Universal transfer of full-class metal electrodes for barrier-free two-dimensional semiconductor contacts
Mengyu Hong, Xiankun Zhang, Yu Geng, Yunan Wang, Xiaofu Wei, Li Gao, Huihui Yu, Zhihong Cao, Zheng Zhang, Yue Zhang
Universal transfer of full-class metal electrodes for barrier-free two-dimensional semiconductor contacts
Metal-semiconductor contacts are crucial components in semiconductor devices. Ultrathin two-dimensional transition-metal dichalcogenide semiconductors can sustain transistor scaling for next-generation integrated circuits. However, their performance is often degraded by conventional metal deposition, which results in a high barrier due to chemical disorder and Fermi-level pinning (FLP). Although, transferring electrodes can address these issues, they are limited in achieving universal transfer of full-class metals due to strong adhesion between pre-deposited metals and substrates. Here, we propose a nanobelt-assisted transfer strategy that can avoid the adhesion limitation and enables the universal transfer of over 20 different types of electrodes. Our contacts obey the Schottky-Mott rule and exhibit a FLP of S = 0.99. Both the electron and hole contacts show record-low Schottky barriers of 4.2 and 11.2 meV, respectively. As a demonstration, we construct a doping-free WSe2 inverter with these high-performance contacts, which exhibits a static power consumption of only 58 pW. This strategy provides a universal method of electrode preparation for building high-performance post-Moore electronic devices.
metal electrode transfer / metal-semiconductor contacts / Schottky barrier / two-dimensional semiconductors
[1] |
Shen PC, Su C, Lin Y, et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature. 2021;593(7858):211-217.
|
[2] |
Liu Y, Duan X, Shin HJ, Park S, Huang Y, Duan X. Promises and prospects of two-dimensional transistors. Nature. 2021;591(7848):43-53.
|
[3] |
Wang Y, Kim JC, Wu RJ, et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature. 2019;568(7750):70-74.
|
[4] |
Liu Y, Huang Y, Duan X. Van der Waals integration before and beyond two-dimensional materials. Nature. 2019;567(7748):323-333.
|
[5] |
Wu W, Wang L, Li Y, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature. 2014;514(7523):470-474.
|
[6] |
Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature. 2013;499(7459):419-425.
|
[7] |
Liu L, Kong L, Li Q, et al. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat Electron. 2021;4(5):342-347.
|
[8] |
Ma L, Nguyen PX, Wang Z, et al. Strongly correlated excitonic insulator in atomic double layers. Nature. 2021;598(7882):585-589.
|
[9] |
Migliato Marega G, Zhao Y, Avsar A, et al. Logic-in-memory based on an atomically thin semiconductor. Nature. 2020;587(7832):72-77.
|
[10] |
Sarkar D, Xie X, Liu W, et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature. 2015;526(7571):91-95.
|
[11] |
Wang SJ, Sawatzki M, Darbandy G, et al. Organic bipolar transistors. Nature. 2022;606(7915):700-705.
|
[12] |
Zhang X, Grajal J, Vazquez-Roy JL, et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature. 2019;566(7744):368-372.
|
[13] |
Lee S-J, Lin Z, Huang J, et al. Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nat Electron. 2020;3(10):630-637.
|
[14] |
Xu K, Wang Z, Du X, et al. Atomic-layer triangular WSe2 sheets: synthesis and layer-dependent photoluminescence property. Nanotechnology. 2013;24(46):465705.
|
[15] |
Xiang H, Chien Y-C, Shi Y, Ang K-W. Application of 2D materials in hardware security for internet-of-things: Progress and perspective. Small Struct. 2022;3(8):2200060.
|
[16] |
Liu R, Wang F, Liu L, et al. Band alignment engineering in two-dimensional transition metal dichalcogenide-based heterostructures for photodetectors. Small Struct. 2020;2(3):2000136.
|
[17] |
Chen JR, Odenthal PM, Swartz AG, et al. Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett. 2013;13(7):3106-3110.
|
[18] |
Wang Y, Chhowalla M. Making clean electrical contacts on 2D transition metal dichalcogenides. Nat Rev Phys. 2021;4(2):101-112.
