Recent developments in three-dimensional Zn metal anodes for battery applications
Jianyu Chen, Yizhou Wang, Zhengnan Tian, Jin Zhao, Yanwen Ma, Husam N. Alshareef
Recent developments in three-dimensional Zn metal anodes for battery applications
Aqueous zinc (Zn) ion batteries (AZIBs) are regarded as one of the promising candidates for next-generation electrochemical energy storage systems due to their low cost, high safety, and environmental friendliness. However, the commercialization of AZIBs has been severely restricted by the growth of dendrite at the Zn metal anode. Tailoring the planar-structured Zn anodes into three-dimensional (3D) structures has proven to be an effective way to modulate the plating/stripping behavior of Zn anodes, resulting in the suppression of dendrite formation. This review provides an up-to-date review of 3D structured Zn metal anodes, including working principles, design, current status, and future prospects. We aim to give the readers a comprehensive understanding of 3D-structured Zn anodes and their effective usage to enhance AZIB performance.
3D metal anodes / aqueous Zn ion batteries / dendrite suppression / Zn dendrite / Zn metal anodes
[1] |
Wang Y, Zhou D, Palomares V, et al. Revitalising sodium-sulfur batteries for non-high-temperature operation: a crucial review. Energy Environ Sci. 2020;13(11):3848-3879.
|
[2] |
(a) Zhu Z, Jiang T, Ali M, et al. Rechargeable batteries for grid scale energy storage. Chem Rev. 2022;122:16610. (b) Han D, Cui C, Zhang K, et al. A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat Sustain. 2022;5:205-213. (c) Song M, Tan H, Chao D, et al. Recent advances in Zn-ion batteries. Adv Funct Mater. 2018;28:1802564. (d) Chen J, Qiao X, Fu W, et al. Lithiophilic hyperbranched Cu nanostructure for stable Li metal anodes. SmartMat. 2023;4(3):e1174.
|
[3] |
(a) Su Y, Chen B, Sun Y, et al. Rationalized electroepitaxy toward scalable single-crystal Zn anodes. Adv. Mater. 2023;35:2301410. (b) Ruan P, Liang S, Lu B, et al. Design strategies for high-energy-density aqueous zinc batteries. Angew Chem Int Ed. 2022;61:e202200598. (c) Wang Y, Guo T, Yin J, et al. Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv Mater. 2022;34:2106937. (d) Li H, Ma L, Han C, et al. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy. 2019;62:550-587. (e) Li J, Lin Q, Zheng Z, et al. How is cycle life of three-dimensional zinc metal anodes with carbon fiber backbones affected by depth of discharge and current density in zinc-ion batteries? ACS Appl Mater Interfaces. 2022;14:12323-12330.
|
[4] |
(a) Ming J, Guo J, Xia C, et al. Zinc-ion batteries: materials, mechanisms, and applications. Mater Sci Eng R Rep. 2019;135:58-84. (b) Tang B, Shan L, Liang S, et al. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci. 2019; 12:3288-3304. (c) Yi Z, Chen G, Hou F, et al. Strategies for the Stabilization of Zn Metal Anodes for Zn-Ion Batteries. Adv Energy Mater. 2021;11:2003065.
|
[5] |
Yang Q, Li Q, Liu Z, et al. Dendrites in Zn-based batteries. Adv Mater. 2020;32(48):2001854.
|
[6] |
(a) Xu M, Chen J, Zhang Y, et al. Electrolyte design strategies towards long-term Zn metal anode for rechargeable batteries. J Energy Chem. 2022;73:575-587. (b) Zhao Z, Yin J, Yin J, et al. End-capping of hydrogen bonds: A strategy for blocking the proton conduction pathway in aqueous electrolytes. Energy Storage Mater. 2023;55:479-489. (c) Zhao Z, Lai J, Ho DT, et al. A novel "water-in-ionic liquid" electrolyte for Zn metal batteries. ACS Energy Lett. 2023;8:608-618. (d) Sun R, Han D, Cui C, et al. A self-deoxidizing electrolyte additive enables highly stable aqueous zinc batteries. Angew Chem Int Ed. 2023;62: e202303557.
|
[7] |
(a) Zou Y, Yang X, Shen L, et al. Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy Environ Sci. 2022;15:5017-5038. (b) Zheng J, Zhao Q, Tang T, et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science. 2019;366:645-648. (c) Wang Y, Xu X, Yin J, et al. MoS2-mediated epitaxial plating of Zn metal anode. Adv Mater. 2023;35:2208171. (d) Chen Z, Zhao J, He Q, et al. Texture control of commercial Zn foils prolongs their reversibility as aqueous battery anodes. ACS Energy Lett. 2022;7(1):3564-3571.
