent photoemission on 1T-TiSe2: interpretation within the exciton condensate phase model. Phys Rev B. 2010;81(15):155104.
[28]
Sugawara K, Nakata Y, Shimizu R, et al. Unconventional charge-density-wave transition in monolayer 1T-TiSe2. ACS Nano. 2016;10(1):1341-1345.
[29]
Novello AM, Hildebrand B, Scarfato A, et al. Scanning tunneling microscopy of the charge density wave in 1T-TiSe2 in the presence of single atom defects. Phys Rev B. 2015;92(8):081101.
[30]
Mulani I, Rajput U, Harnagea L, Deshpande A. Perturbation of charge density waves in 1T-TiSe2. Phys Rev B. 2021;103(12):125430.
[31]
Mohr-Vorobeva E, Johnson SL, Beaud P, et al. Nonthermal melting of a charge density wave in TiSe2. Phys Rev Lett. 2011;107(3):036403.
[32]
Watanabe H, Seki K, Yunoki S. Charge-density wave induced by combined electron-electron and electron-phonon interactions in 1T-TiSe2: a variational Monte Carlo study. Phys Rev B. 2015;91(20):205135.
[33]
Qiu QX, Huang ZM. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv Mater. 2021;33(15):2008126.
[34]
Huang ZM, Zhou W, Tong JC, et al. Extreme sensitivity of room-temperature photoelectric effect for terahertz detection. Adv Mater. 2016;28(1):112-117.
[35]
Huang ZM, Zhou W, Huang JG, et al. Directly tailoring photon-electron coupling for sensitive photoconductance. Sci Rep. 2016;6(1):22938.
[36]
Huang ZM, Tong JC, Huang JG, et al. Room-temperature photoconductivity far below the semiconductor bandgap. Adv Mater. 2014;26(38):6594-6598.
[37]
Hellmann S, Rohwer T, Kallaene M, et al. Time-domain classification of charge-density-wave insulators. Nat Commun. 2012;3(1):1069.
[38]
Cazzaniga M, Cercellier H, Holzmann M, et al. Ab initio many-body effects in TiSe2: a possible excitonic insulator scenario from GW band-shape renormalization. Phys Rev B. 2012;85(19):195111.
[39]
Cercellier H, Monney C, Clerc F, et al. Evidence for an excitonic insulator phase in 1T-TiSe2. Phys Rev Lett. 2007;99(14):146403.
[40]
Disalvo FJ, Moncton DE, Waszczak JV. Electronic properties and superlattice formation in semimetal TiSe2. Phys Rev B. 1976;14(10):4321-4328.
[41]
Wang H, Chen Y, Duchamp M, et al. Large-area atomic layers of the charge-density-wave conductor TiSe2. Adv Mater. 2018;30(8):1704382.
[42]
Cui L, He R, Li GM, Zhang YJ, You YM, Huang MY. Raman spectroscopy of optical phonon and charge density wave modes in 1T-TiSe2 exfoliated flakes. Solid State Commun. 2017;266:21-25.
[43]
Duong DL, Ryu G, Hoyer A, Lin CT, Burghard M, Kern K. Raman characterization of the charge density wave phase of 1T-TiSe2: from bulk to atomically thin layers. ACS Nano. 2017;11(1):1034-1040.
[44]
Subedi A. Trigonal-to-monoclinic structural transition in TiSe2 due to a combined condensation of q = (1/2, 0, 0) and (1/2, 0, 1/2) phonon instabilities. Phys Rev Mater. 2022;6(1):014602.
[45]
Burian M, Porer M, Mardegan JRL, et al. Structural involvement in the melting of the charge density wave in 1T-TiSe2. Phys Rev Res. 2021;3(1):013128.
[46]
Yoshida M, Suzuki R, Zhang YJ, Nakano M, Iwasa Y. Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci Adv. 2015;1(9):e1500606.
[47]
Lian C, Zhang SJ, Hu SQ, Guan MX, Meng S. Ultrafast charge ordering by self-amplified exciton-phonon dynamics in TiSe2. Nat Commun. 2020;11(1):43.
[48]
Giannozzi P, Andreussi O, Brumme T, et al. Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J Phys: Condens Matter. 2017;29(46):465901.
[49]
Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter. 2009;21(39):395502.
[50]
Li G, Hu WZ, Qian D, et al. Semimetal-to-semimetal charge density wave transition in 1T-TiSe2. Phys Rev Lett. 2007;99(2):027404.
[51]
Walmsley TS, Xu YQ. Enhanced photocurrent response speed in charge-density-wave phase of TiSe2-metal junctions. Nanoscale. 2021;13(27):11836-11843.
[52]
Rogalski A. Infrared Detectors. CRC Press; 2011.

RIGHTS & PERMISSIONS

2023 2023 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/