|
[19] |
Allain A, Kang J, Banerjee K, Kis A. Electrical contacts to two-dimensional semiconductors. Nat Mater. 2015;14(12):1195-1205.
|
[20] |
Liu Y, Wu H, Cheng HC, et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 2015;15(5):3030-3034.
|
[21] |
Moun M, Singh R. Barrier inhomogeneity in microscale Pt/MoS2 Schottky barrier diode. Semicond Sci Technol. 2018;33(12):125001.
|
[22] |
Liu B, Zhang X, Du J, et al. Synergistic-engineered van der Waals photodiodes with high efficiency. Inf Dent. 2022;4(3):e12282.
|
[23] |
Shen T, Ren JC, Liu X, Li S, Liu W. Van der Waals stacking induced transition from Schottky to ohmic contacts: 2D metals on multilayer InSe. J Am Chem Soc. 2019;141(7):3110-3115.
|
[24] |
Zhong H, Quhe R, Wang Y, et al. Interfacial properties of monolayer and bilayer MoS2 contacts with metals: beyond the energy band calculations. Sci Rep. 2016;6(1):21786.
|
[25] |
Xu J, Shim J, Park J-H, Lee S. MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Adv Funct Mater. 2016;26(29):5328-5334.
|
[26] |
Zhang X, Liu B, Gao L, et al. Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions. Nat Commun. 2021;12(1):1522.
|
[27] |
Liu B, Liao Q, Zhang X, et al. Strain-engineered van der Waals interfaces of mixed-dimensional heterostructure arrays. ACS Nano. 2019;13(8):9057-9066.
|
[28] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol. 2011;6(3):147-150.
|
[29] |
Lee I, Rathi S, Li L, et al. Non-degenerate n-type doping by hydrazine treatment in metal work function engineered WSe2 field-effect transistor. Nanotechnology. 2015;26(45):455203.
|
[30] |
Lee D, Lee JJ, Kim YS, et al. Remote modulation doping in van der Waals heterostructure transistors. Nat Electron. 2021;4(9):664-670.
|
[31] |
Wang X, Feng Q, Xu S, et al. Passivation of transition metal dichalcogenides monolayers with a surface-confined atomically thick sulfur layer. Small Struct. 2022;3(4):2100224.
|
[32] |
Zhang X, Liao Q, Liu S, et al. Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat Commun. 2017;8(1):15881.
|
[33] |
Gao L, Liao Q, Zhang X, et al. Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv Mater. 2020;32(2):e1906646.
|
[34] |
Liu S, Liao Q, Lu S, Zhang Z, Zhang G, Zhang Y. Strain modulation in graphene/ZnO nanorod film Schottky junction for enhanced photosensing performance. Adv Funct Mater. 2016;26(9):1347-1353.
|
[35] |
Kwon G, Choi Y-H, Lee H, et al. Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat Electron. 2022;5(4):241-247.
|
[36] |
Yang Z, Kim C, Lee KY, et al. A Fermi-level-pinning-free 1D electrical contact at the intrinsic 2D MoS2-metal junction. Adv Mater. 2019;31(25):e1808231.
|
[37] |
Wakafuji Y, Moriya R, Masubuchi S, Watanabe K, Taniguchi T, Machida T. 3D manipulation of 2D materials using microdome polymer. Nano Lett. 2020;20(4):2486-2492.
|
[38] |
Liu Y, Guo J, Zhu E, et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature. 2018;557(7707):696-700.
|
[39] |
Wang J, Cai L, Chen J, et al. Transferred metal gate to 2D semiconductors for sub-1 V operation and near ideal subthreshold slope. Sci Adv. 2021;7(44):eabf8744.
|
[40] |
Nishimura T, Kita K, Toriumi A. Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface. Appl Phys Lett. 2007;91(12):123123.
|
[41] |
Kim GS, Kim SH, Park J, Han KH, Kim J, Yu HY. Schottky barrier height engineering for electrical contacts of multilayered MoS2 transistors with reduction of metal-induced gap states. ACS Nano. 2018;12(6):6292-6300.
|
[42] |
Mleczko MJ, Yu AC, Smyth CM, et al. Contact engineering high-performance n-type MoTe2 transistors. Nano Lett. 2019;19(9):6352-6362.
|
[43] |
Das S, Chen HY, Penumatcha AV, Appenzeller J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013;13(1):100-105.