|
[8] |
(a) Tao F, Liu Y, Ren X, et al. Different surface modification methods and coating materials of zinc metal anode. J Energy Chem. 2022;66:397-412. (b) Guo Z, Fan L, Zhao C, et al. A dynamic and self-adapting interface coating for stable Zn-metal anodes. Adv Mater. 2022;34:2105133. (c) Zhao Z, Zhao J, Hu Z, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ Sci. 2019;12:1938-1949. (d) Yin J, Wang Y, Zhu Y, et al. Regulating the redox reversibility of zinc anode toward stable aqueous zinc batteries. Nano Energy. 2022;99:107331. (e) Li J, Zheng Z, Yu Z, et al. Stable Zn electrodes enabled by an ultra-thin Zn phosphate protective layer. J Mater Chem A. 2023;11:3051-3059.
|
[9] |
(a) Wang W, Huang G, Wang Y, et al. Organic acid etching strategy for dendrite suppression in aqueous zinc-ion batteries. Adv Energy Mater. 2022;12:2102797. (b) Gao Y, Cao Q, Pu J, et al. Stable Zn anodes with triple gradients. Adv Mater. 2023;35: 2207573. (c) He H, Zeng L, Luo D, et al. 3D printing of electron/ion-flux dual-gradient anodes for dendrite-free zinc batteries. Adv Mater. 2023;35:2211498.
|
[10] |
Prabhu GRD, Urban PL. Elevating chemistry research with a modern electronics toolkit. Chem Rev. 2020;120(17):9482-9553.
|
[11] |
Sundén B. Hydrogen, batteries and fuel cells. Elsevier Inc; 2019.
|
[12] |
Shi Y, Chen Y, Shi L, et al. An overview and future perspectives of rechargeable zinc batteries. Small. 2020;16(23):2000730.
|
[13] |
(a) Yamamoto T, Shoji T. Rechargeable Zn|ZnSO4|MnO2-type cells. Inorg Chim Acta. 1986;117(2):L27-L28. (b) Zhang N, Cheng F, Liu Y, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J Am Chem Soc. 2016;138(39):12894-12901.
|
[14] |
Parker JF, Chervin CN, Pala IR, et al. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science. 2017;356(6336):415-418.
|
[15] |
Wang L-P, Li N-W, Wang T-S, Yin Y-X, Guo Y-G, Wang C-R. Conductive grape fiber as a stable host for zinc metal anodes. Electrochim Acta. 2017;244:172-177.
|
[16] |
(a) Wang R, Wu L, Wei Y, Zhu K, Wang H, Yao Y. ‘Two Birds with One Stone’ design for dendrite-free zinc-metal anodes: Three-dimensional highly conductive skeletons loaded with abundant zincophilic sites. Mater Today Energy. 2022;29:101097. (b) Jiang Z, Zhai S, Shui L, et al. Dendrite-free Zn anode supported with 3D carbon nanofiber skeleton towards stable zinc ion batteries. J Colloid Interface Sci. 2022;623:1181-1189. (c) Li P, Jin Z, Xiao D. Three-dimensional nanotube-array anode enables a flexible Ni/Zn fibrous battery to ultrafast charge and discharge in seconds. Energy Storage Mater. 2018; 12:232-240. (d) Chen K, Guo H, Li W, Wang Y. Dual porous 3D zinc anodes toward dendrite-free and long cycle life zinc-ion batteries. ACS Appl. Mater Interfaces. 2021;13:54990-54996. (e) Zhou M, Wu Z, Wang R, Sun G, Zang S-Q. An in situ reduction strategy toward dendrite-free Zn anodes. Sci. China Mater. 2023;66:1757-1766. (f) Yin Y, Wang S, Zhang Q, et al. Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv Mater. 2020;32: 1906803. (g) Su S, Xu Y, Wang Y, et al. Holey nickel nanotube reticular network scaffold for high-performance flexible rechargeable Zn/MnO2 batteries. Chem Eng J. 2019;370:330-336. (h) Zeng Y, Zhang X, Qin R, et al. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv Mater. 2019;31:1903675. (i) Qian Y, Meng C, He J, Dong X. A lightweight 3D Zn@ Cu nanosheets@ activated carbon cloth as long-life anode with large capacity for flexible zinc ion batteries. J Power Sources. 2020;480:228871.
|
[17] |
(a) Liu B
|
[18] |
Li Y, Dai H. Recent advances in zinc-air batteries. Chem Soc Rev. 2014;43(15):5257-5275.
|
[19] |
Cai Z, Wang J, Sun Y. Anode corrosion in aqueous Zn metal batteries. eScience. 2023;3(1):100093.