|
[44] |
Jang J, Kim Y, Chee SS, et al. Clean interface contact using a ZnO interlayer for low-contact-resistance MoS2 transistors. ACS Appl Mater Interfaces. 2020;12(4):5031-5039.
|
[45] |
Gong C, Colombo L, Wallace RM, Cho K. The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. Nano Lett. 2014;14(4):1714-1720.
|
[46] |
Kim C, Moon I, Lee D, et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano. 2017;11(2):1588-1596.
|
[47] |
Li X, Wei Y, Lu G, et al. Gate-tunable contact-induced Fermi-level shift in semimetal. Proc Natl Acad Sci U S A. 2022;119(17):e2119016119.
|
[48] |
Urban F, Martucciello N, Peters L, McEvoy N, Di Bartolomeo A. Environmental effects on the electrical characteristics of back-gated WSe2 field-effect transistors. Nanomaterials. 2018;8(11):901.
|
[49] |
Yu HY, Ren C, Yeo YC, et al. Fermi pinning-induced thermal instability of metal-gate work functions. IEEE Electron Device Lett. 2004;25(5):337-339.
|
[50] |
Liu G, Tian Z, Yang Z, et al. Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nat Electron. 2022;5(5):275-280.
|
[51] |
Jang J, Ra HS, Ahn J, et al. Fermi-level pinning-free WSe2 transistors via 2D van der Waals metal contacts and their circuits. Adv Mater. 2022;34(19):e2109899.
|
[52] |
Jung Y, Choi MS, Nipane A, et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat Electron. 2019;2(5):187-194.
|
[53] |
Li W, Liu L, Tao Q, et al. Realization of ultra-scaled MoS2 vertical diodes via double-side electrodes lamination. Nano Lett. 2022;22(11):4429-4436.
|
[54] |
Tao Q, Wu R, Li Q, et al. Reconfigurable electronics by disassembling and reassembling van der Waals heterostructures. Nat Commun. 2021;12(1):1825.
|
[55] |
Woo JY, Oh JH, Han H, Kim JW, Jo S, Han CS. Ultraclean contact transfer of patterned Ag electrodes by thermal release tape for transparent conductive electrode. Int J Precis Eng Manuf. 2016;17(4):461-466.
|
[56] |
Went CM, Wong J, Jahelka PR, et al. A new metal transfer process for van der Waals contacts to vertical Schottky-junction transition metal dichalcogenide photovoltaics. Sci Adv. 2019;5(12):eaax6061.
|
[57] |
Liu Y, Stradins P, Wei SH. Van der Waals metal-semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier. Sci Adv. 2016;2(4):e1600069.
|
[58] |
Di Bartolomeo A, Urban F, Passacantando M, et al. A WSe2 vertical field emission transistor. Nanoscale. 2019;11(4):1538-1548.
|
[59] |
Qin S, Duan Y, Zhang XL, et al. Ternary nickel-tungsten-copper alloy rivals platinum for catalyzing alkaline hydrogen oxidation. Nat Commun. 2021;12(1):2686.
|
[60] |
Wilson RG. Vacuum thermionic work functions of polycrystalline Be, Ti, Cr, Fe, Ni, Cu, Pt, and type 304 stainless steel. J Appl Phys. 1966;37(6):2261-2267.
|
[61] |
Kong L, Zhang X, Tao Q, et al. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat Commun. 2020;11(1):1866.
|
[62] |
Romero HE, Shen N, Joshi P, et al. N-type behavior of graphene supported on Si/SiO2 substrates. ACS Nano. 2008;2(10):2037-2044.
|
[63] |
Bao W, Cai X, Kim D, Sridhara K, Fuhrer MS. High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl Phys Lett. 2013;102(4):042104.
|
[64] |
Rabaey JM, Chandrakasan AP, Nikolic B. Digital Integrated Circuits. Prentice Hall Englewood Cliffs; 2002.
|
[65] |
Semiconductor F. CMOS, the ideal logic family. Nota de aplicación. 1983.
|
[66] |
Hong M, Meng J, Yu H, et al. Ultra-stable ZnO nanobelts in electrochemical environments. Mater Chem Front. 2021;5(1):430-437.
|
/
〈 | 〉 |