|
[20] |
Chen J, Zhao J, Lei L, et al. Dynamic intelligent Cu current collectors for ultrastable lithium metal anodes. Nano Lett. 2020;20(5):3403-3410.
|
[21] |
(a) Chazalviel J-N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A. 1990;42:7355. (b) Chen J, Xu X, He Q, Ma Y. Advanced current collectors for alkali metal anodes. Chem Res Chin Univ. 2020;36:386-401. (c) Chen J, Li S, Qiao X, et al. Integrated porous Cu host induced high-stable bidirectional Li plating/stripping behavior for practical Li metal batteries. Small. 2022;18:2105999.
|
[22] |
(a) Lu Z, Guo Y, Zhang S, et al. Crowning metal ions by supramolecularization as a general remedy toward a dendrite-free alkali-metal battery. Adv Mater. 2021;33:2101745. (b) Chen J, Wang Y, Li S, et al. Porous metal current collectors for alkali metal batteries. Adv Sci. 2023;10:2205695.
|
[23] |
Li S, Chen J, Liu G, et al. Ultralight porous Cu nanowire aerogels as stable hosts for high Li-content metal anodes. ACS Appl. Mater Interfaces. 2022;14(51):56697-56706.
|
[24] |
(a) Rolison DR, Long JW, Lytle JC, et al. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem Soc Rev. 2009;38:226-252. (b) Long JW, Dunn B, Rolison DR, White HS. Three-dimensional battery architectures. Chem Rev. 2004; 104(10):4463-4492.
|
[25] |
Yang Y, Chen T, Yu B, et al. Manipulating Zn-ion flux by two-dimensional porous g-C3N4 nanosheets for dendrite-free zinc metal anode. Chem Eng J. 2022;433:134077.
|
[26] |
(a) Wang X, Zeng W, Hong L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat Energy. 2018;3:227-235. (b) Gu J, Tao Y, Chen H, et al. Stress-release functional liquid metal-mxene layers toward dendrite-free zinc metal anodes. Adv Energy Mater. 2022;12:2200115. (c) Zeng L, He J, Yang C, et al. Direct 3D printing of stress-released Zn powder anodes toward flexible dendrite-free Zn batteries. Energy Storage Mater. 2023;54:469-477.
|
[27] |
Yang Z, Zhang Q, Li W, et al. A semi-solid zinc powder-based slurry anode for advanced aqueous zinc-ion batteries. Angew Chem Int Ed. 2023;62(3):e202215306.
|
[28] |
Liu Q, Yu Z, Zhou R, Zhang B. A semi-liquid electrode toward stable Zn powder anode. Adv Funct Mater. 2023;33(5):2210290.
|
[29] |
Li X, Li Q, Hou Y, et al. Toward a practical Zn powder anode: Ti3C2TxMXene as a lattice-match electrons/ions redistributor. ACS Nano. 2021;15(9):14631-14642.
|
[30] |
Zeng L, He H, Chen H, Luo D, He J, Zhang C. 3D printing architecting reservoir-integrated anode for dendrite-free, safe, and durable Zn batteries. Adv Energy Mater. 2022;13:2103708.
|
[31] |
Huang Z, Li H, Yang Z, et al. Nanosecond laser lithography enables concave-convex zinc metal battery anodes with ultrahigh areal capacity. Energy Storage Mater. 2022;51:273-285.
|
[32] |
Zhou J, Xie M, Wu F, et al. Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv Mater. 2022;34(1):2106897.
|
[33] |
Xue P, Guo C, Li L, et al. A MOF-derivative decorated hierarchical porous host enabling ultrahigh rates and superior long-term cycling of dendrite-free Zn metal anodes. Adv Mater. 2022;34(14):2110047.
|
[34] |
Wang J, Cai Z, Xiao R, et al. A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries. ACS Appl Mater Interfaces. 2020;12(20):23028-23034.
|
[35] |
(a) Xie F, Li H, Wang X, et al. Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv Energy Mater. 2021;11:2003419. (b) Zhang L, Miao L, Xin W, Peng H, Yan Z, Zhu Z. Engineering zincophilic sites on Zn surface via plant extract additives for dendrite-free Zn anode. Energy Storage Mater. 2022;44:408-415.
|
[36] |
Zheng J, Archer LA. Crystallographically textured electrodes for rechargeable batteries: symmetry, fabrication, and characterization. Chem Rev. 2022;122(18):14440-14470.
|
[37] |
Yang S, Du H, Li Y, et al. Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries. Green Energy Environ. 2023;8(6):1531-1552.
|
[38] |
Huang Y, Chang Z, Liu W, et al. Layer-by-layer zinc metal anodes to achieve long-life zinc-ion batteries. Chem Eng J. 2022;431:133902.
|
[39] |
Zhou J, Wu F, Mei Y, et al. Establishing thermal infusion method for stable zinc metal anodes in aqueous zinc-ion batteries. Adv Mater. 2022;34(21):2200782.
|
[40] |
Ling W, Yang Q, Mo F, et al. An ultrahigh rate dendrite-free Zn metal deposition/striping enabled by silver nanowire aerogel with optimal atomic affinity with Zn. Energy Storage Mater. 2022;51:453-464.
|
[41] |
An Y, Tian Y, Li Y, et al. Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries. Chem Eng J. 2020;400:125843.
|
[42] |
Zhang Q, Luan J, Huang X, et al. Simultaneously regulating the ion distribution and electric field to achieve dendrite-free Zn anode. Small. 2020;16(35):2000929.
|
[43] |
Wu M, Liao J, Yu L, et al. 2020 roadmap on carbon materials for energy storage and conversion. Chem Asian J. 2020;15(7):995-1013.
|
[44] |
Mao C, Chang Y, Zhao X, et al. Functional carbon materials for high-performance Zn metal anodes. J Energy Chem. 2022;75:135-153.
|
[45] |
Li Y, Tan Z, Liang Y, et al. Amine-functionalized carbon cloth host for dendrite-free Zn metal anodes. ACS Appl Energy Mater. 2021;4(5):4482-4488.
|
[46] |
Cao Q, Gao H, Gao Y, et al. Regulating dendrite-free zinc deposition by 3D Zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv Funct Mater. 2021;31(37):2103922.
|
[47] |
He H, Luo D, Zeng L, et al. 3D printing of fast kinetics reconciled ultra-thick cathodes for high areal energy density aqueous Li-Zn hybrid battery. Sci Bull. 2022;67(12):1253-1263.
|
[48] |
Zeng Y, Sun PX, Pei Z, et al. Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes. Adv Mater. 2022;34(18):2200342.
|
[49] |
Yang J-L, Yang P, Yan W, Zhao J-W, Fan HJ. 3D zincophilic micro-scaffold enables stable Zn deposition. Energy Storage Mater. 2022;51:259-265.
|
[50] |
(a) Shen Z, Luo L, Li C, et al. Stratified zinc-binding strategy toward prolonged cycling and flexibility of aqueous fibrous zinc metal batteries. Adv Energy Mater. 2021;11:2100214. (b) Cao Q, Gao Y, Pu J, Elshahawy AM, Guan C. Materials and structural design for preferable Zn deposition behavior toward stable Zn anodes. SmartMat. 2023;e1194.
|
[51] |
Li C, Xie X, Liang S, Zhou J. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ Mater. 2020;3(2):146-159.
|
[52] |
Li B, Zhang X, Wang T, et al. Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 2022;14(1):6.
|
[53] |
Yan Z, Xin W, Zhu Z. Artificial interphase engineering to stabilize aqueous zinc metal anodes. Nanoscale. 2021;13(47):19828-19839.
|
[54] |
Wang X, Li X, Fan H, Ma L. Solid electrolyte Interface in Zn-based battery systems. Nano-Micro Lett. 2022;14(1):205.
|
[55] |
Cao Q, Gao Y, Pu J, et al. Gradient design of imprinted anode for stable Zn-ion batteries. Nat Commun. 2023;14(1):641.
|
[56] |
Zhang Z, Yang X, Li P, et al. Biomimetic dendrite-free multivalent metal batteries. Adv Mater. 2022;34(47):2206970.
|
[57] |
(a) Li C, Wu Q, Ma J, Pan H, Liu Y, Lu Y. Regulating zinc metal anodes via novel electrolytes in rechargeable zinc-based batteries. J Mater Chem A. 2022;10:14692-14708. (b) Li Q, Han L, Luo Q, Liu X, Yi J. Towards understanding the corrosion behavior of zinc-metal anode in aqueous systems: from fundamentals to strategies. Batter Supercaps. 2022;5(4):e202100417.
|
[58] |
(a) Yang J, Zhang Y, Li Z, et al. Three birds with one stone: Tetramethylurea as electrolyte additive for highly reversible Zn-metal anode. Adv Funct Mater. 2022;32:2209642. (b) Yao R, Qian L, Sui Y, et al. A versatile cation additive enabled highly reversible zinc metal anode. Adv Energy Mater. 2022;12:2102780.
|
[59] |
Zhang Q, Luan J, Fu L, et al. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew Chem Int ed. 2019;58(44):15841-15847.
|
[60] |
Bayaguud A, Luo X, Fu Y, Zhu C. Cationic surfactant-type electrolyte additive eniyras three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 2020;5(9):3012-3020.
|
/
〈 | 〉 |